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ABSTRACT A common framework of fiite state approx-
imating Markov chains is developed for discrete time deter-
ministic and stochastic processes. Two types of approximating
chains are introduced: (i) those based on stationary conditional
probabilities (time averaging) and (ii) transient, based on the
percentage of the Lebesgue measure of the image of cells
intersecting any given cell. For general dynamical systems,
stationary measures for both approximating chains converge
weakly to stationary measures for the true process as partition
width converges to 0. From governing equations, tranient
chains and resultant approximations of all n-time unit proba-
bilities can be computed analytically, despite typically singular
true-process stationary measures (no density function). Tran-
sition probabilities between cells account explicitly for corre-
lation between successive time increments. For dynamical
systems defined by uniformly convergent maps on a compact
set (e.g., logistic, Henon maps), there also is weak continuity
with a control parameter. Thus all moments are continuous
with parameter change, across bifurcations and chaotic re-
gimes. Approximate entropy is seen as the information-
theoretic rate ofentropy for approximating Markov chains and
is suggested as a parameter for turbulence; a discontinuity in
the Koimogorov-Sinai entropy implies that in the physical
world, some measure of coarse graining in a mixing parameter
is required.

I aim to develop a framework of finite state space approxi-
mating (m, r) Markov chains for discrete-time stochastic and
deterministic processes. The motivation derives from needs:
(i) to assess claims of deterministic chaos, from time-series
analysis; (ii) to produce a tractable, general procedure for
"solving" stochastic and deterministic difference equations;
and (iii) to address meaningful questions for dynamical
systems where there is sensitivity to initial conditions.

In many reports ofchaos (e.g., refs. 1 and 2), it appears that
investigators may be observing a correlated, possibly sto-
chastic process with a stationary measure. To evaluate
paradigms other than chaotic processes and independent,
identically distributed random variables as candidate models
for data, we need first to assess the behavior of continuous-
state processes, on a partition, in a statistically valid manner.
Process approximation by a low-order Markov chain on a
coarse partition will provide this validity. Second, for both
stochastic and deterministic differential equations, analytic
solution techniques are often nonexistent, so the utility of a
family of easily solved approximating processes, converging
to a true solution, is apparent. Formally, mth-order differ-
ence equations are mth-order Markov processes, continuous-
state space. The idea here is to approximate these systems by
mth-order discrete-state space Markov chains, which are
well understood, with straightforward procedures to calcu-
late stationary measures and rates of convergence to steady
state. Third, if a dynamical system or differential equation is

sensitive to initial conditions, a transient calculation is inap-
propriate, since two arbitrarily close initial conditions can
produce divergent orbits. Also, steady-state probabilities do
not tell the whole story, ignoring correlation between values
at successive time points.
For deterministic differential equations, the approximat-

ing-chain approach contrasts fundamentally with classical
solution methods (3, 4). For a finite-difference approxima-
tion, one solves for grid values at time t + At, deterministi-
cally, in terms of grid values at time t, At, the mesh dimen-
sions, and nonlinear differential operators; in the present
approach, grid values at time t + At are probabilistically
specified from the aforementioned data. Anticipated advan-
tages here are that approximating Markov chains will (i)
provide a probabilistic analogue of a transient solution; (ii)
account explicitly for correlation between successive time
increments; and (iii) have nice "stability" properties, for
classically unstable processes, in that stationary measures for
these Markov chains will be weakly continuous with pertur-
bations.
The approximating (m, r) Markov chains will be given by

explicit transition matrices, with the elements pV well-defined
approximations of local-process behavior. One can then
calculate the stationary measure {irj for the approximating
chain, and use the parameters {pu} and {iri} in a variety of
ways-e.g., (i) to establish that two processes are different,
by establishing that their respective approximating chains are
different, and (ii) to estimate true process parameters by
related parameters for the approximating chain. Greater
approximation accuracy (larger m and smaller r) requires
greater data input, in the spirit of analogous requirements for
Taylor and Fourier series.

Approximating Markov Chains and Related Parameters

For deterministic and stochastic discrete-time processes,
support on some interval [A, B], I define approximating (m,
r) Markov chains. These chains are mth-order, state space {A
+ r/2, A + 3r/2, . .. , B - r/2}. We assume equilibrium
(stationary) behavior throughout most of this discussion.
Recall the following. Definition 1: The Markov chain (or
process) {X"} is of order m if the conditional probability P{X,,
E An Xk = ak, k < n} is independent of the values ak for k
< n - m.

Definition 2: For a stationary discrete time, continuous
state-space stochastic process, with A - Xn - B almost
surely, define an approximating (m, r, A, B) Markov chain as
follows: (a) Divide [A, B] into (B - A)/r cells; the ith cell C(i)
= [x, x + r), where x = A + (i - 1)r; (b) define mid(i) = A
+ (i - 1)r + r/2; (c) define Pivet j for all length m vectors of
integers ivect and integers j, ivect = (il. i2,* *, im), 1 < itk
(B - A)/r for all k, 1 c j c (B - A)/r. Pivectj = {conditional
probability that Xk E CQj), given that Xkl E C(iU), Xk-2 E
C(i2), . . . , and Xk-m E C(im)}. By stationarity, this proba-
bility is constant for all k. When probability {Xkl E C(iU),

Abbreviation: ApEn, approximate entropy.
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Xk-2 E C(i2), . . , and Xkm E C(im)} = 0, define Pivectj =
0; and (d) define the approximating (m, r, A, B) Markov chain
Yi as an mth-order chain, state space {mid(i)}, by the above
transition probabilities: P{Yk = mid(j)IIYkl = mid(il), . . .,
and Yk-m = mid(im)} := P{Xk E C(j)IlXk-l E C(il), . . , and
Xk-m E C(im)}.

In instances in which A and B are tacitly set, I refer to the
above as approximating (m, r) Markov chains and make an
analogous definition for deterministic processes. First, we
have the following.

Definition 3: A deterministic process {X"} is of order m if
for all n, Xn = f(Xn1, Xn2-.2. . , with f a single-
valued function.
Such processes arise, e.g., in explicit time-step approxi-

mations to mth-order differential equations. For the next
definition, a stationary process is required, which we form as
follows. Step A: for an order m deterministic process, assign
{X1, X2, ...., Xm} to have a joint probability distribution
given by a (selected) stationary measure forf. Step B: for all
k > m, define Xk = f(Xkl, Xk-2, ...., Xkm). {Xnj is then a
stationary stochastic process. We typically are interested in
the physical (Kolmogorov) stationary measure (ref. 5, p. 626)
for f. For a wide class of deterministic processes, this
measure is unique, given by well-defined time averages.

Definition 4: For a deterministic process of order m, with
a preselected stationary measure and withA ' Xi ' B. define
an approximating (mi, r, A, B) Markov chain by (i) forming an
associated stationary stochastic process by using steps A and
B and then (ii) applying Definition 2.

I also consider an alternative Markov chain approximation
to a deterministic map f. This transient chain can be calcu-
lated analytically fromf, without knowledge of the stationary
measure. Transition probabilities are defined by the fraction
of the Lebesgue measure ofthe image of the conditioning set
that intersects a given interval. We assume throughout the
minimal restriction onfthat there exists no collection of cells
on which f is constant. This ensures nonzero denominators
and hence well-defined pivetj's, in the following.

Definition 5: A transient (m, r, A, B) Markov chain for a
deterministic mapf of order m is defined on the same state
space as for Definitions 2 and 4. The terminology and
definitions (2a, 2b, and 2d) apply but the conditional prob-
abilities are formed differently: (c) Pivectj = A(C(j) nf(c(il)
C(i2), . .. , C(im)))3/A~f(C(Qi), C(i2), . ... iC(m))), where A is
the Lebesgue measure on R.

Definition 6: Approximate entropy (ApEn) is defined as
follows. Fix r> 0 and m a positive integer. Given a realization
{x,} ofa process {X,}, define vi = (xi, xi+,. . . , xi+,_,). Define
C7'(r): = (number of 1 c j c N - m + 1 such that d[vi, vj]
c r)/(N - m + 1), where we define d[vi, vj] = maxk=1,2, ...
(lXi+k-1 - Xj+k-1I). Define F"'(r) = (N - m + 1)-1 XN-m+l

log C,(r), and if it exists almost surely, ApEn(m, r) = limN .x
["M(r) - (Dm+1 (r)].
ApEn has been developed as an efficient parameter of

complexity, with both theoretical (6) and clinical utility

(8-11) demonstrated for 1000 data points. Since it is generally
finite, ApEn provides the capacity to distinguish many pro-
cesses that Kolmogorov-Sinai entropy cannot distinguish
(6), including correlated stationary stochastic processes.
Since an mth-order Markov chain is a first-order chain,
suitably recast, theorem 3 of ref. 6 can be applied to approx-
imating (m, r) Markov chains. Let := {mid(i)}, i = 1, ...
(B - A)/r. Define r, := {all sequences ofvectors (il, i2, . . ..
im) with ik Eir for each k}. We then immediately deduce
Theorem 1; in this discrete setting, the right-hand side of Eq.
1 is well-known to information theorists as the entropy rate.
THEOREM 1. For an approximating (m, r, A, B) Markov

chain with s < r, almost surely

ApEn(m, s) = - X 'ir(ivect)pivectjlog(pivectj) t1]
ivectEr jier

where ir is a stationary measure for this Markov chain.
Example 1-An (m, r) approximating chain for indepen-

dent, identically distributed uniform random variables {X,} on
[0, 1]: The state space r = {r/2, 3r/2, ... , 1 - r/2}, and the
transition probabilities Pivect.j = 1/r for all ivect E rm and j
e F.
Example 2-The chaotic map f(x) = 3.6x(1 - x) on [0, 1]:

Transition probability matrices for both the approximating (1,
1/10) Markov chain (MAT) and the transient (1, 1/10)
Markov chain (TMAT) forf(x) are shown in Table 1 with the
(i, j)th entry corresponding to a transition from C(i) to C(2j).
Stationary probabilities are: (0 0 0 0.217 0.147 0.129 0.007
0.048 0.452 0) for MAT and (0 0 0 0.123 0.162 0.138 0.060 0.108
0.409 0) for TMAT. As shown in Theorem 3, stationary
probabilities of {mid(i)} for MAT agree with time-average
probabilities for the {C(i)} given by iterations of f(x). To
ensure that all rows have probabilities that sum to 1 in MAT,
we should delete cells from the state space with 0 stationary
probability.

Convergence of Approximating Chains

The (m, r) approximating chains can be used to "solve"
deterministic and stochastic mth-order difference equations.
The orientation is computational; we are interested in mo-
ments of system variables, the percentage of time spent in
prescribed domains, and measures of correlation between
contiguous observations. Stationary measures provide this
information, so they become the objects of study. Below, it
is shown that under general conditions, stationary measures
for the approximating (m, r) chains and the transient (m, r)
chains converge weakly to stationary measures for a given
mth order process as r-) 0. We can thus estimate much about
the behavior of a dynamical system by using straightforward
approximating chain computations. Weak convergence re-
sults are most interesting in chaotic settings, where some
neighboring orbits ultimately diverge. Transient information
does not make sense for such systems, but we can still inquire
about irl(A), the probability spent in A, or w3(Z), where Z =

Table 1. Transition probability matrices for the approximating (1, 1/10) Markov chain and the transient (1, 1/10) Markov chain
forf(x)

0 0 0 0

0 00 0

0 00 0

0 00 0

0 00 0

0 00 0

0 00 0

0 00 0

0 0 0 0.480
0 00 0

0

0

0

0

0

0

0

0

0.327
0

MAT
0
0
0
0
0
0
0

0.864
0.193
0

0

0

0

0

0

0

0

0.136
0

0

0

0

0
0.223
0

0

0

0

0

0

0

0

0

0.777
1.0
1.0
1.0
0

0

0

0.
0
0
0
0
0
0
0
0
0

0.309
0
0
0
0
0
0
0
0

0.309

0.309
0

0

0

0

0

0

0

0

0.309

0.309
0

0

0

0

0

0

0

0

0.309

0.073
0.302
0

0

0

0

0

0

0.302
0.073

TMAT
0 0

0.3% 0.302
0 0.133
0 0
0 0
0 0
0 0
0 0.133

0.3% 0.302
0 0

0

0

0.556
0

0

0

0

0.556
0

0

0

0

0.311
0.407
0

0

0.407
0.311

0

0

0

0

0

0.593
1.0
1.0

0.593
0

0

0

0
0
0

0
0
0
0
0
0

0
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{Xn E A1 &Xn+l E A2 &Xn+2 E A3}, the probability that three
successive observations fall into prescribed sets. We now
indicate an analytic method for estimating the latter quantity
above for the map xn+l = 3.6xn(1 - x"), with A1 = [0.8, 0.9],
A2 = [0.4, 0.5], and A3 = [0.8, 0.9]; the theorems below
establish the convergence of the estimate to the true value as
the mesh size goes to 0. By computer experiment based on 106
points, ir3(Z) = 0.146. For the transient (1, 0.1) chain
approximation, 1rTR (Z) = Pr(Xn+2 E [0.8, 0.9111 Xn+l E [0.4,
0.5] & Xn E [0.8, 0.9])Pr(Xn+l E [0.4,0.5111 Xn E [0.8, 0.9])irTR
(Xn E [0.8, 0.9]), where Pr and iirR refer to the approximating
chain. Since [0.4, 0.5] and [0.8, 0.9] are single atoms in the (1,
0.1) partition, wrR (Z) = p59 p95 vM (9), with cell i corre-
sponding to [0.1(i - 1), 0.1i]. From Example 2, we can
conclude that irrR (Z) = (1.0)(0.396)(0.409) = 0.162. Note
that irTR(Z) is much closer to r3(Z) than is iri(A)1Trl(A2)1r1(A3)
= (0.452)(0.147)(0.452) = 0.030, the latter the product of
exact steady-state probabilities, which would equal 1r3(Z) if
successive observations were uncorrelated. To analytically
approximate the measure ofan n-time unit event, (i) calculate
all pvcctj for a transient chain approximation TR for the given
system, (ii) compute all Xivct by raising TR to a high power,
and (iii) derive all n-time unit probabilities by using the
Chapman-Kolmogorov equations.

Below, the space A will always be a compact subset of R".
I wish to compare stochastic processes, particularly Markov
processes, to one another and to deterministic maps, and so
consider a space of transition probabilities on A, Tr(A).

Definition 7: Given A C RI, define t E Tr(A), t =
{probability measures ta on A for all a E A, such that for all
B C A Borel measurable, the map a t(a, B) is a Borel-
measurable function}.
For a (deterministic) function f:A A, (tf)a will be the

point mass Sf(a) for all a.
Definition 8-Action of Tr(A): For t E Tr(A) and L, a

measure on A, define t * ,u as a measure on A given by
f f(z)d(t * p)(z) = f u f(y)t(z, dy)]dpu(z), for all Borel-
measurable functions f.

Definition 9: A probability measure Au on A is stationary for
t E Tr(A) if t * , = p.

Definition 9 agrees with the standard notion for determin-
isticf and for Markov chains. By lemma 1.2 of ref. 12, there
exists at least one such stationary measure for t E Tr(A).
Below, I do not presume absolute continuity of stationary
measures with respect to Lebesgue measure; typically these
measures are singular. For {tj, t E Tr(A), we say that tn
converges to t if whenever pun converges to ,u weakly on A,
then tnn converges to tpu weakly on A.
The next, central lemma requires that two conditions be

satisfied to conclude weak convergence. These conditions
are often easy to verify (see below), ensuring applicability.
LEMMA 1 (weak convergence ofprocesses). Assume we are

given A a compact subset of R' and transition probabilities
tn and t on Tr(A). Furthermore, assume the following.

Condition A: The map on A:a -+ t(a, dy) is weakly
continuous [i.e., fj(y) t(a, dy) is a continuous function of a
for every continuous bounded f on A].

Condition B (uniformity in weak convergence): Given any
8 > 0 and any bounded continuousf, there exists N such that
for all n > N and for all a E A, fAf(y)tn(a, dy) - fAf(y)t(a,
dy) < 6. Then tn converges to t.

Proof: Choose probability measures vn that converge
weakly to v on A. Choosef continuous; then Iffd(tn * vn) -
ffd *)I s iff d(t, * vn) - ffd(t * vI + If fd(t * vn) -

ffd(t * v)1. For the first term on the right-hand side, Iffd(tn
* vn) - ffd(t * vn)I = If [ff(y)tn(z, dy)]dvn(z) - f [ff(y)t(z,
dy)]dvA,(z)I c UsuP IfA f(y)t,(z, dy)-IA f(y)t(z,dy)-dr(z)
which, by Condition B, converges to 0 as n -- oo. For the
second term on the right-hand side, If f d(t * V") -
ffd(t * v)l = if [ff(y)t(z, dy)]dvn(z) - f [f(y)t(z, dy)]dv(z)l.

The integral in brackets is a continuous function of z, by
Condition A, hence the second term converges to 0 as n -X00
by the weak convergence of vn to v. Therefore tn * vn
converges weakly to t * v, hence Lemma 1.
THEOREM 2 (weak convergence of stationary measures).

Assume A is a compact subset ofRW, transition probabilities
tn converge to t on Tr(A), and t has a unique stationary
measure v on A. For each n, choose vn stationary for tn on
A. Then vn converges weakly to v.

Proof: Since A is compact, the {v"} are a tight family and
have a subsequence {v"(j)} that converges weakly to some
probability measure T on A (theorem 6.1 of ref. 13). I claim
that T is stationary for t. Since tn(j) converges to t, tn(j) * V"(j)
converges weakly to t * I. But tn(j) * vn(i) = Vn(i) by
stationarity, so v"(i) converges weakly to t * T. Since v"(i)
converges weakly to I, I conclude that t * T = T (as
claimed), and by uniqueness of the stationary measure for t,
that T = v. This establishes convergence for some subse-
quence. Suppose vn does not converge weakly to v; then for
some f in C(A) and some positive e, Iff dv,,() - ff dvI > E
for all Vn(i) in some subsequence. Mimicking the above
argument, since the {v(i)} are a tight family, there is a further
subsequence {v,(i(m))} that converges weakly to a probability
measure fonA, with {stationary for t. So e = v, contradicting
the bounding away of the above by E. This completes the
proof.
To invoke Theorem 2 directly, a limit process with a unique

stationary measure is required. In general, stochastic pertur-
bations of dynamical systems have unique stationary mea-
sures (14). We next see that we can estimate a stationary
measure for a dynamical system by finding the stationary
measure for an approximating chain, with small r.
THEOREM 3. Given f:[A, B] -* [A, B], select a stationary

measure ufor f and define a (1, r) approximating chain Ar on
{mid(i)} given by Definitions 2 and 4. Suppose there exists ro
such that for all r < ro, Ar is irreducible, when restricted to
those cells with positive IL measure. Then vr, the unique
stationary measure for Ar, converges weakly to A as r -* 0.

Proof: Uniqueness of vr on {mid(i): p(C,) > 0} follows from
the irreducibility assumption on Ar. We see the following:
v,(mid(i)) = p(C,), for Ci with positive IA measure. Invoking
stationarity, A(C(j)) = u(f'-C(i)). This latter quantity = 1:
,(f-1 (C(j)) n C(i)) = i [L,(f-N(C(j)) n C(i))/p(C(i))]ij(C(i))
= Xi Pmid(i),mid(j) A4C(i)), for all j. Since vr (mid(j)): = A(Cj)
satisfies v,(mid(j)) = EXiPmid(i),mid(j) vr(mid(i)), v, is stationary
on {mid(i): !u(C,) > 0}, and by the uniqueness of vr, the
relationship vr(mid(i)) = 4(C1) is verified. To establish weak
convergence of vr to A, it suffices to show that the distribution
functions Fr(x) = vr([A, x]) converge to F(x) = A,([A, x]) at
all continuity points x of F (13). By this relationship, F(x) -
Fr(x) = ,u((mid(i)r,x, x]), with mid(i)rx the largest midpoint in
the (1, r) partition - x. Thus IF(x) - Fr(x)I < u((x - 1/r, x]),
which converges to 0 as r -* 0 since x is a continuity point of
F.
To see that the irreducibility assumption is necessary,

considerf(x) = 3.6x(1 - x). Let a be the fixed point off in
(0, 1), and let b and c be the fixed points off2;f(b) = c and
f(c) = b. The measure (8a + Y2(Sb + Sc))/2 is stationary for
f. For sufficiently small r, the approximating chain for this
measure is supported on three points, with nonzero transition
probabilities Pa,a = 1, Pb,c = 1, and Pc,b = 1 (associating a, b,
and c with the respective cell midpoints). For each r, choose
8,a as a stationary measure for the approximating chain. Then
the weak limo 6a $ (6a + '/2(Ob + Sc))/2.
For many dynamical systems, including irreducible axiom

A systems (15), unique physical measures exist (16) and agree
with Sinai-Ruelle-Bowen (SRB) measures (17). If no phys-
ical measure exists, there is no ergodic behavior (5), a terrible
state of affairs (18). Fortunately, in both computer experi-
ments and the physical world, a small, "uncertain" pertur-
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forward to calculate. As in Theorem 3, we require [f fg(xl, X2,. . . , Xm)t(Xm-i, dxm)]t(Xm-2, dXm-)]... *d(X,
ty on recurrent states of the transient chains for for Borel-measurable g. The proof (omitted) follows from a
re ofthese stationary measures to a unique phys- straightforward recursive argument, repeatedly applying
e. This irreducibility holds for general classes of Conditions A and B of Lemma 1.
Lins; in Example 2, the recurrent states are {mid(i), THEOREM 6. Let Ar be the transient (1, r) chainfor f:[A, B]
nd theseareeasily seento communicate withonem-i [A, B], and assume there exists ro such thatfor all r < ro,A, is irreducible when restricted to recurrent cells. Assume

n in Fig. 1, even coarse mesh approximating and that M,. the unique stationary measures for Ar, converge
ains can produce good estimates for the physical weakly to vphy, as re- 0 and that vphys is nonatomic. Fix m and
a dynamical system. Stationary probability dis- subintervals {C(i)}, i = 1, . . . , m of[A, B]; denote D : = C(1)
actions are shown for the physical measure for the x C(2)... , x C(m). Then Vrm(D) vphysm(D) as r -* 0.
= 3.6xn(1 - x"), for the (1, 0.1) and (1, 0.04) Next, consider the evolution of dynamical systems with
ing Markov chains and for the (1, 0.1) transient control parameter. For perturbed dynamical systems, we
ain. To generate this figure, I assumed a uniform generally have weak continuity of stationary measures. First,
-ach cell C(i), rather than a point mass at {mid(i)}. for continuousf.A -) A, A C RI, definef E8 Tr(A), a uniform
4) approximating chain produces a very accurate perturbation of magnitude c E. Pick a E RI; define the

measurefla by the density function pa(Z) = Ka for z E A such
neasure approximation; observe also that the (1, that I|z-f(a)II < E, (pa(Z) = 0 otherwise, with 11.11 the Euclidean
limating chain produces a more accurate estimate metric on RI and Ka = 1/(the m-dimensional volume of (A n
process stationary measure than does the (1, 0.1) the E-ball around a)).
lain, as expected. THEOREM 7. Assume a family of dynamical systems is

given by continuous f.:A -* A, where f, converges uniformly
- Logis(3.6) on A to f,. Choose £ and assume that f, has unique stationary

*ARpp( 1,. 1) A measure vr For each s, choose a stationary measure v, for
*ARpp(1 ,.04) {/wy f.; then v, converges weakly to avr---Tr( 1 14) ;27 Proof: We verify Conditions A and B of Lemma 1. Con-
Tr (1,1) dition A follows from the continuity Offr. For Condition B,

choose g continuous on A and 8 > 0. Define K = supaEA Ka
.7 (finite, since Ka is continuous on a compact set). Since A is

compact, g is uniformly continuous, and hence there exists T
/ X'such that Ix - yl<T implies that Ig(x) - g(y)J < 8/K. By

uniform convergence off, tofr, there exists w such that Ir -
sI < w implies If,(a) - fr(a)l < r, for all a E A. Then for

0.0 0.2 0.4 0.6 0.8 1.0 arbitrary a E A, and Ir - sI <w, IfA g(y)t,(a, dy) - fAg(y)t,(a,
* dy)I ' K fllxll<E Ig(fs(a)+x) -g(fr(a) + x)I dx ' K SUPxEA

xg(fs(a) + x) - g(f,(a) + x)I ' K(8/K) = 8. This establishes
tationary probability distribution functions for the phys- Condition B and, by Theorem 2, the desired result.
for the logistic map x"+1 = 3.6x,(1 - x") [Logis (3.6)], Most familiar dynamical systems satisfy the uniform con-
Lnd (1, 0.04) approximating Markov chains [App(l, .1) vergence assumption, and hence perturbations of these sys-
.04), respectively], and the (1, 0.1) transient Markov tems generally fall under the aegis of Theorem 7. Weak
.1)]. convergence with control parameter implies continuity of all
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FIG. 2. Mean and standard deviation vs. control parameter r for
the logistic map x,,+1 = rx"(1 - x").

moment statistics, since they are integrals of polynomials
with respect to the stationary measure [e.g., the mean =

fA x dx(x)]. This is illustrated in Fig. 2, which demonstrates
the continuity of the time-averaged mean and standard de-
viation as a function of the control parameter for the logistic
map. Since these calculations are performed by computer,
they yield statistics for a slightly perturbed version of the
logistic map, which fits the context of Theorem 7. Compare
the perspectives ofthe analyst/statistician and the topologist;
the topologist sees structural change and instability with
control parameter, through bifurcations and into chaotic
regions, while the analyst sees continuity.t

I demonstrate weak convergence across bifurcations for
the map x,,+, = rx,(1 - x") near r = 3.0, where the system
changes from a single limit point to a period 2 limit. For r <
3.0, s = 1 - 1hr is an attracting fixed point with physical
measure = 8s(r). For 3.0 < r < 3.2, s = 1 - 1/r is a repelling
fixed point. The other fixed points off2, t and u = [(1 + 1/r)
± Vr(1 - 2/r - 3/r2)]/2 are attracting, and thus the physical
measure = ½/2 (89r) + Sa(r)) Since t(r) and u(r) both converge
to s(r) = 2/3 at r = 3.0, weak convergence follows. This can
be seen from the bifurcation diagram: weak convergence
follows from the connectivity of the graph of the physical
measure, in the multiply periodic domain.

A Parameter for Turbulence

The study of turbulence has long been an enigma. A com-
monly used measure for turbulence is the Reynolds number,
which has at least two deficiencies: (i) there is an artificial
length scale imposed in the formula, and (ii) interpretation of
the amount ofturbulence given by a set value ofthe Reynolds
number seems to be heavily shape dependent. I propose
ApEn as a measure of turbulence, given a grid (partition) and
a variable of interest (e.g., pressure or x-component of
velocity). Once a grid and a variable have been set, define

ApEn(m, grid): = - E 1 rivect)pi[2]tjlog(pjvectj),[2]
ivectEzF" jE-r

tGeometric changes in attractors appear to be manifested in the
differentiability of a "weak integral" as a function of the control
parameter. Thus, e.g., the mean in Fig. 2 is piecewise smooth in the
multiply periodic domain and nondifferentiable at bifurcations and
at returns to periodicity from chaos, most blatantly realized near
3.828, where- the logistic map changes from chaotic to periodic,
period 3.

with state space F the collection of cells. This can be
generalized to n-tuples of variables by considering Pn as the
state space. Numerical estimation of Eq. 2 from data is
inexpensive, since stationary and transition counts on a grid
specify this estimate. Eq. 2 captures both the stationary
distribution of the flow via ir and the transient (mixing)
effects of the flow given by the Pivt,j. Thus we distinguish
the well-mixed, completely stagnant system (ApEn = 0) from
the well-mixed, actively mixing system (ApEn > 0).

It is tempting to form a measure of "turbulence" by letting
the grid size converge to 0 in Eq. 2, to speak of a parameter
without reference to a specified grid. There is an important
reason not to do so, in addition to computational cost: if there
exists some e below which process behavior cannot be
ascertained, any relationship between a converged value of
Eq. 2 and a true process value is coincidence. So the notion
of which process of two is more "random" or complex
should be tied to the choice of partition. In practice, there
often appears to be a nice consistency across meshes; if
ApEn(m, r)(A) - ApEn(m, r)(B), then ApEn(n, s)(A) -

ApEn(n, s)(B) for many choices of n and s. Since the global
ApEn parameter is aggregating heterogeneous local informa-
tion, there is no reason to expect this behavior in general.t

*A "flip-flop pair of processes" can be constructed to establish that
even given no noise and infinite data, the determination of which of
two processes is more random, turbulent, or complex must be tied
to partition choice. For deterministic processes, in theory the
Ornstein-Weiss guessing scheme (7) can be applied to estimate the
Kolmogorov-Sinai entropy and the limiting value of Eq. 2, given no
process noise.

For discussions that gave perspective, I thank R. Burton, T. L.
Lai, P. Jones, D. Ornstein, S. R. S. Varadhan, and L. Shepp; for
inspiration, I thank M. J. Minkin and W. Mozart (Clemenza di Tito).
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