Skip to main content
. 2016 Jun 16;7:949. doi: 10.3389/fmicb.2016.00949

Table 1.

Performance (CV-10 fold) of SVM-based models on both balanced and realistic datasets using AAC and DPC features as input.

Dataset Feature Kernel Thr Sen Spec Acc MCC AUC Parameter
Balanced dataset AAC t0 0.1 90.14 93.66 91.9 0.84 0.94 t:0,c:80
t1 −0.1 86.62 96.48 91.55 0.84 0.96 t:1,d:2
  t2 0.2 93.66 90.85 92.25 0.85 0.97 g:0.001:c:0.5:j:4
DPC t0 −0.1 90.14 89.44 89.79 0.8 0.96 t:0,c:990
t1 −0.2 90.85 94.37 92.61 0.85 0.96 t:1,d:1
  t2 0.1 84.51 95.77 90.14 0.81 0.96 g:0.001:c:1:j:1
Realistic dataset AAC t0 0.3 69.72 99.3 96.62 0.78 0.95 t:0,c:5
t1 −0.6 88.03 98.38 97.45 0.85 0.98 t:1,d:3
  t2 −0.2 86.62 98.74 97.64 0.86 0.98 g:0.001:c:10:j:1
DPC t0 0.5 78.87 97.89 96.17 0.77 0.95 t:0,c:990
t1 −0.3 79.58 98.67 96.93 0.81 0.96 t:0,d:1
t2 −0.3 83.8 98.88 97.51 0.85 0.96 g:0.001:c:1:j:2

The models constructed using balanced dataset displayed the highest MCC values of 0.85 for both AAC and DPC. The models constructed using realistic dataset displayed the highest MCC values of 0.86 and 0.85, respectively, on AAC and DPC as input features.