Table 1.
Dataset | Feature | Kernel | Thr | Sen | Spec | Acc | MCC | AUC | Parameter |
---|---|---|---|---|---|---|---|---|---|
Balanced dataset | AAC | t0 | 0.1 | 90.14 | 93.66 | 91.9 | 0.84 | 0.94 | t:0,c:80 |
t1 | −0.1 | 86.62 | 96.48 | 91.55 | 0.84 | 0.96 | t:1,d:2 | ||
t2 | 0.2 | 93.66 | 90.85 | 92.25 | 0.85 | 0.97 | g:0.001:c:0.5:j:4 | ||
DPC | t0 | −0.1 | 90.14 | 89.44 | 89.79 | 0.8 | 0.96 | t:0,c:990 | |
t1 | −0.2 | 90.85 | 94.37 | 92.61 | 0.85 | 0.96 | t:1,d:1 | ||
t2 | 0.1 | 84.51 | 95.77 | 90.14 | 0.81 | 0.96 | g:0.001:c:1:j:1 | ||
Realistic dataset | AAC | t0 | 0.3 | 69.72 | 99.3 | 96.62 | 0.78 | 0.95 | t:0,c:5 |
t1 | −0.6 | 88.03 | 98.38 | 97.45 | 0.85 | 0.98 | t:1,d:3 | ||
t2 | −0.2 | 86.62 | 98.74 | 97.64 | 0.86 | 0.98 | g:0.001:c:10:j:1 | ||
DPC | t0 | 0.5 | 78.87 | 97.89 | 96.17 | 0.77 | 0.95 | t:0,c:990 | |
t1 | −0.3 | 79.58 | 98.67 | 96.93 | 0.81 | 0.96 | t:0,d:1 | ||
t2 | −0.3 | 83.8 | 98.88 | 97.51 | 0.85 | 0.96 | g:0.001:c:1:j:2 |
The models constructed using balanced dataset displayed the highest MCC values of 0.85 for both AAC and DPC. The models constructed using realistic dataset displayed the highest MCC values of 0.86 and 0.85, respectively, on AAC and DPC as input features.