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Independent component analysis (ICA) is a class of algorithmswidely applied to separate sources in EEGdata.Most ICAapproaches
use optimization criteria derived from temporal statistical independence and are invariant with respect to the actual ordering of
individual observations. We propose a method of mapping real signals into a complex vector space that takes into account the
temporal order of signals and enforces certain mixing stationarity constraints. The resulting procedure, which we call Pairwise
Complex Independent Component Analysis (PWC-ICA), performs the ICA in a complex setting and then reinterprets the results in
the original observation space. We examine the performance of our candidate approach relative to several existing ICA algorithms
for the blind source separation (BSS) problemonboth real and simulated EEGdata.On simulated data, PWC-ICA is often capable of
achieving a better solution to the BSS problem thanAMICA, Extended Infomax, or FastICA.On real data, the dipole interpretations
of the BSS solutions discovered by PWC-ICA are physically plausible, are competitive with existing ICA approaches, and may
represent sources undiscovered by other ICAmethods. In conjunctionwith this paper, the authors have released aMATLAB toolbox
that performs PWC-ICA on real, vector-valued signals.

1. Introduction

Blind source separation (BSS), the process of discovering a set
of unknown source signals from a given set of mixed signals,
has broad relevance in the physical sciences. Independent
component analysis (ICA) is a widely used approach to the
BSS problem that seeks maximally statistically independent
sources. Existing ICA algorithms can be broadly divided
into two categories based on a definition of statistical inde-
pendence and the corresponding optimization problem [1].
ICA by maximization of entropy is notably embodied by
the Infomax [2], Extended Infomax [3], and Pearson [4, 5]
ICA algorithms. Alternately, fixed-point algorithms such as
FastICA [6] seek to maximize non-Gaussianity. Hyvärinen
et al. [1] point out that these two perspectives are closely
related, as the negentropy measure of non-Gaussianity used
in FastICA and comparable algorithms has an information-
theoretic interpretation inmutual information reduction that
is fundamentally related to entropy maximization.

Standard applications of ICA to spatiotemporal signals
such as EEG (electroencephalogram) treat each time point
independently and do not use order information to separate
sources. These traditional ICA models look for uncorre-
lated, statistically independent sources. While these ICA
analyses have been highly successful in many applications,
the fundamental assumptions of statistical independence do
not necessarily fit with the view of the brain as a highly
connected network of coupled oscillators. Motivated by work
in dynamical systems using delay coordinates to reconstruct
dynamics [7, 8], we explored methods to incorporate delay
coordinates in ICA transformations.

We observe that given a discrete set of sequentially
ordered vector observations, we can approximate the instan-
taneous rate of change by the time-scaled vector difference
of consecutive pairs of observations. Furthermore, this rate
of change closely corresponds to the sequential structure
of the observed signals. Our approach is to map sequential
pairs of observations (or, equivalently, their interpretation as
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a pair of approximate position and instantaneous velocity
vectors) to a complex vector space, perform complex ICA,
and map the results back to the original observation space.
We demonstrate that a complex vector space is an attractive
setting for ICA because it reduces the degrees of freedom of
the problem relative to the sequential pair or tangent space
interpretations in a way that preserves constraints on the
demixing solution imposed by the assumption of stationarity
in the underlying mixing problem. We refer to the resulting
class of algorithms as Pairwise Complex ICA (PWC-ICA),
reflecting the underlying mapping of sequential pairs of
vector observations to complex space.

A central observation of the ICA algorithm evaluation
reported by Delorme et al. [9] is that an ICA algorithm’s abil-
ity to reduce component mutual information varies linearly
with the fraction of components that fit single dipole sources.
Wemake use of code anddatamade available by these authors
to compare the performance of PWC-ICA in the EEG BSS
paradigm of electric dipole sources. Because our approach
seeks an ICA solution to the BSS problem in a complex
setting, we do not expect and indeed do not find a comparable
relationship betweenmutual information reduction and rates
of effective dipole fitting.

The remainder of the paper is organized as follows.
Section 2 provides background, and Section 3 describes the
PWC-ICA method. Section 4 presents results of applying
PWC-ICA to signals generated through various autoregres-
sive models, with and without forward head modeling.
Section 5 evaluates the method on real EEG data, and
Section 6 offers concluding remarks. Appendices are included
to explicitly describe themodels used to generate simulations
in Section 4.

We demonstrate that by transferring the mutual informa-
tion reduction (alternatelymaximization of non-Gaussianity)
objective to the complex vector space we enable PWC-ICA to
discover physiologically plausible sources ofmeaningful EEG
activity that remain undiscovered by other ICA algorithms.
We verify this by analysis of fitted dipoles on the real-world
EEG data provided by Delorme et al. [9]. We also use the
Source Information Flow Toolbox (SIFT) [10, 11] to generate
simulated EEG data and analyze the discovered components
in terms of correlation and distance to simulated sources.

2. Background

2.1. Independent Component Analysis and Applications. This
section briefly describes the ICA model for blind source
separation (BSS). Consider a sequentially ordered set of 𝑛-
dimensional vector observations x(𝑡) ⊂ R𝑛. The ICA model
assumes that𝑚 ≤ 𝑛 statistically independent sources generate
the observations. Each of the𝑚 sources at the 𝑡th observation
corresponds to an element of the vector s(𝑡) ∈ R𝑚. Assume
that the sources undergo linear instantaneous mixing by a
linear transformation R𝑚 → R𝑛 specified by a full row
rank matrix A ∈ R𝑛×𝑚 plus additive noise denoted by 𝜖.
The 𝑡th observation then satisfies x(𝑡) = As(𝑡) + 𝜖(𝑡). For
notational convenience, we specify successive operations by

incrementing 𝑡 by 1. In reality, the experiment has a sampling
interval Δ𝑡 corresponding to the actual elapsed time between
observations at 𝑡 and 𝑡+1. In other words, we reparameterize
the signals by 𝑡 󳨃→ 𝑡/Δ𝑡, so that the new sampling interval is
Δ𝑡 = 1.

ICA seeks an approximate demixing matrix W ∈ R𝑚×𝑛

that maximizes the statistical independence (via a variety of
related optimization objectives) of the discovered sources. A
projection formed by a subset of𝑚 rows ofW corresponds to
the Moore-Penrose pseudoinverse of A (or just the regular
inverse when 𝑚 = 𝑛), so that Wx(𝑡) = WAs(𝑡) ≈ s(𝑡)
up to permutation. In the ideal case, 𝑚 of the columns of
W−1 are 𝑛-dimensional vectors that we may interpret as the
independent components (ICs). (See Hyvärinen et al. [1] for a
comprehensive tutorial.)

The independent components discovered by ICA corre-
spond to meaningful behavior in many applications, espe-
cially in the analysis of EEG data. Physiological and experi-
mental evidence indicates that dipolar distributions of elec-
tric charge in the brain generate sources that may be recov-
ered as ICA components. Dipole fitting algorithms [12] map
the scalp field distributions associated with such components
to spatial positions and moment orientations in the brain.
ICA algorithms are also widely used to isolate artifacts within
EEG data such as eye blinks, eye saccades, muscle activity,
and other intermittent voluntary and involuntary biological
processes that generate measurable electrical signal at the
scalp [13–15].

2.2. Related Work. As stated briefly in the Introduction, one
of the motivations for developing the PWC-ICA method is
the observation that solutions to the optimization problem
for many ICA algorithms are invariant with respect to
ordering of the data. Given that the typical domain of the
BSS problem consists of sequentially ordered observations,
we believe that optimization objectives that take into account
this ordering may result in useful solutions to BSS prob-
lems involving time series. However, this is not an original
observation; we briefly review alternate solutions to the BSS
problem that take into account the ordering of vector-valued
signals.

2.2.1. Second-Order Blind Identification. Second-order blind
identification (SOBI) is an algorithmic approach to the
BSS problem that jointly diagonalizes covariance matri-
ces of the transformed data across a set of user-defined
time intervals [16]. Thus, SOBI incorporates the order-
ing of data by considering the covariance of data across
a set of predetermined lags. The term second order in
SOBI refers to the use of a second-order statistics (vari-
ance) as the optimization criteria of the algorithm, as
opposed to fourth-order methods (kurtosis) such as FastICA
[6] or mutual information reduction methods such as
Infomax [2]. The PWC-ICA approach proposed in this
work is not second order from a statistics perspective
but rather uses fourth-order statistics in a complex vector
space.
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2.2.2. ICA of Autocorrelated Sources and Spectral ICA. Lee
et al. [17] describe an ICA approach to functional magnetic
resonance imaging (fMRI) data based on the spectral density
of observations.The authors model sources in a BSS problem
using autoregressive (AR) models and propose an ICA pro-
cedure that simultaneously seeks an optimal demixingmatrix
and parameters of the (stationary) AR process. They formu-
late an ICA procedure in the frequency domain and use lin-
earity of the discrete Fourier transform to find the demixing
matrix.

In addition to the work of Lee et al. [17], several other
authors have proposed ICA paradigms that model sources
using linear ARmodels and/or perform ICA in the frequency
domain [18–21].

2.2.3. Complex BSS via the Hilbert Transform. Hirayama et
al. [22] recently proposed a method that simultaneously
combines a BSS problem framed in complex space and
connectivity clustering of EEG or magnetoencephalographic
(MEG) signal data. The proposed method maps real-valued
signal data to a complex vector space by taking the real part of
the complex vectors to be the original signals and then adding
the Hilbert transform of the signal vectors as the imaginary
part of the complex vectors to generate the analytic signal.The
authors then solve a BSS problem in the complex space based
on a problem-specific optimization objective that includes a
notion of clustering components corresponding to particular
states.

The Hilbert transform is linear and hence commutes
with linear mixing/demixing transformations when applied
componentwise to a vector series. Thus, Hirayama et al. [22]
are able to find an optimal real-valued demixing matrix W,
along with parameters specific to the connectivity model,
while incorporating the complex analytic signal in their opti-
mization objective. In contrast, our approach first specifies
an alternative method of mapping real signals to a complex
space, motivated by the instantaneous rate of change of
signals. Next, we find a complex demixing matrix (repre-
senting a change of basis in the complex signal space, i.e., a
solution to the chosen complex ICA optimization paradigm),
and finally we interpret this demixing operation as a real
linear transformation mapping multidimensional signals to
sources.

While a description and comparative implementation of
the full approach of Hirayama et al. [22] is beyond the scope
of the present paper, the use of a Hilbert transform to derive
complex analytic signals for subsequent analysis is of interest.
Specifically, the complex analytic signal may be derived via
a Hilbert transform and then fed through the subsequent
steps of the PWC-ICA workflow. We include an example
of this approach (labeled “Hilbert complex FastICA”) for
illustrative purposes in our results. Our performance com-
parisons indicate that the complex signals derived in PWC-
ICA seem to encode interesting dynamics of the observed
system that may not be included in the complex analytic
signals.

3. PWC-ICA for Order-Based
Source Separation

Motivated by the observation that ordering and timescale
are intrinsic properties that are likely to be useful in source
analysis of vector-valued time series, we introduce the PWC-
ICA method for blind source separation. Let x(𝑡) be an 𝑛-
dimensional vector-valued time series that can be expressed
as a linear mixture of independent sources, s(𝑡):

x (𝑡) = As (𝑡) . (1)

If the mixing matrix A is independent of time, then the rate
of change of x(𝑡) with respect to time satisfies

v (𝑡) = ẋ (𝑡) = 𝑑
𝑑𝑡

(x (𝑡)) = 𝑑
𝑑𝑡

(As (𝑡)) = A 𝑑
𝑑𝑡

(s (𝑡))

= A ̇s (𝑡) ,
(2)

provided that the signals and sources are differentiable. In the
language of differential geometry, we can think of (x(𝑡), v(𝑡))
as the tangent bundle for x(𝑡). The pushforward of the
mapping of A to this tangent bundle is simply

[

x (𝑡)
v (𝑡)

] = [

A 0
0 A

][

s (𝑡)
̇s (𝑡)
] . (3)

We seek solutions (demixing matrices) of the form

[

A 0
0 A

]

−1

= [

A−1 0
0 A−1

] = [

W 0
0 W

] , (4)

whereW−1 = A.
The formulation assumes smoothness of the signals and

imposes stationarity on the mixing matrix. For this reason,
we refer to this formulation as stationary source separation.

It is not immediately clear how to solve the stationary
mixing problemdirectly inR2𝑛 with the proposed constraints
(i.e., findingW that simultaneously minimizes mutual infor-
mation among components in both the base and tangent
space).The approach taken in thiswork is tomap the dynamic
signals inR2𝑛 to the complex spaceC𝑛 by associating the real
vector (x(𝑡), v(𝑡))with complex vector, x(𝑡)+𝑖v(𝑡). A complex
linear transformation, Φ, on C𝑛 may be represented (the
representation is not unique but induced by the canonical
complex linear structure J = [ 0 −II 0 ] on R2𝑛 ≅ R𝑛 × R𝑛;
linear transformations on R2𝑛 that commute with J are also
complex linear transformations on the associated complex
vector space C𝑛) in R2𝑛 as

[

R (Φ) −I (Φ)

I (Φ) R (Φ)
] . (5)

Here R(Φ) and I(Φ) are the real and imaginary parts of
Φ. Notice that (5) has equal diagonal blocks. Thus, in order
to find ICA demixing solutions that match (4), we need to
minimize the contribution of the off-diagonal term I(Φ) to
the demixing solution.
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The optimization objectives of ICAmethods are generally
invariant with respect to permutations and nonzero scale
transformations of the resultant independent components.
Complex ICA algorithms with optimization objectives that
depend on the moduli of observations (including the version
of complex FastICA we choose to use in this paper) have
an additional invariance in the optimization objective with
regard to phase shifts of the complex independent compo-
nents. This phase shift invariance provides a mechanism for
minimizing the contribution of the imaginary (off-diagonal)
terms in the complex demixing solution.

Let 𝜙
𝑗
refer to a phase shift in the 𝑗th independent

component. Due to the phase invariance of the complex
independent components, Φ exhibits nonuniqueness up to
multiplication by the diagonal matrix with values 𝑒𝑖𝜙𝑗 for
each of the 𝑗th diagonal entries, prompting us to make the
identification:

Φ ≅ diag [𝑒𝑖𝜙1 , 𝑒𝑖𝜙2 , . . . , 𝑒𝑖𝜙𝑛] ⋅Φ, (6)

for an arbitrary set of real phase shifts {𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
}. This

identification can be expressed blockwise in the R2𝑛 setting
as

diag [𝑒𝑖𝜙1 , 𝑒𝑖𝜙2 , . . . , 𝑒𝑖𝜙𝑛] ⋅Φ

󳨃󳨀→
[

[

C −S

S C

]

]

[

R (Φ) −I (Φ)

I (Φ) R (Φ)
]

= [

CR (Φ) −SI (Φ) −SR (Φ) −CI (Φ)

SR (Φ) +CI (Φ) CR (Φ) −SI (Φ)
] ,

(7)

whereC andS are 𝑛×𝑛 diagonal matrices with 𝑗th diagonal
entries cos(𝜙

𝑗
) and sin(𝜙

𝑗
), respectively. We select the PWC-

ICA demixing matrix W on the original space to be the
diagonal block term of the demixing matrix in the complex
space: W = CR(Φ) − SI(Φ); and we seek a set of phase
shift values {𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
} that maximizes the contribution

of the diagonal term, W, while minimizing the off-diagonal
term ±(SR(Φ) +CI(Φ)).

We accomplish this by formulating an optimization
objective of maximizing the source component variances
generated byW. Let s(𝑡) = Wx(𝑡) denote the (real) vector of
approximated sources in terms of the signal vector x at time 𝑡.
Then the variances of the (zero-mean) components s over the
time course of the analyzed signal are given by the diagonal
values of the matrix:

1

𝑁

(Wx) (x𝑇W𝑇) = 1
𝑁

(CR (Φ) x −SI (Φ) x)

⋅ (x𝑇R (Φ)𝑇C − x𝑇I (Φ)𝑇S) .
(8)

Recall that S and C are defined to be diagonal matrices
and are invariant under the transpose operation and 𝑁 is
the number of samples/observations in themultidimensional
signal x. Differentiationwith respect to each phase shift yields
critical points of each diagonal value at

𝜙
𝑗,critical =

1

2

arctan(
2 (R (Φ) x)

𝑗
((I (Φ) x)

𝑗
)

𝑇

(I (Φ) x)
𝑗
((I (Φ) x)

𝑗
)

𝑇

− (R (Φ) x)
𝑗
((R (Φ) x)

𝑗
)

𝑇
) +

𝑘𝜋

2

, (9)

for integer values of 𝑘. Subscripts on matrices in the above
equation indicate the row of the matrix. Manipulation by
trigonometric identities reveals that the variance is a positive
constant added to a sinusoidally oscillating function of 2𝜙

𝑗
.

Therefore, comparing variances at the critical phase values
for 𝑘 = 0 and 𝑘 = 1 yields the phase shift associated
with a local maximum in variance. The critical phase shift
solutions are 𝜋 periodic, yielding 2 maximizing values within
an interval [0, 2𝜋). Both solutions yield equivalent answers
in the context of the ICA problem, as they correspond to
multiplying the discovered basis vector associated with the
𝑛th ICA component by ±1.

With the set of 𝑛 phase shifts maximizing variance of the
PWC-ICA components, we define the real demixing matrix
to be

W = C|
{𝜙𝑗,critical}

𝑛
𝑗=1

R (Φ) − S|
{𝜙𝑗,critical}

𝑛
𝑗=1

I (Φ) . (10)

Interestingly, phase shifts that maximize the variance of
variablesWx alsominimize the variance of the variables that
are generated by the imaginary part of diag[𝑒𝑖𝜙𝑗,critical] ⋅ Φ,
which can be easily verified by repeating the analysis above

for the imaginary part. In our R2𝑛 interpretation of the
transformed pairwise space, this is equivalent to minimizing
the contribution of cross-terms from the tangent to base
space, and vice versa. The difference between these two
variances may serve as a heuristic for evaluating the quality
of fit of components specified by the real demixing matrix.

Rodriguez et al. [23] suggest a similar resolution to the
problem of phase shift invariance in dealing with complex-
valued ICA on fMRI data: maximizing the variance of the
real parts of discovered complex components.Their approach
involves taking the first principal component from each
complex independent component treated as a vector in R2.
Our analytic solution to finding phase shifts does not rely on
PCA.

To summarize, our general strategy is to map the source
separation problem from R𝑛 to the tangent bundle in R2𝑛,
a process that implicitly imposes additional smoothness
requirements on the sources and time-invariance constraints
on the mixing process. We then further transform the
problem inR2𝑛 toC𝑛 and solve an equivalent complex source
separation problem. Finally we use the phase shift invariance
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Input signal: x ∈ Rn×NPWC-ICA (h)

Pairwise transformation
(concatenate pairs of observations)

Complexification

Complex ICA Φ ∈ Cn×n

Dynamics transformation
(multiply by V or VHaar)

Find phases minimizing variance of
components

Return PWC-ICA (h) demixing
matrix and components

X = {[ x𝛼
x𝛼+h

]}
N−h

𝛼=1

∈ R2n×(N−h)

{[x
v

]} = VX ∈R2n×(N−h)

z = x + iv ∈Cn×(N−h)

[R(Φ) −I(Φ)

I(Φ) R(Φ)
] ∈ R2n×2n

W = R(Φ) s = Wx

Φ↦ [diagg (ei𝜙)]Φ

Figure 1: Flow chart summarizing the PWC-ICA algorithm.The left column depicts the conceptual progression of the algorithm proceeding
from top to bottom, whereas the right column summarizes the central mathematical operation at each step. Note that the two side-by-side
bubbles connected by a dashed line at the complex ICA step illustrate the parallel interpretation between the dynamic state of the signal and
the complexification of the phase space.The operatorsV andVHaar indicate the linear transformation from the pairwise space to the dynamic
phase space. Arrays x and v are the “base” and “velocity” components of the pairwise vectors inX transformed to the dynamical phase space.
The array z represents the complexification of the phase space vectors, Φ is the complex ICA demixing matrix, and W is the PWC-ICA (ℎ)
demixing solution.

of the complex solution to choose a phase that produces an
optimal match to a demixing solution of the form given by
(4).We call this approachPairwise Complex ICA (PWC-ICA).
We summarize the PWC-ICA algorithm in the flow chart in
Figure 1. The next subsection provides more details about
different approaches to approximating the tangent bundle.
The following subsection discusses the complex ICAmethods
used for the implementation.

3.1. Mapping Real Signals in Complex Space. In this section,
we discuss the mapping of real-valued signals first into a
dynamic phase space and then into a complex vector space.
Suppose a set of discrete signal observations consists of 𝑁
vectors x(𝑡) acquired at a constant sampling rate. We can
form a new pairwise set of 𝑁 − 1 vectors by identifying x(𝑡)
with the 2𝑛-dimensional vector (x(𝑡), x(𝑡 + 1)), analogous
to the idea of a delay embedding in dynamical systems.
From these pairs of signal observations, we define a lin-
ear transformation 𝑉 : R2𝑛 → R2𝑛 that incorporates
approximate rate of change information into one-half of the

2𝑛 components in the transformed vectors. Let 𝑉 be the
transformation:

𝑉 (x (𝑡) , x (𝑡 + 1)) = V[
x (𝑡)

x (𝑡 + 1)
]

=

[

[

[

[

𝐼

2

𝐼

2

−

𝐼

Δ𝑡

𝐼

Δ𝑡

]

]

]

]

[

x (𝑡)
x (𝑡 + 1)

]

=

[

[

[

[

x (𝑡) + x (𝑡 + 1)
2

x (𝑡 + 1) − x (𝑡)
Δ𝑡

]

]

]

]

≈

[

[

[

[

[

x (𝑡 + 1
2

)

v (𝑡 + 1
2

)

]

]

]

]

]

.

(11)
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The first 𝑛 components of the transformed pairwise vectors
approximate the signal at times 𝑡 + 1/2, and the second 𝑛
components approximate the rates of change at times 𝑡 + 1/2.
The notation implies a time step determined by the sampling
frequency.

The above transformation associated with the matrixV is
similar to that used in theHaarwavelet, except in this instance
we include a time scale factor and do not downsample the
signal [24]. In fact, if we were to disregard the physical
interpretation of the difference vector as an estimation of
the instantaneous rate of change, we could use the linear
transformation associated with

VHarr =
1

√2

[

𝐼 𝐼

−𝐼 𝐼

] , (12)

the 2𝑛 × 2𝑛Haar matrix associated with the Haar wavelet. In
this case, the summed and differenced vectors correspond to
the approximation and details of the wavelet transformation,
respectively. The transformations V and VHarr differ only in
the scaling of their respective components. The V transfor-
mation incorporates time scale information and represents
physical position and velocity. On the other hand, VHarr
is an orthogonal transformation. The variance of randomly
ordered Gaussian distributions is invariant with respect to
transformations by VHaar, implying that the noise in the
mixed v (induced by 𝜖 in the original space) should have the
same distribution as 𝜖 for VHaar.

We have described two closely related approaches to
transforming a pairwise embedding of a sampled signal
to a series of samples in a dynamic phase space. Both
of these transformations implicitly incorporate time scale
information because successive time points are spaced at the
sampling interval. We can change the time scale by using
mappings of the form (x(𝑡), x(𝑡 + ℎ)) for integer values ℎ. The
transformation effectively estimates the signal and its average
rate of change on the time scale ℎ. In general, we refer to
the transformation V lagged by integer value ℎ as V

ℎ
and the

corresponding algorithm as PWC-ICA (ℎ).
A multiscale version can also be implemented using the

matrix VHarr = (1/√2) [
𝐼 𝐼

−𝐼 𝐼
] as a linear operator on the

concatenated 2𝑛-dimensional vectors of time-lagged pairs of
observations.However, in this casewe can no longer interpret
the overall transformation as convolution by a Haar wavelet.
Instead, the sums and differences are the result of convolution
of ℎ-sized windows of the components of signal data vec-
tors with the wavelets [1 0 ⋅ ⋅ ⋅ 0 1] and [−1 0 ⋅ ⋅ ⋅ 0 1],
respectively. For simplicity, we will continue to refer to the
transformation onpairwise vectors asVHaar, while noting that
the resulting overall transformations on signals are not truly
the result of a Haar wavelet convolution process.

3.2. Complex ICA. We tested several existing complex ICA
algorithms, including the method of Entropy Bound Mini-
mization (EBM) [26] and robust ICA [27], before selecting an
extension of FastICA to the complex case originally proposed
by Bingham and Hyvärinen [28]. For the present analy-
sis, we use the MATLAB function “FicaCPLX,” described
by Koldovský and Tichavský [29], itself an extension of

the complex FastICA algorithm. Alternate approaches may
result in different PWC-ICA features; for instance, EBM is
capable of finding both circular and noncircular complex
sources, as well as sub- and super-Gaussian sources in the
complex setting. On the other hand, the FastICA algorithm
implemented byKoldovský andTichavský [29]was stable and
fast, performing well on EEG data in our target domain.

The ICA model implemented by the FastICA extension
to complex vector spaces assumes that the underlying sources
are complex random variables with zero-mean, unit variance,
and uncorrelated real and imaginary parts of equal variance.
Bingham and Hyvärinen [28] point out that this condition
is expressible in terms of covariance and pseudo-covariance
matrices: 𝐸[ss𝐻] = I and 𝐸[ss𝑇] = 0, where s is a
matrix with column vectors s(𝑡) ∈ C𝑛 representing the
complex sources at time 𝑡, the superscript 𝐻 indicates the
conjugate transpose, 𝐸[⋅] is the expectation operator, and 0
refers to the zero-valued matrix. Consequently, a necessary
preprocessing step for complex FastICA is signal whitening
so that 𝐸[zz𝐻] = I. We therefore perform an intermediate
whitening transformation on z using a complex whitening
matrix SC of the form

SC = (√cov (z∗))
−1

. (13)

Here the square root symbol denotes the matrix square root,
and cov(⋅) represents the covariance matrix of the vector-
valued signals. This formula is a complex version of the
whitening approach used in various ICA implementations,
including those found in EEGLAB [30]. We subsequently
derive a complex-valued linear transformationΦ that decom-
poses the whitened signals (SCz) into mutually independent
complex sources according to the FastICA objective. To
simplify the notation, we assume the complex ICA demixing
matrix acting on complex signals incorporates the whitening
transformation and express ΦSC simply by Φ, according to
context.

4. Experiments on Simulated Sources

In this section, we explore the performance of PWC-ICA
on simulated data. To simulate EEG acquired from coupled
networks of brain sources, we used coupled networks of
autoregressive (AR)models generated using the Source Infor-
mation Flow Toolbox (SIFT) [10, 31]. We ran comparative
tests of PWC-ICA and existing ICA approaches on signal
data generated by both randommixings and realistic forward
models. In Section 4.1, we simulate sources using vector AR
(VAR) models, first without coupling and then with static
and dynamic coupling.We randomlymix sources into signals
and observe how well the demixing matrix of each BSS
algorithmmatches the original mixingmatrix. In Section 4.2,
we generate source data via dynamically coupled AR sources
and apply a realistic forward head model to mix the sources,
resulting in a physical model of EEG scalp signals.

The explicit equations for all of the simulations presented
in this section are included in Appendix A for reference.
Further, the exact simulated data used for the present analyses
(as well as the means to generate similar datasets) and scripts
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Table 1: Comparison of Amari indices for different BSS approaches trained on randomly mixed VAR simulated data. The algorithms with
average Amari indices significantly lower (𝑝 < 0.05) than AMICA, Extended Infomax, and FastICA are bold, with the largest 𝑝 value for
the three comparisons shown in parentheses. The cells that are not bold had Amari index distributions that were not significantly lower
(𝑝 < 0.05) than at least one of the algorithms AMICA, Extended Infomax, and FastICA. The average baseline was computed by generating
50,000 random demixing matrices for each of the 20 mixing matrices, resulting in a distribution of one million Amari indices, the average of
which is reported.

BSS algorithm
Amari indices

Experiment 1:
static uncoupled oscillators

Experiment 2:
static coupled sources

Experiment 3:
dynamic coupled oscillators

AMICA 0.31 0.37 0.25
Extended Infomax 0.31 0.38 0.25

FastICA 0.32 0.30 0.26

PWC-ICA (1) 0.35 0.29 0.28

PWC-ICA (2) 0.34 0.41 0.26

PWC-ICA (4) 0.35 0.41 0.24

PWC-ICA (8) 0.30 0.41 0.23 (𝑝 < 2.3𝐸 − 3)
PWC-ICA (1) Haar 0.30 0.32 0.25

PWC-ICA (2) Haar 0.21 (𝑝 < 1.5𝐸 − 11) 0.35 0.23 (𝑝 < 4.5𝐸 − 4)
PWC-ICA (4) Haar 0.21 (𝑝 < 1.5𝐸 − 10) 0.40 0.23 (𝑝 < 4.4𝐸 − 2)
PWC-ICA (8) Haar 0.27 (𝑝 < 1.5𝐸 − 5) 0.38 0.24

Hilbert complex 0.28 (𝑝 < 1.5𝐸 − 4) 0.38 0.23 (𝑝 < 6.7𝐸 − 3)
Average baseline 0.36 0.42 0.36

to perform the analyses are available as a MATLAB toolbox
at https://github.com/VisLab/pwcica-toolbox.

4.1. Performance on Randomly Mixed Sources. To compare
the performance of PWC-ICA algorithms with AMICA [32],
Extended Infomax [2, 3], and FastICA [6], we analyzed
sources based on vector AR models of both uncoupled and
coupled harmonic oscillators, as well as simple statically
coupled sources. In each experiment, we randomly generated
a fixed number of well-conditioned mixing matrices, mixed
the simulated sources, and recovered demixing matrices
based on each BSS algorithm.

We evaluated the accuracy of each demixing matrix
W at reconstructing sources mixed by A (up to scale and
permutation) using the Amari index [33], a measure of how
closely the product P = AW approximates a generalized
permutation matrix, of which the identity matrix is a special
case. In other words, the Amari index generalizes the notion
ofW being thematrix inverse ofA, allowing for permutations
and scale transformations of the column vectors ofW−1 when
compared to the actual mixing matrix A. For an 𝑛 × 𝑛matrix
P = (𝑃

𝑖𝑗
), the Amari index is defined as

Amari index

=

1
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(14)

An Amari index of zero for a nonsingular matrix P indicates
that P is a permutation of a diagonal matrix, while an index
of one indicates that the entries of matrix P are the same
constant.Thus, a lower value of theAmari index indicates that
W is better at isolating the individual sources.

The scale factor 1/(2𝑛(𝑛 − 1)) assures that the Amari
index has a range [0, 1] regardless of the dimension 𝑛. This
scale factor is not explicit in Amari et al. and other papers
using the Amari index. However, in this case the scaling is
appropriate because the experiments described below were
generated using different values for the dimension.

We selected the Amari index for its easy and frequent
use in ICA performance studies. However, Ilmonen et al.
[34] report that there might be pitfalls in comparative
studies using the Amari index due to dependency on model
formulation.They suggest an alternate performance index for
ICA. We also implemented this alternative index, evaluated
the BSS solutions using the new index, and performed the
same statistical analysis as reported in Table 1. We found no
change in the patterns of statistical significance reported in
Table 1 for this alternative performance index.

Since computation of the Amari index requires a pri-
ori knowledge of the mixing matrix, we performed three
simulations experiments of varying complexities in order to
compare the performance of PWC-ICA to other algorithms.
All models were based on vector autoregressive (VAR)
models provided in the Source Information Flow Toolbox
(SIFT)MATLAB package [31]. Experiment 1 used ten uncou-
pled oscillators (the sources). Experiment 2 consisted of
a network of five general AR sources linked by constant
coupling strengths. Experiment 3 consisted of a network
of ten oscillators whose coupling strengths varied in time.



8 Computational Intelligence and Neuroscience

Alpha

10Hz
tau = 7

11Hz
tau = 7

9Hz
tau = 7

7

8

9

10

1

2 3

4

Beta

10Hz
tau = 7

11 12 13

5

6

20Hz
tau = 20

1.3

S1
0.4

S1
19Hz
tau = 3

tau = 3

0.4

S1
0.9

S3

AR(2) AR(2) AR(4)

Alpha

21Hz 10Hz

tau = 6
10Hz

0.3

S2

0.5

S2 + S3

20Hz
tau = 3

Figure 2: A schematic of a hypothetical seizure model using a vector autoregressive (VAR) model incorporating 13 dynamically coupled
sources. Reproduced with permission fromMullen [25].

Appendix A provides full details and equations for all three
models. In each experiment, we generated 100 epochs of
500 time points at a sampling rate of 200Hz and included
randomized damping coefficients as well as Gaussian noise
in the generative model at a 1 : 1 ratio.

Table 1 summarizes the resulting mean Amari indices
across 20 repetitions of each of three simulation experiments
described inmore detail inAppendixA. For each experiment,
we report the average of the Amari index values for each
experiment. The results varied little across repetitions of the
experiments, with the maximum standard error of the mean
(SEM) being less than 0.014 in all cases. Recall that PWC-
ICA (ℎ) refers to transformations of pairs of observations
(separated by a time interval ℎΔ𝑡). The PWC-ICA method
subsequently maps these pairs to the real and imaginary
parts of a complex signal vector. PWC-ICA (ℎ) Haar refers
to transformations that ignore the sampling interval in the
formation of the vectors. Table 1 also includes the results
from an alternative complex ICA representation based on
the Hilbert transform combined with complex FastICA as
described in Hirayama et al., as well as a randomly generated
baseline. The baseline was computed by generating 50,000
random, nonsingular, demixing matrices for each of the 20
mixingmatrices and computing theAmari index in each case.
The rationale behind this baseline is that it is the expected
value of the Amari index when the demixingmatrix is chosen
at random.

Bold values indicate methods that significantly out-
performed AMICA, Extended Infomax, and FastICA for
a particular model class. The 𝑝 values were computed
using a Welch’s paired 𝑡-test. We observe significantly bet-
ter performance (as measured by the Amari index) for
time-invariant PWC-ICA approaches relative to AMICA,
Extended Infomax, and FastICA for Experiments 1 and 3.
This was also the case for the Hilbert transform method,

which is also a time-invariant mapping. In Experiment 2,
none of the tested PWC-ICA algorithms significantly out-
performed all three AMICA, Extended Infomax, and Fas-
tICA algorithms. In both Experiments 1 and 3, the sources
were generated by a simple harmonic oscillator model. The
results indicate that the rate of change components of PWC-
ICA may be better able to distinguish this time varying
behavior.

In Experiment 1, PWC-ICA (2) Haar and PWC-ICA
(4) Haar also outperformed the Hilbert transform approach
(statistically significant according to a Welch’s paired 𝑡-test
with 𝑝 values 1.05𝐸 − 12 and 1.34𝐸 − 8, resp.). Recall from
Section 2.2.3 that the complexHilbert method described here
generated complex analytic signals via the Hilbert transform
and then fed those complex signals through the remaining
PWC-ICA workflow by training a complex FastICA model
on those analytic signals and returning the real part of
the complex demixing matrix (with phase transforms that
maximized component variance).

The preceding analyses examined the behavior of PWC-
ICA approaches relative to AMICA, FastICA, and Extended
Infomax in simulations where the sources underwent ran-
dom well-conditioned mixing.The results reveal distinctions
among different approaches and suggest that incorporating
dynamic information can be useful. In the next section, we
examine the behavior of these algorithms when simulated
data ismixed according a realistic headmodel typically found
in the ICA analysis of EEG data.

4.2. Forward-Projected Sources Using a Realistic Head Model.
In this section, we evaluate simulations based onmore realis-
tic headmodeling using a simulation reported byMullen [25]
and included with SIFT. We selected this model, graphically
depicted in Figure 2, because it provides a generative model
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for dynamic coupling that can be associated with a physical
forward head model.

The model, which is described in more detail in
Appendix B, consists of 13 coupled damped oscillator sources
described by time varying vector autoregressive models
(VAR) of order 6. Model sources 1–10 are damped harmonic
oscillators clustered into three dynamically coupled groups,
while sources 11–13 are uncoupled throughout the experi-
ment. The simulation proceeds in three stages (S1, S2, and
S3), with the activity initially localized in the beta cluster and
proceeding to each of the alpha clusters successively. Inter-
and intracluster coupling is modeled using dynamic, cross-
componentAR coefficients that vary according to generalized
Gaussianwaveforms of the labeled amplitude centered at each
of the stages.

To generate 64-channel EEG data, we used SIFT routines
to model the sources as dipoles randomly selected from
an atlas of physically plausible locations on the cortical
surface. Source activations were projected through a three-
layer Boundary ElementMethod (BEM) forward headmodel
derived from the MNI “colin27” brain [35], and sensor noise
was introduced at a signal-to-noise ratio of 1 : 1. We applied
the various BSS algorithms to the resulting 64-channel scalp
headset data and recovered 64 components. Ideally, a solution
to the BSS problem should recover the individual sources
as the activations of individual components. With a priori
knowledge of the sources, we can measure how well at least
one component in each algorithm recovers each source by
finding the best correlations between the component and
source time courses.

Figure 3(a) shows a plot of the (absolute value) of the best
correlations by source for several algorithms for generating
64 source components. For each of the 13 simulated sources,
we tested the correlations between all 64 components and
that source. We report the highest magnitude correlation for
that source, irrespective of dipole location. Thus, the plot in
Figure 3(a) shows how well at least one component of various
methods recovered the time course of each source.

In the remaining simulation experiments, we report
results for the PWC-ICA (1) Haar algorithm, which seems
to perform better than other PWC-ICA approaches within
the chosen simulations. We observe that PWC-ICA (1)

Haar correlates with a given source at least as well as
AMICA, Extended Infomax, and FastICA. In the case of
the sources 1, 5, 6, and 11, PWC-ICA (1) Haar has bet-
ter correlations than the alternative approaches. Because
PWC-ICA seeks a transformation that minimizes mutual
information (or maximizes non-Gaussianity) in a complex
space that incorporates dynamics, it may be able to sep-
arate meaningful nonindependent sources, depending on
the chosen time-offset used to map to the complex vector
space.

Palmer and Makeig [36] demonstrate that basic ICA (in
the case of Infomax) may be sufficient to separate indepen-
dent subspaces without necessarily solving the subproblem
of separating the less or nonindependent components within
an independent subspace. In fact, the ISA approach proposed
by Casey andWestner [37] may be more similar to the initial
steps of PWC-ICA, in the sense that both approaches leverage
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Figure 3: Plot of the best absolute correlation value between some
component and each source for several BSS algorithms. (a) For each
source, the plotted value is the highest absolute correlation attained
between at least one component from the particular algorithm
and that source. (b) The highest absolute correlation between any
source and component is plotted and then removed from subsequent
comparisons. The baseline measure in both plots is the average
of the absolute correlations between all 64 generated signals and
the source. The error bars are the standard deviations of those
correlations.

a dynamic transform to augment the ICA approach in a
higher dimensional space.

Because the simulation model described in Figure 2
arranges sources into dynamic clusters (which may be
regarded as partially independent subspaces of the source
space) and the resulting time courses of those coupled
sources are somewhat correlated, we suspected that these
algorithmswere discovering single components that correlate
well withmultiple sources from the same cluster.We thus also
examined an alternative greedy approach for determining the
best correlation between components and a source. Instead
of simply finding the most highly correlated component for
each source, we find the absolute best correlation among
all source/component pairs and remove that component
and source from consideration before finding the next best
source/component combination. We proceed in this manner
until all 13 sources have been identified with a unique
component.
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Table 2: Average number of sources that are matched by a demixing solution component with absolute correlation ≥ 0.7 per experiment.
Recall that Experiments 1 and 3 had 10 sources and Experiment 2 was generated by 5 sources. Bold values correspond to the significant
PWC-ICA algorithms (by the Amari index) as described in Table 1.

BSS algorithm
Avg. number of sources matched (𝑅≥ 0.7)

Experiment 1:
static uncoupled oscillators

Experiment 2:
static coupled sources

Experiment 3:
dynamic coupled oscillators

AMICA 1.35 2.65 4.00
Extended Infomax 1.55 3.35 4.90

FastICA 1.20 5.00 4.80

PWC-ICA (1) 4.95 3.80 4.05

PWC-ICA (2) 5.50 3.15 4.00

PWC-ICA (4) 5.85 2.70 4.05

PWC-ICA (8) 2.45 2.55 4.00
PWC-ICA (1) Haar 1.60 3.30 3.45

PWC-ICA (2) Haar 5.50 3.40 3.65
PWC-ICA (4) Haar 5.05 2.30 4.20
PWC-ICA (8) Haar 4.15 2.80 4.10

Hilbert complex 4.50 2.85 3.75

Figure 3(b) displays the results of the greedy analysis.This
greedy approach indicates that some discovered components
correlate highly with multiple sources. We also note that the
relatively good PWC-ICA performance on sources 1, 5, 6,
and 11 is preserved under the greedy correlation analysis, fur-
ther indicating that in this simulated experiment PWC-ICA
(1) Haar does find components undiscovered by AMICA,
Extended Infomax, and FastICA that correlate well with real
source behavior.

We also performed a correlation analysis on simulated
data for the three models of Section 4.1 and found the
resulting correlations were consistent with the observed
performance measured by Amari index. Our results are
reported in Table 2.

4.3. Fitting Dipoles to Realistic Forward Model Components.
The previous section compared the correlation between
discovered components and actual sources using simulated
sources with a realistic forward head model. This section
examines the extent to which the dipoles computed from
these components recover the original spatial locations of
the sources. The 13 simulated sources are modeled as electric
dipoles spatially distributed throughout a brain, and the
observed signals are generated by mapping those sources
via a linear transformation (forward model) to 64 electrodes
spatially distributed on the scalp of the head model. If an
algorithm truly separates these dipole sources, we can fit
each component to recover the original dipole location and
orientation as discussed in more detail in Section 5. With
prior knowledge of the spatial distribution of the original
sources, we can compare the actual source locations with the
locations of the best-fit dipole for each component discovered
by an ICA algorithm such as FastICA, Infomax ICA, or
AMICA or by a PWC-ICA algorithm.

We use the dipole fitting routines found in the DIPFIT 2.3
plugin for EEGLAB [12, 30, 38] in the subsequent analysis.

Specifically, we map each component to a best fitting dipole
using a spherical four-shell head model with a total head
radius of 85mm.

In order to examine the extent to which the spatial
locations of the fitted dipoles (especially those that correlated
well with a source) matched the known locations of the 13
sources, we ran two analyses. First, we found the source
closest in Euclidean distance to each component’s fitted
dipole and then plotted this distance against the absolute
correlation between the corresponding time course of the
component and the source. Second, we found themost highly
correlated source for each component and compared the
Euclidean distance between that component’s fitted dipole
and this source. Figures 4(a) and 4(b) show the results of
both analyses for severalmethods. Figures 4(c) and 4(d) show
the corresponding analysis, when only components that fit
dipoles with residual variance less than 15% were considered.

Each BSS algorithm discovers 64 components, which
approximate only 13 unique sources. Because the BSS prob-
lem is overfit when trained on the entire 64-dimensional
dataset, the algorithms find many components that corre-
spond to physically plausible dipoles but do not correlate well
with the known sources as shown in Figures 4(a) and 4(b). By
physically plausible we mean that the dipoles were spatially
located in or around the head and the corresponding scalp
maps fit to those dipoleswith relatively low residual variances.

Figures 4(c) and 4(d) show a striking difference between
PWC-ICA (1) Haar and the traditional AMICA, Extended
Infomax, and FastICA algorithms.While the traditional algo-
rithms produce many more “physically plausible” dipoles,
many of these dipoles show little relationship to actual
sources. On the other hand as shown by Figure 4(d), PWC-
ICA (1) Haar only produces 6 plausible dipoles, but they are
close both in time and space to the actual sources.

Figure 5 illustrates the distribution of residual variance
of dipoles for the 64 components discovered by the ICA
and PWC-ICA algorithms. Observe that PWC-ICA (1)Haar
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Figure 4: Plots of distance versus absolute time correlation between the dipoles corresponding to calculated components and the closest
source. (a) Closest source to a component was determined by spatial distance between the associate dipoles. (b) Closest source to a component
was determined by maximum absolute time correlation. Plots of distance versus absolute time correlation between physically plausible fitted
dipoles with residual variance (RV) less than or equal to 15% and the closest actual source (c) by distance and (d) by absolute time correlation
for different BSS algorithms.

discovers fewer components that fit to dipoles with low
RV values than AMICA, Extended Infomax, and FastICA.
However, as shown in Figure 4, the PWC-ICA components
that do fit dipoles with low RV correspond well with known
source dipole positions and time courses in contrast to the
other algorithms.

Figure 6 shows the scalp maps of the four PWC-ICA
(1) Haar components of Figure 4(d) with correlations above
0.8. All four approximated sources show physically distinct

behavior. Note that FastICA, Extended Infomax, andAMICA
each discovered only one component that met the criteria of
the four PWC-ICA (1) Haar components corresponding to
the components of Figure 6.

The preceding results indicate that PWC-ICA (1) Haar
returns few spurious solutions to the given simulated BSS
problem. PWC-ICA (1) Haar finds 4 components that are
quite highly correlated (with correlation coefficients greater
than 0.8) and have physically plausible dipoles (RV < 15%)
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Figure 6: Scalp maps of the PWC-ICA (1) Haar components with
the best absolute time correlations above 0.8. The fitted dipole and
moment are plotted in bold black on each scalpmap, and the residual
variance of the fitted dipole is included in parentheses above the
scalp map.

that are relatively close to the physical locations of the
generating sourceswithwhich they correlate.Theother tested
algorithms find only one such component in each case.

More importantly, FastICA, Infomax ICA, AMICA, and
the proposed Hilbert approach find many components with
good dipole RV values but that do not correlate well with
a source and/or are not physically close to a source they
correlate well with. Often in real-world ICA analysis on EEG,
the sole indicator of the quality of a BSS solution is the RV

and physical locations of the associated dipoles. Without
prior knowledge of the generated sources, one cannot validate
an unsupervised ICA solution. PWC-ICA (1) Haar returns
fewer “good” dipoles as measured by RV, but all of the PWC-
ICA dipoles match reasonably well to a generating source,
whereas most of the “good” dipoles from FastICA, Extended
Infomax, the complex Hilbert approach, and AMICA do not
correspond well to actual generating sources.

The above analyses show that for coupled oscillators good
RV values from dipole fitting do not always correspond to
good and distinctive representations of the sources under-
lying signal data. By extension, fitting more components to
dipoles in the case of EEG data is not always an indicator
of a better solution to the BSS problem. Great care must be
exercised if one is to make definitive statements about the
physical plausibility (and by extension, reality) of a discovered
component.

The BSS problem in the above experiment required fitting
an overcomplete basis in the signal space relative to the
actual number of generating sources. This is an appropriate
scenario, because the number of sources in real data is always
unknown. However, to isolate the effect of overcompleteness,
we randomly sampled 13 signal channels from the set of 64
and sought a 13×13 demixing solution using ICA and PWC-
ICA algorithms. We found no significant differences in the
discovered solutions across algorithms after 20 iterations of
the experiment.

5. Mutual Information Reduction and Dipoles

Delorme et al. [9] have developed a comprehensive series of
tests of themutual information reduction (MIR) and pairwise
mutual information (PMI) as well as the quality of dipole
fitting via residual variance (RV). They report a meaningful
linear relationship between mutual information reduction
(MIR) given by a particular algorithm and the percentage
of dipoles fit falling below a certain threshold RV. They also
released MICA, a collection of datasets used to calculate
these relationships. The MICA package contains a MATLAB
toolbox to perform these calculations, enabling comparisons
by other researchers. We used this package to compare BSS
and EEG dipole fitting results for the PWC-ICA algorithms.

The MICA release includes 14 datasets collected from
different subjects in the same experimental paradigm. Each
dataset consisted of an EEG recording over 71 channels from
an evoked response potential experiment, sampled at 250Hz
and partitioned into 1.4 second windows (Delorme et al.,
2012) [9]. Each dataset included approximately 700 epochs,
resulting in approximately 250,000 vector observations inR71
(orC71 for the complex FastICA of PWC-ICA), excluding the
loss of some number of epoch endpoints depending on ℎ. We
used the legacy version of DIPFIT packaged in the MICA
release to find the best dipole fit for each of the 71 sources.
We refer the reader to the documentation and references
associated with the MICA release for more details.

Delorme et al. report that one of the 14 subjects had
poor ICA decompositions from AMICA and Infomax and
excluded this subject from their analysis. However, since
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several PWC-ICA algorithms (as well as Pearson ICA)
returned a significant number of components that fit to phys-
iologically plausible dipoles on this dataset, we included this
subject in our analysis. In addition to some ICA approaches
discussed in the introductory section,we also included results
from Delorme et al. [9] on the same experimental datasets
using AMICA [39].

We calculated PWC-ICA decompositions for each of the
14 datasets in theMICA release data, with varying time scales
specified by step sizes. We fit dipoles to each discovered
independent component for each subject and algorithm,
recording RV values ranging from 0 to 100 percent for each
dipole. Figure 7 compares the cumulative distribution of
dipole residual variance for various ICA algorithms, similar
to Figure 4(a) of Delorme et al. [9].

PWC-ICA (8) has comparable performance to AMICA
and Extended Infomax in terms of dipole fitting by quantity
and quality (RV percentages). Paired Welch’s 𝑡-tests com-
paring the pooled RV distributions of PWC-ICA (8) with
AMICA and Extended Infomax return 𝑝 values of 0.60 and
0.61, respectively. PWC-ICA (1) fits dipoles at a similar rate
to AMICA and Extended Infomax at low RVs but drops to
the PWC-ICA (1) Haar and FastICA rates for dipole fitting
by RV above 4 percent RV. The time-invariant PWC-ICA (1)
Haar components fit to a relatively smaller number of quality
dipoles, comparable to the dipole fitting characteristics of
FastICA.

We also calculated the mutual information reduction
(MIR) of each discovered transformation relative to the signal
data. Mutual information in this context is defined as the dif-
ference between the component entropies of the channels of a
multidimensional signal and the joint entropy of all channels.
While the mutual information of a high dimensional signal is
prohibitively expensive to compute explicitly, Delorme et al.
[9] describe a procedure to compute the mutual information
reduction under a linear transformation of a multivariate
system. The goal of ICA solutions to the BSS problem can be

thought of in the context of mutual information: a reduction
in themutual information carried across the components of a
multivariate signal would indicate that the components have
become more independent of each other and hence better
isolate the presumably independent source behavior.

Figure 8 plots the average percentage (across 14 subjects)
of discovered components that fit dipoles with RV less than or
equal to 5% versus the average MIR of each tested algorithm.
Delorme et al. [9] found a linear relationship between average
MIR and this average percentage of well-fitting dipoles
among various ICA algorithms. We observe that PWC-ICA
methodsmay not fit this linear relationship.This is consistent
with our understanding of themethodology. PWC-ICA seeks
an ICA solution to the BSS problem in a complex vector
space and reinterprets the result in signal space. Hence,
we do not expect that the algorithms will maximize MIR
measured in the base signal space, despite having relatively
good performance at fitting physically plausible dipoles.

We also note that the time-invariant PWC-ICA (𝑘) Haar
algorithms tend to fit a lower number of dipoles with low
RVs. However, as we observed in Section 4.2, this may not
necessarily indicate that the performance of the method as
a BSS solution is deficient. Again, recall that in the case of
our simulation with a realistic forward head model, PWC-
ICA (1)Haar found only a few components that fit to “good”
dipoles, but all of those components actually matched a
generating source well. In contrast, the alternate algorithms
found many more “good” dipoles by RV that nonetheless
poorly matched the known sources. Thus, we caution against
the common assumption that more good fitting (in terms of
RV percentages) dipoles indicate a better BSS solution.

We are also interested in verifying that PWC-ICA com-
ponent time courses represent recognizable neural processes.
Similar to Delorme et al. [9], we present evidence that is
indicative of broader patterns we see in the behavior of PWC-
ICA. Figure 9 displays the details of particular components
found in a single subject across eight different ICA and PWC-
ICA algorithms that correspond to left mu rhythm activity
and alpha wave activity, respectively.

6. Discussion

Motivated by the desire to incorporate time information into
ICA, this work introduces Pairwise Complex ICA (PWC-
ICA), a blind source separation method that accounts for
the sequential ordering of data in separating sources. Our
approach, which maps a signal and its rate of change into
a complex vector space, imposes additional stationarity and
smoothness constraints on the solutions. The PWC-ICA
method performs source separation in themapped space and
then remaps the resulting demixing matrix into the original
signal space in a well-defined manner.

Briefly summarizing the comparative results between
PWC-ICA and the alternate tested approaches including Fas-
tICA, Extended Infomax, AMICA, and the proposed Hilbert
complex ICA approach, we found that instances of PWC-ICA
performed better than the tested existing approaches in 2 of
the 3 simulations of random mixing in Section 4.1 and in the
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Figure 8: Percent of independent components whose dipole fits fall within a 5% RV threshold versus MIR by algorithm, averaged over 14
subjects. Horizontal and vertical bar indicate standard error of the mean for MIR and percent dipoles fit, respectively.
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Figure 9: Single components corresponding to (a) leftmu rhythm and (b) alpha band activity in subject 2 of the datasets provided byDelorme
et al. [9]. The top plot in each case depicts a scalp map associated with the component, and the bottom plot is the mean activity spectra, with
the horizontal axis measuring frequency (Hz) and the vertical axis measuring power in units of 10 log

10
𝜇V2/Hz.

simulation coupled with a realistic forward head model in
Sections 4.2 and 4.3. In Section 5, all PWC-ICA approaches
found interpretable BSS solutions on real EEG data that were
comparable to many of the existing tested BSS approaches.

The most dramatic evidence for the usefulness of PWC-
ICA was the performance of PWC-ICA (1) Haar in the case
of the simulation using a realistic forward head model. In
this case PWC-ICA (1)Haar found a relatively small number

of good dipoles as measured by residual variance, but all of
those dipoles fit to the (known) sources reasonably well. On
the other hand, the alternate approaches found many good
dipoles that did not correspond well to the known generating
sources. This flies against much conventional wisdom in the
use of ICA in EEG settings, where a larger number of “good”
dipoles may be associated with a better source separation
solution.Without prior knowledge of the actual sources, such
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an assumption may not produce reliable results. Because
we directly impose the assumption of stationary mixing in
our proposed formulation, the resulting demixing solutions
may differ from alternate ICA approaches by finding fewer
ICs that are more likely to correspond to well-behaved and
persistent sources.There are several further lines of reasoning
that we touch on below regarding why PWC-ICA may give
different but meaningful results relative to the status quo of
ICA algorithms.

Because the PWC-ICA method uses rate of change
information, the transformation has an intrinsic time scale,
which results in families of transformations for different
embeddings and scalings. We considered approximations
based on the physical sampling rate of the intrapair interval
in order to interpret these vectors as true rates of change.
These approaches generally fared poorly in our simulations
with prior knowledge of sources (see Section 4.1) relative
to the time-invariant mapping versions of PWC-ICA, which
can be identified with simple Haar wavelet transforms on
observation pairs. However, it is worth noting that the time-
variant approaches that performed poorly in simulations did
result in higher numbers of fitted dipoles by RV in real
EEG data and broke the linear relationship between MIR
and dipole fit percentage that was proposed by Delorme et
al. [9]. As mentioned before, we caution against inferring
performance from percentage of dipoles fit in this case.

The time-invariant strategies (denoted by PWC-ICA (ℎ)
Haar for different pairwise intervals ℎ) in Experiments 1 and
3 in Section 4.1 and the forward head model simulation
in Sections 4.2 and 4.3 performed better (either by Amari
index or number of recovered sources) than both the time-
inclusive (PWC-ICA (ℎ)) and classic algorithms such as
AMICA, Extended Infomax, and FastICA. Experiment 3
and the realistic forward head model simulation involved
coupled oscillators of varying degrees of complexity. The
coupling no doubt violates some part of the assumption
of “independence.” However, if source separation is to be
applied beyond separation of artifacts to understanding of
brain dynamics, it must almost certainly be able to capture
coupled sources. Interestingly, the PWC-ICA (1)Haar model
was able to capture some of the uncoupled sources (e.g.,
sources 11 and 12 in the dynamically coupled model) more
closely than any of the other methods.

Our results on a simulation with a realistic forward head
model show that AMICA, Extended Infomax, and FastICA
found many “good dipoles” that did not correspond to the
actual sources. In contrast, PWC-ICA (1) Haar found few
“good dipoles” with low residual variance, but all of these
dipoles corresponded to actual sources. This result indicates
that researchers should be cautious in assuming that all
“good” dipoles correspond to real sources and should not use
the number of “good” dipoles found as a sole measure of the
quality of an ICA solution.

The particular coupled oscillator model used with the
forward head model in Section 4.2 had natural clusters of
sources. Multidimensional ICA [40] and flavors of inde-
pendent subspace analysis (ISA) [41, 42] may be better
suited to solving such BSS problems. The aforementioned
ISA approaches, however, rely on prior knowledge of source

subspace dimensionality, that is, the number of sources in
coupled clusters. We speculate that PWC-ICA may achieve
good solutions as an indirect consequence of minimizing
mutual information in the complexification of the dynamic
phase space without relying on prior assumptions about the
dimensionality ofmeaningfully independent subspaces of the
signal space.

In analysis on real signals, the time-inclusive PWC-ICA
(ℎ) methods generally found more dipoles and displayed
higher cross-subject consistency than the time-invariant
methods. Since we do not know the actual sources of real
signals, we cannot determine which of the discovered dipoles
fitwell to real sources for anymethod.The results presented in
Section 5 on real data should not be interpreted as a measure
of algorithm performance but are meant to illustrate the
behavior of various approaches in real experimental contexts.
The component scalp maps and component time courses
show similar behavior across all of the PWC-ICA methods
as well as AMICA, Extended Infomax, and FastICA.

There is a close relationship between sampling frequency
and the time scale of the rates of change captured by the
PWC-ICA (ℎ). Our experiments show that the dipole RV
distributions andMIR of PWC-ICA (8) on the MICA release
subjects’ data from Section 5 closely resembled the dipole RV
distributions and MIR of PWC-ICA (4) on the same signals
downsampled by a factor of two. Additionally, the frequency
response characteristics of PWC-ICA (8) relative to alternate
PWC-ICA versions for the sampling rate used may favor
the discovery of physiologically meaningful sources in the
upper “alpha” (8–12Hz) and/or “beta” (>12Hz) bands [43],
as may be evidenced by the high number of dipoles fit by
PWC-ICA (8) in Figure 7 (with the appropriate caveats about
dipole fitting not necessarily indicating a good solution).
Specifically, the PWC-ICA (8) mapping into the imaginary
part of the complex vector is a convolution of the signal with
a filter [1, 0, 0, 0, 0, 0, 0, 0, −1]/(Δ𝑡). The first local maximum
in this filter’s impulse frequency response occurs at 15.6Hz for
sampling rate 250Hz. Thus PWC-ICA (8) in this experiment
may isolate signal features in the upper alpha and beta
bands corresponding to synchronous beta band activity in the
sensorimotor and frontal cortices [44].

From a holistic perspective, describing PWC-ICA as
an ICA method may be a misnomer. PWC-ICA does not
return maximally independent components by information-
theoretic measures in the signal space. Rather, PWC-ICA
finds components with dynamics that are more independent
according to information-theoretic measures in a complex
space that incorporates the dynamics of the system. The
PWC-ICA family of algorithms generally has lower mutual
information reduction in signal space than Extended Info-
max or AMICA. However, as illustrated by Figure 8, mutual
information reduction has large variability across subjects
and may not be the most reliable way to assess performance.

An important consideration in our development of PWC-
ICA was the effect of the proposed differencing operation on
the signal-to-noise ratio of the transformed data. Indeed, in
the case where desired source behavior varies slowly relative
to a fixed sampling rate, differencing of the data will result
in a dramatic decrease of the power of such a source relative



16 Computational Intelligence and Neuroscience

to the power of Gaussian noise, which remains invariant
with respect to VHaar. As the frequency of an oscillating
source increases and approaches the Nyquist frequency, the
differences are actually better able to capture meaningful
information relative to noise than the sums.

When viewed as a convolution operator on signals, VHaar
applied to pairs separated by a lag of ℎ = 1 divides the signal
into two bands overlapping at half theNyquist frequency. As ℎ
increases, the widening convolution induced by VHaar serves
to divide the signal into an increasing number of alternating
bands. Thus, we can understand the mapping of pairwise
vectors to a complex vector space as sorting signals into some
number of bands (depending on ℎ), where alternate bands
are mapped into either the real or imaginary part of complex
vectors.

Taking these points into consideration, the good per-
formance of PWC-ICA (1) Haar in the case of the realistic
forward head model simulation of Section 4.2 may be due
to a confluence of two factors. First, as mentioned above,
the choice of lag ℎ = 1 may be fortuitous for the particular
system based on the natural frequencies of the generating
sources. Second, the transformation VHaar used in the Haar
approach commutes with the complex linear structure used
in the complexification of the phase space and thus has a
consistent representation in the complex space itself.

Another factor in considering the applicability of PWC-
ICA methods is performance. In theory, PWC-ICA could be
used in conjunction with any complex ICA implementation,
and our publicly released implementation allows users to
provide their own implementation. The results reported in
this paper use the FicaCPLX extension of complex FastICA
developed by Koldovský and Tichavský. We have found the
saddle-point heuristic used by this implementation to be very
stable and fast. The PWC-ICA operations themselves are of
trivial computational complexity relative to solving the BSS
problem in a complex vector space via complex ICA; thus
performance is highly dependent on the chosen complex
ICA implementation. PWC-ICA provides a framework for
mapping real signals into a complex vector space and rein-
terpreting a complex demixing solution as a real demixing
solution in the original signal space.

In conjunction with this paper, the authors have released
PWC-ICA toolbox for MATLAB that performs PWC-ICA
on real, vector-valued signal data. The toolbox works either
as a stand-alone method or as an EEGLAB extension
with a GUI interface. The PWC-ICA toolbox is available
at https://github.com/VisLab/pwcica-toolbox, in addition to
scripts and data to reproduce the experiments in this paper.

Appendix

A. Source Simulations in Random
Mixing Experiments

Experiment 1 (uncoupled harmonic oscillators). Experi-
ment 1 of Table 1 uses a second-order vector autoregressive
(VAR) model (implemented in the SIFT package) to generate
10 simulated sources of data. Recall that the order of a VAR

model refers to the maximum lag of the past influences
on current behavior. For instance, a VAR model of order 4
includes at least one component 𝑥

𝑖
such that 𝑥

𝑖
(𝑡) depends

on the value 𝑥
𝑖
(𝑡 − 4).

We generated one hundred (100) epochs, each consisting
of 500 samples using a simulated sampling rate of 200Hz.
We assigned the oscillators to have prime fundamental
frequencies in the range 2 to 29 and damping constants
drawn randomly from a normal distribution with mean 5
and a standard deviation of 3. Table 1 compares the average
performance of different approaches for twenty 10 × 10 well-
conditioned mixing matrices. The autoregressive equation
used to approximate the evolution of a damped simple har-
monic oscillator with damping constant 𝜏 and (normalized)
fundamental frequency 𝑓

0
is

𝑥
𝐻
(𝑡; 𝜏, 𝑓

0
)

= 2𝑒
−1/𝜏 cos (2𝜋𝑓

0
) 𝑥 (𝑡 − 1) − 𝑒

−2/𝜏

𝑥 (𝑡 − 2) .

(A.1)

Each sample was generated by evolving the autoregressive
equation:

𝑥 (𝑡) = 𝑥
𝐻
(𝑡; 𝜏, 𝑓

0
) + 𝜖 (𝑡) , (A.2)

where 𝜖 is an independent, normally distributed array of
residuals.

Experiment 2 (statically coupled sources). To test perfor-
mance when sources are coupled, we generated 5 sources
according to the third-order vector AR model found in
Example 3 of Schelter et al. [45] and mixed the sources using
a 5 × 5 well-conditioned random mixing matrix. Again, we
generated one hundred (100) epochs each containing 500
observations at a sampling rate of 200Hz. The system of
equations is given by

𝑥
1
(𝑡) = 0.9𝑥

1
(𝑡 − 1) + 0.3𝑥

2
(𝑡 − 2) + 𝜖
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2
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2
(𝑡 − 1) − 0.8𝑥

2
(𝑡 − 2) + 𝜖

2
(𝑡) ,

𝑥
3
(𝑡) = 0.3𝑥

1
(𝑡 − 1) + 0.6𝑥

2
(𝑡 − 2) + 𝜖

3
(𝑡) ,

𝑥
4
(𝑡) = −0.7𝑥
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(𝑡 − 3) − 0.7𝑥

1
(𝑡 − 3) + 0.3𝑥
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4
(𝑡) ,
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5
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(𝑡 − 2) + 0.3𝑥

4
(𝑡 − 2)

+ 𝜖
5
(𝑡) .

(A.3)

As in the previous section, we repeated the experiment 20
times (i.e., we generated and applied 20 different random
mixing matrices). Table 1 compares the accuracy (as mea-
sured by the Amari index) for the different algorithms.

Experiment 3 (dynamically coupled harmonic oscillators).
Experiment 3 explores dynamic coupling based on a 10-
source model. We incorporated several constant first-order
coupling terms between components in the second-order
model equations as shown by solid black lines in Figure 10.
Additionally, we included several second-order dynamic
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Figure 10: A graphical depiction of coupling dependencies in
the 10-source vector AR(2) model. Each circle represents a gen-
erated source modeled by a damped harmonic oscillator with a
given fundamental frequency, randomized damping coefficients,
and coupling terms depicted by the connecting lines. Solid black
lines indicate a static first-order dependency with coupling coef-
ficient denoted in the direction of the arrow. Dashed lines indi-
cate a second-order dependency. The second-order couplings vary
dynamically according to a sinusoidal function with frequencies
varying between 0.1 and 1Hz and amplitudes denoted in the figure.

couplings, indicated by dashed lines in Figure 10.The second-
order coupling coefficients varied according to a sinusoidal
function at frequencies between 0.1 and 1Hz. For example,
according to Figure 10, the AR equation for the 3Hz oscillator
𝑥
2
at time 𝑡 contains a nonzero contribution from the 2Hz

oscillator 𝑥
1
at time 𝑡 − 1. Likewise, the equation for the 7Hz

oscillator 𝑥
4
includes a varying contribution from the 3Hz

oscillator 𝑥
2
at time 𝑡 − 2. The equations used to generate

samples in Experiment 3 are
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(A.4)

In the above equations, 𝑓
𝑠
is the sampling rate and 𝜏

𝑖
and 𝑓

𝑖

are the 𝑖th damping constant and normalized fundamental
frequency. The values of these parameters are the same as
those in Experiment 1.

B. Source Simulations in Forward
Model Experiment

B.1. Vector Autoregressive Equations for Forward Model Simu-
lation. The simulation used to generate the source data used
in Section 4.2 is derived from a 6th-order VAR equation with
cross-source coupling coefficients that are activated within
one of 3 stages and modulated by generalized Gaussian func-
tion of shape parameter at least 8 symmetrically distributed
about the center of the stage. The equation for the generating
distribution function centered at observation 𝑡

0
and scaled by

𝜎 is given by

𝑔 (𝑡; 𝜎, 𝑡
0
, 𝑛) = exp(−(

󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑡
0

󵄨
󵄨
󵄨
󵄨

𝜎

)

𝑛

) , (B.1)

which is subsequently multiplied by some constant corre-
sponding to the desired maximum amplitude.

The sampling rate for this experiment was chosen to be
𝑓
𝑠
= 100Hz, and a single 5-minute trial was generated. The

three stages were centered about observations 𝑡
1
= 62.5𝑓

𝑠
,

𝑡
2
= 65𝑓

𝑠
, and 𝑡

3
= 70𝑓

𝑠
(62.5, 65, and 70 seconds, resp.).

Setting the scale constant 𝜎 = 250 (2.5 seconds) and with
natural frequency constants 𝑓

2
= 20Hz and 𝑓

3
= 𝑓
4
= 10Hz

and damping constants 𝜏
1
= 20, 𝜏

2
= 𝜏
4
= 6, and 𝜏

3
= 7,

the system of equations describing the 13-source model is
given as

𝑥
1
(𝑡) = 2 exp(− 1

𝜏
1
+ 100𝑔 (𝑡; 𝜎, 𝑡

1
, 8)

) cos(2𝜋
5

)

⋅ 𝑥
1
(𝑡 − 1) − exp(− 2

𝜏
1
+ 100𝑔 (𝑡; 2𝜎, 𝑡

1
, 8)

)

⋅ 𝑥
2
(𝑡 − 2) + 𝜖

1
(𝑡) ,
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𝑥
2
(𝑡) = 𝑥

𝐻,2
(𝑡; 𝜏
2
,

𝑓
2

𝑓
𝑠

) + 0.01𝑔 (𝑡; 𝜎, 𝑡
1
, 8) 𝑥
3
(𝑡

− 2) + 0.01𝑔 (𝑡; 𝜎, 𝑡
1
, 8) 𝑥
4
(𝑡 − 2)
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1
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1
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𝑓
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,
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(B.2)

B.2. Source Locations by Region of Interest. As described in
Section 4.2, each of the 13 source activations generated in
the 3-stage VAR process was assigned to a randomly selected

region of interest and mapped to the scalp according to the
MNI “colin27” brain [35]. Dipoles were then fed through a
forward model, generating signals at simulated electrodes on
the scalp of the model head. The selected regions of interest
are listed here by verbatim labels of the Destrieux atlas [46]:

(1) S occipital ant R,
(2) G and S subcentral R,
(3) S oc-temp med and Lingual L,
(4) S calcarine L,
(5) G and S frontomargin L,
(6) S precentral-inf-part L,
(7) S temporal sup L,
(8) G Ins lg and S cent ins R,
(9) S temporal sup R,
(10) G oc-temp med-Parahip L,
(11) G pariet inf-Angular L,
(12) G front inf-Opercular R,
(13) S temporal inf R.

Documentation of the applied forward model is available
externally [31], and we have made the exact routines used
to generate the data in this experiment available in an
addendum to the freely available PWC-ICA toolbox.
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mixture separation with best interference-plus-noise rejection,”
in Independent Component Analysis and Signal Separation, M.
E. Davies, C. J. James, S. A. Abdallah, andM. D. Plumbley, Eds.,
vol. 4666 of Lecture Notes in Computer Science, pp. 730–737,
Springer, Berlin, Germany, 2007.

[30] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox
for analysis of single-trial EEG dynamics including indepen-
dent component analysis,” Journal of NeuroscienceMethods, vol.
134, no. 1, pp. 9–21, 2004.

[31] T. R. Mullen, The Dynamic Brain: Modeling Neural Dynamics
and Interactions from Human Electrophysiological Recordings,
University ofCalifornia, SanDiego, SanDiego, Calif, USA, 2014,
http://search.proquest.com/docview/1619637939.

[32] J. A. Palmer, S. Makeig, K. Kreutz-Delgado, and B. D. Rao,
“Newton method for the ica mixture model,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and



20 Computational Intelligence and Neuroscience

Signal Processing (ICASSP ’08), pp. 1805–1808, Las Vegas, Nev,
USA, April 2008.

[33] S. Amari, A. Cichocki, and H. H. Yang, “A new learning
algorithm for blind signal separation,” in Advances in Neural
Information Processing Systems, pp. 757–763, MIT Press, Cam-
bridge, Mass, USA, 1996.

[34] P. Ilmonen, K.Nordhausen,H.Oja, and E.Ollila, “A newperfor-
mance index for ICA: properties, computation and asymptotic
analysis,” in Latent Variable Analysis and Signal Separation, pp.
229–236, Springer, Berlin, Germany, 2010.

[35] C. J. Holmes, R. Hoge, L. Collins, R. Woods, A. W. Toga, and
A. C. Evans, “Enhancement ofMR images using registration for
signal averaging,” Journal of ComputerAssistedTomography, vol.
22, no. 2, pp. 324–333, 1998.

[36] J. A. Palmer and S.Makeig, “Contrast functions for independent
subspace analysis,” in Proceedings of the 10th International
Conference on Latent Variable Analysis and Signal Separation
(LVA/ICA ’12), pp. 115–122, Springer, Tel Aviv, Israel, March
2012.

[37] M. A. Casey and A. Westner, “Separation of mixed audio
sources by independent subspace analysis,” in Proceedings of the
International Computer Music Conference, pp. 154–161, 2000.

[38] R. Oostenveld and P. Praamstra, “The five percent electrode sys-
tem for high-resolution EEG and ERP measurements,” Clinical
Neurophysiology, vol. 112, no. 4, pp. 713–719, 2001.

[39] J. Palmer, K. Kreutz-Delgado, and S. Makeig, “AMICA: an
adaptive mixture of 23 independent component analyzers with
shared components,” Tech. Rep., Swartz Center for Computa-
tional Neuroscience, San Diego, Calif, USA, 2011.

[40] J.-F. Cardoso, “Multidimensional independent component
analysis,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP ’98), pp. 1941–
1944, Seattle, Wash, USA, May 1998.

[41] A. Hyvärinen and P. Hoyer, “Emergence of phase- and shift-
invariant features by decomposition of natural images into
independent feature subspaces,” Neural Computation, vol. 12,
no. 7, pp. 1705–1720, 2000.
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