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Abstract

Motor cortex neuronal ensemble spiking activity exhibits strong low-dimensional collective 

dynamics (i.e., coordinated modes of activity) during behavior. Here, we demonstrate that these 

low-dimensional dynamics, revealed by unsupervised latent state-space models, can provide as 

accurate or better reconstruction of movement kinematics as direct decoding from the entire 

recorded ensemble. Ensembles of single neurons were recorded with triple microelectrode arrays 

(MEAs) implanted in ventral and dorsal premotor (PMv, PMd) and primary motor (M1) cortices 

while nonhuman primates performed 3-D reach-to-grasp actions. Low-dimensional dynamics were 

estimated via various types of latent state-space models including, for example, Poisson linear 

dynamic system (PLDS) models. Decoding from low-dimensional dynamics was implemented via 

point process and Kalman filters coupled in series. We also examined decoding based on a 

predictive subsampling of the recorded population. In this case, a supervised greedy procedure 

selected neuronal subsets that optimized decoding performance. When comparing decoding based 

on predictive subsampling and latent state-space models, the size of the neuronal subset was set to 

the same number of latent state dimensions. Overall, our findings suggest that information about 

naturalistic reach kinematics present in the recorded population is preserved in the inferred low-

dimensional motor cortex dynamics. Furthermore, decoding based on unsupervised PLDS models 

may also outperform previous approaches based on direct decoding from the recorded population 

or on predictive subsampling.
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I. Introduction

Spiking activity in recorded ensembles of motor cortex neurons is known to exhibit strong 

low-dimensional collective dynamics [1]–[3]. These low-dimensional dynamics are likely to 

reflect the constraints imposed by highly recurrent neuronal networks on the spontaneous 

and evoked single-neuron and population activities. In the particular case of motor cortex, 

these low-dimensional dynamics also likely reflect the fact that the motor system controls a 

considerably lower dimensional system, the sensorimotor muscle-skeletal plant. In many 

motor tasks, neural state trajectories inferred via latent state-space models can be relatively 

well characterized in much lower dimensions than the number (~100) of neurons randomly 

sampled by current microelectrode arrays (MEAs). It is not known, however, how well 

information about movement parameters is preserved in these inferred low-dimensional 

neural state trajectories. Here, we addressed this question by studying ensembles of neurons 

simultaneously recorded via triple microelectrode array recordings in two monkeys 

performing a naturalistic 3-D reach-to-grasp task.

We explored several approaches to infer latent low-dimensional dynamics in recorded 

neuronal ensembles. Previous work based on dimensionality reduction [4], [5] focused on 

classification of discrete parameters (e.g., identification of reach target), or on state-space 

models to account for hidden factors in otherwise supervised learning of kinematic decoding 

models [6]. Here, instead, we considered unsupervised approaches that included a 

dimensionality reduction algorithm (jPCA), which targets rhythmic/rotational dynamics in 

primary motor cortex [7], [8], and explicit latent state-space models (SSMs). Latent SSMs 

included linear dynamic system (LDS) models, i.e., state-space models with Gaussian linear 

dynamics and observations [9], [10], and Poisson-LDS (PLDS) models, where the point or 

count process nature of neuronal spiking observations is preserved. In the PLDS model, 

spike counts in small time bins (e.g., 1–25 ms) were modeled as conditional Poisson 

observations given evolving latent neural states [6], [11], [19], [13]–[15].

We assessed how well information about reach kinematics was preserved in each low-

dimensional representation approach relative to the entire recorded population by comparing 

neural decoding performances. Once low-dimensional neural state trajectories were 

estimated via different approaches and models, we used Kalman filters to decode 3-D 

kinematics under a leave-one-trial-out cross-validation scheme. Positions of the hand (at the 

wrist), measured via a motion capture system [16], [17], were decoded separately for each 

(x, y, z) coordinate. The number of dimensions of the latent state space was varied to assess 

its effects on decoding performance.

We also considered the possibility that specific neuronal subsets (of the same size as the 

dimension of estimated latent neural states) could potentially yield a better decoding 

performance than decoding from the latent states. It has been shown before that decoding on 

neuronal subsets can outperform decoding based on the entire population (e.g., [16] and 

[17]). For this reason, we compared decoding based on latent low-dimensional states with 

decoding based on a predictive subsampling of the recorded neuronal population. An 

exhaustive search for optimal subsets that optimizes decoding would be computationally 

impractical even for small sets of tens of neurons. Instead, a greedy selection procedure was 
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used to select subsets of neurons (of various sizes) that optimized performance within the 

Kalman filter decoding approach [17]. We emphasize that, in contrast to the unsupervised 

estimation of low-dimensional neural state trajectories, predictive subsampling was based on 

supervised learning.

Decoding based on PLDS models consistently outperformed decoding directly from the 

entire population or from the greedy predictive subsampling approaches. For example, a 3-D 

PLDS led to comparable or even higher decoding performance than the population decoding 

when decoding z-position trajectories. These contrasting results, based on separate decoding 

analyses for each motor cortical area, were enhanced when examining larger populations 

including neurons from all three recorded areas. Overall, our findings demonstrate that 

decoding based on low-dimensional dynamics (coordinated collective modes of activity), 

revealed by unsupervised latent state-space models, can allow better 3-D kinematics 

reconstruction than previous approaches based on direct decoding from the entire recorded 

population.

II. Methods

A. Behavioral Task: Naturalistic 3-D Reach to Grasp Movements

Two monkeys (S and R) were trained to sit on a chair and reach to grasp objects presented in 

front of them. Upon go cue, the subject moved its hand, initially rested on a handle, to grasp 

the object. The object hanging from a string was presented by the experimenter. The 

swinging motion of the object allowed for a wider range of hand kinematics to be recorded 

as the subject reached for the object. Upon grasping correctly the object for about 1 second, 

a juice reward was given.

Three different objects were used to allow three main types of grips: key, precision and 

power grips. Each object allowed two of these three grip types. A grip cue specified the type 

of grip. In a key grip, the object was held between the tip of thumb and index fingers, while 

in a precision grip, the object was held by the tip of all fingers. By contrast, in a power grip 

the object was held by wrapping all fingers around it. In a typical recording session ~30 

successful trials were obtained for each object type. A total of two sessions for each subject 

were examined in this study. Sessions from subject S included 88 and 79 trials, and sessions 

from subject R included 79 and 104 trials.

Kinematics were recorded using a Vicon motion capture system (~240 frames per second). 

The system tracks reflective markers positioned on the arm and hand. The wrist position was 

estimated by averaging the 3-D location of four markers placed on the monkey’s wrist. This 

allowed us to obtain robust measurements of wrist position under situations where some 

reflective markers could be optically cluttered. Fig. 1 shows the 3-D wrist positions for 

Subjects S and R in x (horizontal: right-left), y (horizontal: forward-backward), and z 

(vertical: upward-downward) coordinates. Since it took a variable amount of time for the 

subjects to start a movement after the go cue, we estimated the movement onset as the time 

the wrist elevated more than 10 mm in the z coordinate. The beginning of the trial was set as 

300 ms before the detected movement onset. On average it took more time for subject S to 

complete the trials and receive a reward (mean: 1.44, SD: 1.07 s) compared to subject R 
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(mean: 0.83, SD: 0.74 s). The distribution of wrist positions in x, y and z coordinates 

differed between the two subjects, indicating that the subjects might have adopted slightly 

different strategies to perform the task.

B. Data Recording and Preprocessing

Neural recordings were obtained from chronically implanted MEAs in the M1, PMd, and 

PMv areas. Three microelectrode arrays were implanted. One 96-channel MEA was 

implanted in PMv; two other 48-channel MEAs were implanted in M1 and PMd areas, 

respectively. Details on the surgery and location of electrodes are described elsewhere [16], 

[17]. (The datasets presented here relate to two new subjects recorded after these two 

studies.) Electric field potentials sampled at 30 kHz and analog band-pass filtered between 

0.3 Hz–7.5 kHz were processed offline to extract extracellular action potentials (spikes). IIR 

notch-filters at 60, 120 and 180 Hz, and a 5th-order Butterworth high-pass filter with a 

cutoff frequency at 250 Hz were applied to obtain high-pass filtered signals for spike 

detection. Spikes were extracted as events that crossed the detection threshold. Detected 

spike waveforms were then aligned with respect to their minimum peak. The detection 

threshold was chosen as three times the standard deviation of the channel’s noise plus the 

smoothed high-pass signal, which was estimated by a local-averaging of the high-pass signal 

with an overlapping 150 ms rectangular window. Detected spikes were manually sorted for 

each channel. Thresholded spike waveforms were represented on a PCA feature space, 

where clusters were identified. Only clusters with an average signal-to-noise ratio SNR ≥ 6 

dB were included in the sorting. The SNR was defined as

(1)

where σs and σn correspond to the standard deviations of the signal (spike waveform) and 

the noise, respectively. Single units consisted of sorted spikes whose cluster in the PCA 

feature space did not overlap with other clusters containing noise samples or other units. 

Sorted multiunit consisted of those cases where there was a clear cluster but with some 

overlap with the noise cluster. As stated above, these multiunit clusters also satisfied an 

average SNR ≥ 6 dB. Only sorted units that spiked at least once per trial over 80% of all 

trials were included in the analyses. The number of sorted units per cortical area and 

experimental session corresponded to: (a) Subject S, M1 (52, 40), PMd (57, 55), PMv (86, 

71); (b) Subject R, M1 (37, 41), PMd (33, 49), PMv (34, 46).

Neuronal spiking activity was represented in the form of spike counts in 25-ms 

nonoverlapping time bins. These spike counts were used as inputs to estimate the low-

dimensional dynamics and for decoding neuronal population activity.

C. Inferring Low-Dimensional Neural Dynamics: Rotational Dynamics (jPCA)

We considered several different approaches to infer low-dimensional dynamics in motor 

cortex neuronal ensemble spike data. These approaches included a dimensionality reduction 

approach that targets rhythmic/rotational dynamics in primary motor cortex (jPCA [7], [8]). 
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When inferring low-dimensional dynamics via jPCA, we adopted the approach described in 

[8]. In this case, jPCA estimation consisted primarily of computing the principal 

components of the neural data matrix and computing the polar decompositions of the lag-1 

covariance matrix of the data projections on the first n chosen principal components, where 

n corresponds here to the number of dimensions in the low-dimensional representation. This 

approach was much faster and provided the same qualitative results as the approach 

described in [7].

D. Inferring Low-Dimensional Neural Dynamics: Linear Dynamic System (LDS)

In addition to jPCA, we considered a low-dimensional representation based on explicit latent 

state-space models—the focus of this study. In the simplest case, we modeled the neuronal 

ensemble activity as Gaussian linear observations of an evolving Gaussian linear system, 

often referred to as Linear Dynamic System (LDS) models [10], expressed as

(2)

where xt ∈ ℝp denotes the latent p-dimensional evolving state at time t = 1, …, T; μx is a 

mean offset, A ∈ ℝp×p corresponds to the state transition matrix, the {εt} are independently 

and identically distributed (i.i.d.) Gaussian with zero mean and covariance Σx ∈ ℝp×p, εt ~ 

(0, Σx); yt ∈ ℕq is the observed activity (square-root transformed spike counts) in the 

recorded q neurons, μy is a mean offset, B ∈ ℝq×p is the observation matrix, and the {ηt} are 

i.i.d. zero mean Gaussian with covariance Σy ∈ ℝq×q, ηt ~ (0, Σy). We applied a square-

root transformation to the spike counts in order to better approximate the assumption of 

Gaussian observations in the LDS model.

Here, we used a standard approach to estimate the above LDS state-space model based on 

the Expectation-Maximization (EM) algorithm [9], except that we initialized the EM 

iterations with a solution obtained via factor analysis. A different initialization based on 

subspace system identification methods [18], [19] provided the same qualitative results. EM 

learning is typically computationally intensive and requires a large number of iterations to 

converge. By initializing the LDS parameters with nonrandom solutions, we could 

significantly reduce the number of required iterations. Once the LDS model parameters were 

estimated, we used the Kalman filter forward recursions to compute the mean and variance 

of the posterior density p(xt|y1:t), where y1:t corresponds to the square-root of the observed 

spike counts in the recorded neuronal population from the beginning of the trial up to time t. 

Each single trial in the task should be considered a realization of the above process. The 

mean of the posterior density was used as the estimated low-dimensional latent state, which 

is henceforth denoted as x̂t [10].

E. Inferring Low-Dimensional Neural Dynamics: Poisson Linear Dynamic System (PLDS)

In order to preserve the count process nature of spike counts, we also examined a state-space 

model [6], [11]–[15], [19], [20] where the observations are Poisson conditioned on the latent 

state, specifically
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(3)

where the latent state has the same dynamics as defined in (2), and λi(xt) corresponds to the 

intensity of the conditional Poisson observation process for neuron i, modeled as

(4)

where μi,y relates to a background level of activity and θi is a vector of coefficients. This 

observation model corresponds to a generalized linear model [15]. To estimate the Poisson 

LDS (PLDS) state-space model, we used the general approach presented in [6], except that 

the EM algorithm was initialized with solutions obtained from an exponential family PCA 

(e.g., [21]) and that the solutions for the density posterior p(xt|y1:T) during EM learning were 

obtained via a Laplace approximation [14], [15], [19]. A Gaussian variational Bayes 

approximation [22] was also explored (Fig. 2). We used algorithms provided by Lars 

Buesing (personal communication) to compute the exponential family PCA initialization and 

the Gaussian variational approximation for computation of the posterior densities. Otherwise 

stated, for assessment of decoding performance we use the mean of the state posterior 

density, under a Laplace approximation [14], [15], [20], as the estimate for the latent state.

F. Decoding of 3-D Reach Kinematics From Recorded Neural Population and Latent Low-
Dimensional Neural Dynamics

To decode kinematics directly from the entire population activity, we used another state-

space model such that the observed neuronal population activity yt and the kinematic states 

zt are related accordingly to

(5)

where μz is the mean of the kinematics, the {νt} are i.i.d. Gaussian, νt ~ (0, Σz), and the 

{ζt} are i.i.d. Gaussian, ζt ~ (0, Σz). Each kinematics variable was decoded separately, 

thus D is a scalar and E an observation vector. Given the measured kinematics and the 

recorded neuronal population activity in a training dataset, the parameters of this state-space 

model are estimated by a conditional maximum likelihood estimator [23].

To decode kinematics from latent states estimated via jPCA, LDS, and PLDS, the following 

state space representation was used:

(6)
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where, as in (5), the kinematics is one-dimensional, x̂t corresponds to the latent state 

estimated via one of the three examined approaches (jPCA, LDS, PLDS), μx̂ is the mean of 

estimated latent state, F is the observation vector and the {ξt} are i.i.d. with ξt ~ (0, Σx̂). 

As in the previous case, the state-space model parameters are estimated from training data 

via a conditional maximum likelihood estimator.

The Kalman filter was used to compute the posterior density of the kinematic (position) 

variable being decoded from the entire recorded population, p(zt|y1:t), or to compute the 

posterior based on the inferred low-dimensional latent states, p(zt|x̂1:t). The mean of the 

posterior was then used as the estimated position. Fig. 3 in Section III shows the schematics 

for the decoding approach based on PLDS. In that case, a point process filter using the 

Laplace approximation [15] is coupled in series with a Kalman filter. We note that, given 

LDS and PLDS parameters estimated on training data, this neural decoding approach can be 

easily implemented in real time. In other words, both the posteriors p(zt|x̂1:t) and p(xt|y1:t) 

can be computed in real time. Decoding performance was assessed under a leave-one-trial-

out cross-validation scheme.

To evaluate the chance level (statistical significance) of the decoding performance based on 

the entire recorded population, we used a random permutation approach. Spike counts in 

different trials were randomly permutated in time and independently across neurons. A 

decoding performance was then obtained under this random permutation. This procedure 

was repeated 1000 times. We report the 95 percentile of the decoding performances obtained 

under this random permutation approach as the 95 percentile of the chance level decoding.

G. Decoding of 3-D Reach Kinematics Based on Random and Predictive Subsampling of 
Recorded Neuronal Populations

It is possible that a subset of neurons, much smaller in size than the recorded population, 

could allow for better decoding than the entire population (e.g., [16] and [17]), or even than 

the low-dimensional dynamics based on state-space models examined here. Therefore, we 

also considered an approach, henceforth referred to as predictive subsampling, where we 

search for neuronal subsets of different sizes that optimize decoding. An exhaustive search 

of all possible subsets is obviously not practical for even small recorded populations (>10 

neurons). We adopted instead a greedy search algorithm [17].

Specifically, we start by initializing the subset for size n = 1 with the neuron that, among all 

recorded neurons, provides the best decoding performance. In the next iteration, we add to 

the subset the next best neuron, such that n = 2. This procedure continues iteratively until all 

neurons in the population are selected and added to the subset. To minimize overfitting to the 

training data, the decoding in all iterations of this greedy selection were performed under a 

leave-one-trial-out cross-validation scheme. We also emphasize that, as the term predictive 

subsampling implies, this is a supervised approach, in contrast with the unsupervised latent 

state-space models used here.

In addition, we also examined the decoding performance based on subsets of neurons of 

various sizes that were randomly chosen, i.e., irrespective of their decoding performance, 

from the entire recorded population.
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III. Results

A. Low-Dimensional Motor Cortex Dynamics During Naturalistic 3-D Reach-to-Grasp 
Actions

The spiking activity for Subjects S and R was recorded from the M1, PMd and PMv cortical 

areas in two recording sessions. Monkey S performed 88 and 79 successful trials in the two 

sessions of the reach-to-grasp task, respectively, while monkey R performed 79 and 104 

successful trials. Fig. 1 shows the distribution of 3-D wrist position for the two subjects and 

all trials in the two sessions. The reach-to-grasp task was designed to minimize correlations 

among different coordinates or degrees of freedom in hand/arm movements [16] and to 

optimize the use of the subject’s workspace. Fig. 4(a) and (b) illustrates the kinematics and 

corresponding neural data of a sample reach trial for subject S. The neural ensemble spike-

count raster corresponding (25 ms time bins) to 57 neurons simultaneously recorded during 

a single trial in one experimental session, area PMd, is shown in Fig. 4(b).

Latent state-space models were first estimated for each motor cortical area separately and for 

the combined three areas in later analyses. The LDS models were fitted to the square-root 

transformed spike counts. This transformation was applied to better match the Gaussian 

assumption for the state-space observations. The Poisson LDS (PLDS) was fitted directly to 

the spike count data. Fig. 4(c) and (d) shows the latent PLDS states corresponding to one 

example trial. In this case, a 12-dimensional state was estimated.

As stated above, parameters for the state-space models were estimated in an unsupervised 

fashion, i.e., without knowledge of the motor behavior. Different dimensions of the inferred 

low-dimensional states can reflect different aspects of neural dynamics, some potentially 

related to the motor behavior (e.g., kinematics) during the reach-to-grasp task, and some 

potentially related to other processes such as ongoing cortical activity, for example.

We assessed how well information about kinematics was preserved in the inferred low-

dimensional neural dynamics estimated from separate motor cortical areas by comparing 

how well 3-D reach kinematics could be decoded from the inferred latent states and directly 

from the full recorded neuronal population. We used the Pearson correlation coefficient (CC) 

between the decoded and true kinematics, computed separately for x, y, and z position 

coordinates, to assess decoding performance. Comparable decoding performances would 

indicate the preservation of information about 3-D reach actions in the estimated low-

dimensional dynamics. A Kalman filter was used to decode trajectories separately for the x, 

y, and z coordinates and from each motor cortical area individually. The observations in the 

state-space model underlying the Kalman Filter decoding varied depending on the approach 

being assessed (Section II). The more complex case based on the PLDS model consisted of a 

point/count process filter and a Kalman filter coupled in series, as illustrated by the 

schematics in Fig. 3. Maximum likelihood estimates for the Kalman filter were obtained 

from training data under a leave-one-trial-out cross-validation scheme (Section II). For 

decoding purposes, all kinematics were down-sampled to the sampling rate of the spike 

counts at 40 Hz (i.e., 25 ms time bins).
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In the case of the PLDS state-space model, an approximation to the latent state posterior 

density and its mean and variance is required both during model estimation and decoding 

because there is no closed-form solution for the posterior [24]. Thus, before proceeding with 

the assessment of decoding performance based on the different approaches, we examined 

two alternative implementations of the expectation step in the EM algorithm for the learning 

of the PLDS state-space model parameters: the Laplace approximation or the variational 

Bayes for the inference of the mean and variance of the state posterior densities. The EM 

algorithm was run until convergence or until a maximum of 500 iterations was reached. As 

stated in Section II, exponential-family PCA was used for the initialization of the latent 

states in both cases. The Laplace approximation was not only much faster in our specific 

application, but also resulted in slightly better decoding performance [Fig. 2(a) and (b)]. 

Based on the above-mentioned results, we adopted the Laplace approximation in the PLDS 

model estimation and decoding analyses. We also note that fewer EM iterations can be used 

while preserving decoding performance and speeding up considerably the PLDS estimation. 

Specifically, in our datasets, an EM estimation with at most 100 iterations under the Laplace 

approximation resulted in about the same decoding performance as that based on an EM 

estimation with at most 500 iterations. The computational time in the at most 100 iterations 

case assessed on a Dell Precision Workstation (2 Intel Xeon processors @ 3.1 GHz) running 

Matlab, resulted in 40.77±9.78 (mean ±2SD) minutes for 15 dimensions (monkey S), and 

23.05±8.8 minutes for nine dimensions (monkey R). (The choice of these two different 

dimensions is clarified in Fig. 6.) These results were obtained on the same datasets 

corresponding to three different cortical areas and two experimental sessions used in the 

analyses that follow. For actual applications in brain-machine interfaces, this computational 

time can be substantially reduced with the use of standalone executables and/or with the use 

of embedded digital signal processing hardware. Furthermore, the computational time 

during real-time decoding, i.e., once the PLDS model has been already estimated based on 

some training data, is not a concern here, since in this case one simply needs to iterate a 

small set of forward filtering equations for both the point process and Kalman filters coupled 

in series.

Decoded position trajectories from low-dimensional states estimated via PLDS tended to be 

smoother than trajectories decoded directly from the full population, LDS, random 

subsampling, and greedy predictive subsampling (Section II). Fig. 5 shows a single trial 

example [same as in Fig. 4(a)] illustrating the decoding of x, y, and z position coordinates 

from the recorded entire population spiking activity in M1, PMd and PMv areas, and from 

lower dimensional inputs consisting of 12-dimensional latent state trajectories estimated via 

jPCA, LDS and PLDS, and from neuronal subsets obtained via random or predictive 

subsampling of the same size as the latent state dimension.

B. Decoding 3-D Reach Kinematics From Single-Area Motor Cortex Low-Dimensional 
Dynamics: Dependence on Latent State Dimension

We examined how the number of state dimensions in the latent state-space models, jPCA 

and subsampling affected decoding performance. Fig. 6 shows the CC performance based on 

different decoding approaches averaged over sessions for subjects S and R as the number of 
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latent state dimensions increased, from 2 to 30 dimensions. Decoding performance grew 

roughly monotonically and reached a plateau after a given number of dimensions.

The number of dimensions at which a plateau was reached varied according to subject and 

according to position coordinate, being smaller for decoding of z-position. For example, as 

few as 2–3 dimensions were sufficient for PLDS to show better z-position decoding 

performance than the full population in subject R, while a larger number of dimensions was 

required for x- and y-position coordinates. Similar trends were observed for decoding from 

M1, PMv and PMd areas.

C. Decoding 3-D Reach Kinematics From Single-Area Motor Cortex Low-Dimensional 
Dynamics: Summary Across Cortical Areas and Position Coordinates

To simplify the comparisons and based on the results shown in Fig. 6, we fixed the state 

dimensions to 15 for monkey S and 9 for monkey R, regardless of the recording area, since 

dependency on dimension did not seem to vary substantially with motor cortical area. The 

same dimensions were applied to the size of neuronal subsets obtained via random and 

predictive subsampling.

Overall, decoding based on low-dimensional state trajectories inferred via the PLDS 

approach achieved consistently higher performance relative to direct decoding from the 

entire population, LDS, jPCA, random and predictive subsampling (Fig. 7). We used a 

nonparametric approach, the Kruskal-Wallis test, to determine statistical significance. The 

correlation coefficient of the decoded kinematics (x, y and z coordinates) for different 

sessions/areas using the PLDS model was significantly higher than the decoding from the 

full population, p-value <0.05, and significantly higher than the decoding based on 

predictive subsampling (with the same set sizes as the state dimensions used in the PLDS 

approach), p-value <0.05. The differences between the decoding performances based on the 

full population and on the predictive subsampling were not statistically significant according 

to the Kruskal-Wallis test. The comparative performance between PLDS and predictive 

subsampling was consistent across cortical areas, position coordinates, experimental 

sessions and subjects (Fig. 7(b) and (c)), with PLDS outperforming predictive subsampling 

in 92% of the cases. Comparison of the different decoding approaches in terms of 

normalized root mean square errors, averaged over the three position coordinates, is shown 

in Table I.

We note that in the previous analysis we used a simple cross-validation scheme (leave-one-

trial-out) instead of partitioning the data into training, validation and testing sets. For the 

main result of our decoding performance assessment, we think the latter scheme is not 

necessary because the decoding performance of the PLDS model was typically above the 

decoding performance based on the full population or on the predictive subsampling 

approach, after a given low dimension was reached (Fig. 6). Thus. the use of separate 

validation and testing sets does not seem critical for the examination of the dimension of the 

latent state space (or subset size) and its effects on the comparison between the PLDS and 

other approaches.
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D. Decoding 3-D Reach Kinematics From Motor Cortex Low-Dimensional Dynamics: 
Combined Motor Cortical Areas

We extended the analyses to the case of combining neurons from the three different cortical 

areas (M1, PMv, PMd) and estimating a single state-space model for the combined 

population, as opposed to separate areas as done previously. The dependence on the number 

of state dimensions was qualitatively similar to the dependence observed when treating each 

cortical area separately, even though the total number of neurons had increased substantially. 

As for the separate area case, decoding performance based on PLDS latent state-space 

model increased roughly monotonically with number of dimensions, outperforming direct 

decoding from the full population with as few as 3–5 dimensions (z-position) and ~10 

dimension for x- and y-position, and reaching a plateau after that. This dependence on the 

number of state dimensions was also similar for LDS, jPCA, and predictive subsampling. 

Fig. 8 shows the results for the PLDS and predictive subsampling approaches.

For a more detailed comparison of decoding performance based on combined motor cortical 

areas, we fixed the latent state dimensions (or subset size in the case of predictive 

subsampling) to 25 for both subjects. The total number of simultaneously recorded neurons 

in the combined populations across the three motor cortical areas in each of the two sessions 

corresponded to 195 and 166 (subject S), and 104 and 136 (subject R). Decoding 

performance based on PLDS low-dimensional state trajectories for the combined motor 

cortical areas improved relative to the case of separate motor areas [Fig. 9(a)] and, as before, 

outperformed decoding directly from the entire recorded population [Fig. 9(b)]. Decoding 

performance based on predictive subsampling was similar to the performance based on the 

entire population and typically lower than the performance based on the PLDS approach 

[Fig. 9(c)].

IV. Discussion

Recent studies have emphasized the low-dimensional nature of collective dynamics at the 

level of ensembles of single-neuron spiking activity in motor cortex [1]–[3], [10], [11]. Here, 

we addressed the question of how well information about reach kinematics during a 

naturalistic 3-D reach-to-grasp task is preserved in low-dimensional dynamics estimated via 

latent state-space models. Our analyses demonstrate that decoding based on low-

dimensional state trajectories tended to outperform decoding directly from the entire 

population and decoding based on predictive (supervised) neuronal subsampling. This result 

suggests that information about movement parameters is largely preserved in the estimated 

low-dimensional collective dynamics. This is not an obvious finding since these low-

dimensional dynamics, inferred via unsupervised methods, could potentially relate to many 

other ongoing cortical processes, not directly associated with arm/hand kinematics. This 

finding was consistent across different subjects and across different cortical areas including 

primary motor, ventral and dorsal premotor areas. Furthermore, we compared different latent 

state-space models and showed that a state-space approach (PLDS) that preserves the point/

count process nature of neural spiking observations outperformed approaches that did not 

(LDS, jPCA).
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Given the characteristics and length (1.5 mm) of the microelectrode arrays used in study, it is 

likely that our recordings originated primarily from large pyramidal neurons in deep layers 

responsible for motor output. Because motor cortex output is involved in the control of a 

much lower dimensional system (the muscle-skeletal plant), the corresponding neural 

dynamics likely live in a lower dimensional manifold and are primarily related to parameters 

of intended movement. Our findings that unsupervised inference of latent low-dimensional 

state trajectories preserved information about reach kinematics during this 3-D reach-to-

grasp task seem to reflect the features of motor cortex dynamics.

Low-dimensional representations of neural dynamics, as used here, are thought to “denoise” 

neural spike train observations [2]. As a result of the modeled temporal dynamics in the 

latent state evolution, inferred latent state trajectories are typically much smoother than the 

observed neuronal spiking activity. In this way, these low-dimensional dynamics seem also 

to capture neural variability more directly related to slower time scale behavioral parameters 

rather than faster and private variability in single-neuron spiking [7], [25]. We also note that 

we did not enforce stability of the latent state dynamics in the estimation of LDS and PLDS 

models. As suggested in [19], stability constraints can lead to even smoother dynamics. This 

could potentially lead to higher performance gains in decoding from latent low-dimensional 

state-space models. In addition, this “denoising” operation could reduce the overfitting 

capacity of the decoder and improve generalization to test data.

Our study focused on decoding of 3-D reach kinematics at the wrist. It remains an open 

question how these findings generalize to higher dimensional degrees of freedom and much 

more complex sensorimotor tasks. The inferred low-dimensional dynamics resulting from 

the highly recurrent connectivity in motor cortex may also impose important constraints to 

adaptation and skill learning [26], particularly relevant for BMIs. Another important open 

issue is the contrast between the dimensionality of collective neural dynamics in early 

(especially visual) sensory and motor cortices. Because of the seemingly much higher 

bandwidth in the early visual cortex output, we would expect collective neural dynamics to 

live in much higher dimensional spaces in this case. We also note that our analyses were 

based on neuronal recordings consisting of high signal-to-noise ratio single and multiunit 

activity. Different findings could potentially result from applying the same analyses to 

thresholded but unsorted spikes.

Predictive subsampling provided the closest performance to the PLDS approach when 

decoding 3-D reach kinematics from motor cortex. However, we emphasize that so far there 

is no computationally efficient way to select an optimal subset of neurons, especially in the 

context of decoding based on probabilistic Bayesian state-space model approaches, e.g., 

Kalman and point process filters. Exhaustive search of optimal subsets is computationally 

impractical even for tens of neurons. The greedy approach adopted here is limited in this 

sense because its forward search restricts the assessment to a very small fraction of all of the 

possible neuronal subsets of a given size. In addition, the approach becomes very slow once 

neuronal subsets consisting of a range of different sizes need to be searched and assessed in 

terms of decoding performance, especially when applied to larger neuronal ensembles 

resulting from multiple recorded cortical areas. Approaches based on input–output system 

identification (e.g., [27]), rather than the probabilistic state-space models adopted here, may 
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provide an alternative for future investigation. For these reasons, low-dimensional latent 

state-space models remain an attractive approach in the context of neural decoding based on 

probabilistic Bayesian state-space models. It remains, however, an important research 

problem: the development of discriminative or predictive latent state-space models, i.e., 

algorithms that find latent state-space representations that maximize decoding performance 

in a supervised manner.

The latent PLDS state-space models used here can be easily implemented in real-time 

closed-loop decoding applications for BMIs. Estimation of the PLDS parameters from 

training data can be accelerated substantially by starting the EM iterations with adequate 

initial conditions. Fast convergence requiring only tens of iterations has been demonstrated 

before [19] by initializing EM with solutions obtained via Factor analysis, exponential-

family PCA and subspace identification methods. Once the PLDS model parameters have 

been estimated, the mean and variance of the latent state posterior density (approximated via 

Laplace or Gaussian variational methods) can be recursively tracked in real-time similarly to 

what is commonly done in Kalman and point process filters for neural decoding [15], [23], 

[24], [28]. We hope to investigate the performance of BMIs based on latent low-dimensional 

dynamics in the future.
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Fig. 1. 
3-D reach-to-grasp task: position trajectories. 3-D wrist position in the x, y and z 

coordinates. Trials for both subjects were collected from two recording sessions. Movement 

onset corresponds to time zero (horizontal red line). Data used in the decoding analyses 

begin 300 ms before the movement onset. Distribution of wrist positions in each coordinate 

is shown by the histogram on the left of each subplot. Vertical axis in the plots spans 

different ranges to facilitate visualization of trajectories in different position coordinates and 

across the two subjects.
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Fig. 2. 
Comparing Laplace approximation and variational Bayes methods for EM learning of PLDS 

model parameters. (a) Decoding performance (Pearson correlation coefficient) based on the 

PLDS model using either the Laplace or the variational Bayes approximation during EM 

learning. Each dot corresponds to one area, session, subject, and for a latent state dimension 

ranging from 10 (light green) to 20 (dark blue). (b) Computational time required for EM 

learning using either the Laplace or the variational Bayes approximation. (EM algorithm 

was run until convergence or until a maximum of 500 iterations was reached.) (c) Decoding 
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performance based on the PLDS model (Laplace approximation) using either a maximum of 

100 or 500 iterations.
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Fig. 3. 
Schematics for the neural decoding approach based on latent state-space models. Schematic 

illustrates the specific case of PLDS latent state-space models applied to decoding 

kinematics on test trials. Blocks on the left indicate the corresponding state-space model 

representation [(3), (4) and (6); Methods]. Parameters for the state-space models are 

estimated on training data. The flow-chart on the right indicates the main estimation steps 

for decoding on test data at each time t. Term y1:t denotes the spike train or counts over the 

recorded ensemble up to time t. Terms x̂t and ẑt correspond to the means for the posterior 

densities of the latent state and kinematics, respectively.
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Fig. 4. 
Example of low-dimensional neural dynamics inferred via a PLDS state-space model. (a) 3-

D wrist position in x, y and z coordinates for a reach trial from subject S. (b) Spike counts 

(25 ms time bins) during the trial recorded from a population of 57 neurons from the PMd 

area. (c), (d) Low-dimensional neural dynamics inferred via a PLDS state-space model (12-

dimensional state).
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Fig. 5. 
Example of 3-D position decoding. Decoding of the reach trial shown in Fig. 4(a) based on 

recorded spike trains (full-population, random subsampling, predictive subsampling) and 

inferred low-dimensional dynamics (LDS, PLDS, jPCA) from areas M1, PMd and PMv. 

Decoded position trajectories based on different approaches are compared to true trajectories 

(black curves). Position trajectories have been normalized (z-score).
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Fig. 6. 
Dependence of decoding performance on the dimension of inferred latent neural states. 

Decoding performance is assessed via the Pearson correlation coefficient (CC), averaged 

over sessions, for each subject and area PMd. In addition to low-dimensional dynamics 

inferred via LDS, PLDS and jPCA, the figure compares the performances achieved by 

decoding from the full population, and neuronal subsets of varying sizes obtained via 

random or predictive subsampling. Similar results were obtained for areas M1 and PMv.
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Fig. 7. 
Summary of decoding performance based on different decoding approaches: separate motor 

cortical areas. (a) Decoding performance (Pearson correlation coefficient, CC) based on 

different approaches is shown separately for x-, y-, z-position coordinates, motor cortical 

areas (M1, PMd, PMv), sessions and subjects. Each bar shows the average CC over subject/

sessions based on a given decoding approach. Dimension of the latent state in LDS, PLDS 

and jPCA was fixed to 15 (subject S) and 9 (subject R). (See also Fig. 6 for the dependence 

of decoding performance on state dimension.) Same number of dimensions was used for the 

number of neurons in the neuronal subsets obtained via random subsampling and predictive 

subsampling. Horizontal black line in each bar indicates the average chance level CC for 

decoding based on the full population. (b) Comparison between decoding based on PLDS or 
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predictive subsampling and the decoding based on the full population. Each dot corresponds 

to one position coordinate, motor cortical area, session and subject. (c) Distribution of the 

differences between the CCs (ΔCC) based on the PLDS and predictive subsampling 

decoding approaches.
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Fig. 8. 
Dependence of decoding performance on the dimension of inferred latent neural states: 

combined motor cortical areas (M1, PMd, PMv). Low-dimensional dynamics were inferred 

from neuronal activity recorded from the combined three cortical areas (M1, PMv and PMd) 

using PLDS models. For comparison, the decoding performance based on the full combined 

population and on predictive subsampling is also shown. Decoding performance was 

assessed via the Pearson correlation coefficient (CC). Each curve corresponds to the 

decoding performance CC averaged across subjects and sessions. Shaded areas correspond 

to the 95% confidence intervals (mean ±2 SE).
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Fig. 9. 
Summary of decoding performance based on PLDS, predictive subsampling and full 

population: separate versus combined motor cortical areas. (a) Decoding performance 

(Pearson correlation coefficient, CC) based on PLDS models applied to each of the three 

motor cortical areas separately or to the combined three areas. There are 36 dots 

corresponding to three position coordinates, three areas, two sessions, and two subjects. (b) 

Comparison of decoding performance based on PLDS models, predictive subsampling and 

full combined population. Each dot corresponds to a position coordinate, session and 

subject. (c) Distribution of the differences between the CCs (ΔCC) based on the PLDS and 

predictive subsampling decoding approaches applied to the combined areas.
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