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Abstract

Background: Temperament is a psychological construct that reflects both personality and an infant’s reaction to social
stimuli. It can be assessed early in life and is stable over time Temperament predicts many later life behaviors and
illnesses, including impulsivity, emotional regulation and obesity. Early life exposure to neurotoxicants often results in
developmental deficits in attention, social function, and IQ, but environmental predictors of infant temperament are
largely unknown. We propose that prenatal exposure to both chemical and non-chemical environmental toxicants
impacts the development of temperament, which can itself be used as a marker of risk for maladaptive neurobehavior
in later life.
In this study, we assessed associations among prenatal and early life exposure to lead, mercury, poverty, maternal
depression and toddler temperament.

Methods: A prospective cohort of women living in the Mexico City area were followed longitudinally beginning in the
second trimester of pregnancy. Prenatal exposure to lead (blood, bone), mercury, and maternal depression were
assessed repeatedly and the Toddler Temperament Scale (TTS) was completed when the child was 24 months old. The
association between each measure of prenatal exposure and performance on individual TTS subscales was evaluated
by multivariable linear regression. Latent profile analysis was used to classify subjects by TTS performance. Multinomial
regression models were used to estimate the prospective association between prenatal exposures and TTS performance.

Results: 500 mother-child pairs completed the TTS and had complete data on exposures and covariates. Three
latent profiles were identified and categorized as predominantly difficult, intermediate, or easy temperament.
Prenatal exposure to maternal depression predicted increasing probability of difficult toddler temperament.
Maternal bone lead, a marker of cumulative exposure, also predicted difficult temperament. Prenatal lead
exposure modified this association, suggesting that joint exposure in pregnancy to both was most toxic.

Conclusions: Maternal depression predicts difficult temperament and concurrent prenatal exposure to maternal
depression and lead predicts a more difficult temperament phenotype in 2 year olds. The role of temperament as
an intermediate variable in the path from prenatal exposures to neurobehavioral deficits and other health effects
deserves further study.
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Background
Temperament reflects the manner in which an individual
interacts with and responds to social and emotional envir-
onmental cues. Distinct temperament traits are identifiable
in infancy and are relatively stable over time [1, 2]. Tem-
perament is a biologically based trait [3] and is associated
with later child behavior, both normal and pathological
[4–7]. Early childhood temperament can be seen as an
important risk factor for behavioral problems that are
not expressed until later in life as well as for diseases
such as obesity [8–14]. While the full range of risk factors
that predict maladaptive temperament are not well-
understood, it is believed that temperament is established
during perinatal life through both genetic and environmen-
tal factors [13–16]. As such, in utero exposure to neuro-
toxicants might impact infant temperament, and
maladaptive temperament may be an early life intermedi-
ate phenotype for behavioral disorders brought on by
environmental toxicants.
Although prenatal exposure to elemental metals includ-

ing lead and mercury is known to be detrimental to cogni-
tion and specific behavioral domains in childhood [17–
23], the relationship between in utero metal exposure and
temperament has not been studied previously. Social
stressors such as maternal mental state and stress level –
which we refer to as “non-chemical toxicants” [24] – can
also have a significant clinical impact on the developing
fetus [25–30]. Women who experience toxic stress,
anxiety, or depression while pregnant have children at
elevated risk for certain physical, cognitive, and behavioral
difficulties [28–32]. To our knowledge, no study has
attempted to address whether concurrent prenatal ex-
posure to chemical and non-chemical stressors interact
to predict maladaptive temperament phenotypes.
While gene-environment interactions have received much

attention, the concurrent exposure to multiple toxins may
also multiplicatively increase effects seen in single exposure
models [33–42], and studies of prenatal exposure should
evaluate both chemical and non-chemical exposures to
reflect real-life exposure scenarios. In this study, we hy-
pothesized that prenatal co-exposure to chemical and
non-chemical neurotoxicants is associated with difficult
infant temperament. The study was nested in a large
prospective environmental health cohort study designed
to investigate the impact of concurrent prenatal exposure
to lead, mercury, maternal depression, socioeconomic
status, and maternal nutrition on multiple long-term
neurobehavioral outcomes.

Methods
Participant identification and enrollment
Between 2007 and 2011, healthy pregnant women in
Mexico City were recruited through the Mexican Social
Security System to participate in the PROGRESS

(Programming Research in Obesity, GRowth, Environment,
and Social Stress) birth cohort [43]. Informed consent to
participate in the study was obtained from participants.
Nine hundred forty-eight women were enrolled prior to
20 weeks of pregnancy and delivered a live infant. Of these,
760 children were evaluated for neurodevelopment in at
least one visit at 6, 12, 18, or 24-months of age. Of the 549
completing the 24-month visit, 500 mothers responded to
the Toddler Temperament Scale (TTS), the primary out-
come in these analyses. Research ethics committees of the
participating institutions approved the study (the Comité
de Investigación, Comité de Bioseguridad, and the Comité
de Ética en la Investigación of the National Institute of
Public Health, Mexico, the Partners Human Research
Committee at Brigham and Women’s Hospital, the Office
of Human Research Administration at the Harvard School
of Public Health, and the Program for the Protection of
Human Subjects at the Icahn School of Medicine at Mount
Sinai).

Participant data collection
Questionnaires were administered to collect sociodemo-
graphic information including maternal age, parity, edu-
cation level, and socioeconomic status (SES). Thirteen
variables derived from questionnaire results were used
to classify study participant families into six levels based
on the SES index created by the Asociación Mexicana de
Agencias de Investigación de Mercados y Opinión
Pública [44]. These levels were then collapsed into low,
medium, and high socioeconomic status.

Lead measurements
Maternal lead exposure was assessed by inductively coupled
plasma-mass spectrometry (Agilent 8800, Santa Clara, CA)
of maternal blood during the second trimester and in bone
by maternal in vivo K-shell X-ray fluorescence (K-XRF)
one month postpartum (ABIOMED, Danvers, MA, USA)
[45, 46]. Blood lead measurement quality control (QC)
and quality assurance procedures used were: included
analyses of procedural blanks, duplicates, spiked samples,
national institute of standard reference material (NIST
SRM) 955 (Lead in Blood); NIST SRM 1643e (trace
elements in water) and blood samples from the inter-
laboratory study program INSPQ/Laboratoire de Toxi-
cologie, Quebec to monitor the accuracy and recovery
rates of the procedure for each analytic batch. Lab re-
covery rates for QC standards and spiked samples with
this method were 9- 110 % and precision (given as %
RSD) was <5 %. The limit of detection for this proced-
ure was 0.2 ng ml-1.
Our K-XRF protocol measures bone lead at the mid-

shaft tibia (cortical bone) and the patella (trabecular bone)
[47] to provide a representation of cumulative fetal lead
exposure through gestation [45, 48]. K-XRF produces
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negative values when the bone lead content is below
the detection limit of the instrument. As imputation to
replace negative values in this context has not been
shown to be beneficial [49], we included negative values
as reported by K-XRF in our analyses.

Mercury measurements
Maternal mercury exposure was evaluated by measuring
mercury deposition in maternal toenails collected during
pregnancy. Toenails from all ten toes were collected and
pre-cleaned by sonicating for 15 min in approximately
10 mL of 1 % Triton X-100 solution to remove extrane-
ous contaminants. Samples were then rinsed with dis-
tilled deionized water and dried at 60 °C for 24 h in a
drying oven. Mercury level was assessed using the Direct
Mercury Analyzer 80 (Milestone Inc., Monroe, CT) using
previously published methods [50]. Samples were analyzed
using an aqueous calibration standards and verifyied
using different weights of certified reference material
GBW 07601 (human hair; Institute of Geophysical and
Geochemical Exploration, China). Mercury recovery was
90–110 %, with greater than 90 % precision. The detection
limit for samples varied according to sample weight.
Sample weight varied from 0.006 g to 0.0.083 g, and the
detection limit varied from 0.006 μg/g to 0.08 μg/g
(mean = 0.019 μg/g).

Measurements of child development
All children were assessed for motor, language and cogni-
tive development using the Bayley Scales of Infant and
Toddler Development, 3rd edition (BSID) at 24 months of
age [51]. Child temperament was assessed at 24 months of
age using the TTS [2], which comprises a number of age-
appropriate questions. These questions evaluate the nine
temperamental characteristics first described by Thomas et
al. [52], and expands on earlier work by Carey measuring
temperament in infants [53, 54]. Caregivers are presented
with a statement describing a certain behavior and asked
to rate how often their child behaves in that way on a 6-
point scale. The results are coded so that higher scores in-
dicate more difficult temperament. Although the TTS is
designed to be completed independently by parents, in the
current study trained psychologists verbally administered
the TTS to the enrolled mother at the 24-month study
visit. In 9 cases where the mother was not present at the
24-month visit, the TTS questionnaire was mailed to the
home for independent completion by the mother.

Measurement of maternal depression risk
The Edinburgh Postnatal Depression Scale (EPDS) was
administered to mothers in the second trimester. The
EPDS is a ten-item self-report scale designed to identify
women experiencing depressive symptoms [55]. It is val-
idated for repeated use during and both immediately

and long after pregnancy [56, 57]. For these analyses, the
second trimester EPDS result was used as the prenatal
depression risk score. If the EPDS was not administered
during the second trimester, the third trimester result
was used as the prenatal depression risk score. The
24-month EPDS score was obtained at the same study
visit as the TTS. Depression risk was evaluated both as
a continuous and as a categorical variable dichotomized
at an EPDS score of 13, the recommended cut point
[55, 58, 59].
Although the focus of this study was to prospectively

evaluate the impact of prenatal exposures including
maternal depression, we also evaluated the EPDS score
obtained cross-sectionally at child age 24-months in ana-
lyses, as the caregiver’s mental state at the time of TTS ad-
ministration has been associated with the assessment of
the child’s temperament [60, 61]. As in other studies
where depressive symptoms years after childbirth were as-
sociated with perinatal depression [62, 63], the categorical
variable for prenatal maternal depression risk was associ-
ated with depression risk at 24 months (p < 0.001), and
the continuous variables were correlated (ρ = 0.66) in our
cohort. To address the collinearity induced by including
both antenatal and 24-month post-partum depression in
the same model, we included variables for both the aver-
age of the two scores and the difference between scores in
all analyses using the EPDS continuous variable. This
transformation from the original correlated measurements
to the sum and difference is the basis for traditional
MANOVA analyses for multivariate outcomes [64]. The
adjusted representation of the prenatal maternal depres-
sion score is referred to as “adjusted EPDS” or “adjusted
prenatal depression” throughout this manuscript.

Statistical approach
Linear regression modeling
We examined univariate descriptive statistics, bivariate
associations, and multivariable linear regression of each
of the 9 TTS subscales using multiple measures of pre-
natal lead exposure, prenatal mercury exposure, maternal
education, SES index, maternal ferritin during pregnancy
(as a marker of nutritional status), and prenatal maternal
depression score. Interaction terms for different exposures
were also examined. Initial models included maternal
ferritin and education, but these were dropped from
subsequent models as they were insignificant (ferritin)
or strongly correlated with the SES index (maternal
education). These analyses were conducted using SAS
9.4 (Research Triangle Institute, Cary, NC).
In order to reduce the dimensionality of the overall nine

outcome scale into a smaller set of discrete categories,
we also used latent profile analysis (LPA) to evaluate
associations between multiple prenatal exposures and
temperament phenotype.
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Latent profile analysis
Latent profile analysis (LPA) is a probabilistic, model-based
variant of traditional nonhierarchical cluster analysis [65].
We used it to objectively classify children into discrete
data-driven temperament profiles. LPA assumes that
the population consists of a number of unobserved sub-
groups that are referred to as latent profiles. Individuals
within a given latent profile will show similarities in
their TTS subscales scores. For example, children in the
same latent profile may demonstrate a high score on sub-
scales for mood, activity and approach, low scores on
rhythmicity and adaptability, and intermediate scores on
the remaining subscales. Sharing a latent profile does not
require consistent high or low scoring across all subscales.
Rather, it identifies groups of subjects who have a similar
performance pattern globally. Because the TTS assesses
multiple behavioral domains that contribute to complex
temperament phenotypes, we used LPA to reduce the
temperament subscale data into discrete categories. We
used Bayesian information criteria (BIC) whereby the
smallest BIC value indicates the best fit as well as mini-
mizes cross-classification probabilities. BIC has been
shown to identify the appropriate number of profiles in
finite mixture models [66] and penalizes the models for
a number of parameters that may indicate model over-fit.
LPA was implemented on the nine TTS subscales by
using a normal mixture model as a model-based clus-
tering technique, as fitted via an expectation–

maximization algorithm in the mclust 4.3 R software
package [67].

Multinomial logistic regression
Multinomial Logistic Regression (MLR) is an extension
of logistic regression, which analyzes dichotomous vari-
ables. In multinomial logistic regression analysis, three
or more dependent nominal variables (i.e. not clearly in
defined order) are regressed choosing one as the referent
group. Our LPA defined three groups (Fig. 1), two of
which we could clearly categorize as easy vs difficult,
with the third group being intermediate. Upon selection
of a final latent class fit, we used MLR analysis to evalu-
ate concordance between identified TTS profiles and
performance on the BSID, to confirm that the identified
profiles represented behaviorally consistent groupings.
Based on prior noted associations between temperament
and language performance [52, 68–70], we expected chil-
dren with the more difficult temperament profile to be as-
sociated with worse performance on BSID measures of
language. We then regressed our prenatal exposures of
interest with the LPA categories [69]. Specifically, MLR
was used to evaluate associations between TTS profiles
and measures of prenatal lead exposure, Hg exposure,
SES, and maternal depression using “easy” as the referent
group. Blood lead levels were natural log transformed.
Probabilistic models were built to evaluate the association
between temperament profile and concurrent exposure to

(n=172)

(n=168)

(n=160)

Fig. 1 Distribution of TTS Subscale Performance Z-scores by Latent Profiles. Although each profile demonstrates a mix of “easy”,
“intermediate”, and “difficult” temperamental traits on varying subscales, profile 1 children generally demonstrated a more difficult
temperament, profile 2 generally demonstrated more intermediate temperamental traits, and profile 3 children generally demonstrated an
easy temperament
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varying levels of prenatal factors that were found to be
significant in single exposure models. LPA modeling
and graphics were completed using R (R Core Team,
Vienna, Austria, 2014) [71].

Results
Table 1 summarizes the demographic data on the 500
mother-infant pairs included in these analyses. Our study
cohort, those who completed the TTS, were significantly
more likely to be of low SES and less likely to be of high
SES than PROGRESS participants who did not complete
the TTS (p = 0.03). There were no other significant demo-
graphic differences between the groups. Table 2 presents
associations between chemical and non-chemical prenatal
exposures and scores on individual TTS subscales. Ad-
justed prenatal depression risk score, SES classification,
maternal tibia lead K-XRF, and prenatal maternal toenail
mercury levels were associated with TTS subscale per-
formance in single exposure models. Interaction models
including adjusted prenatal depression risk score and
either second trimester maternal blood lead, maternal
tibia lead K-XRF, or second trimester maternal toenail
mercury were also significantly associated with certain
TTS subscales
Neither maternal patella K-XRF, nor interaction models

using patella lead measurement and adjusted prenatal de-
pression risk were associated with TTS subscale scores.
Similarly, interaction models between prenatal mercury
level and any measure of prenatal lead exposure were not
significantly associated with TTS subscale performance
(results not shown).

Our LPA demonstrated three discrete profiles (Fig. 1).
Children fell into three categories of temperament, two
of which could be characterized as difficult (more intense,
less regulated, etc.), versus easy-going (less intense, more
regulated, etc.). The third category appears to be inter-
mediate, with performance in the moderate range for
most subscales. To confirm that our LPA profiles repre-
sent neurobehaviorally meaningful groupings, we evalu-
ated the relationship between our study’s TTS profiles and
language performance on the BSID. Figure 2 shows how
children in each profile performed on the BSID language
elements. Consistent with studies in other populations
[68, 70, 72], more difficult toddler temperament was
significantly associated with worse performance on tests
of language ability in our cohort.
We next tested whether the probability of a subject

demonstrating a given TTS profile varied in relation to
prenatal exposures. Results of multinomial logistic regres-
sion analyses of the relationship between prenatal expo-
sures and TTS latent profile are summarized in Table 3.
Greater prenatal exposure to maternal depression esti-
mated by the adjusted prenatal EPDS, and to lead esti-
mated either by maternal blood lead level or K-XRF of the
maternal tibia, was associated with significantly increased
odds of having a difficult temperament. Prenatal SES, ma-
ternal patella lead measurement, and antenatal maternal
toenail mercury level were not significantly associated
with the temperament classification.
Finally, we addressed concurrent prenatal exposure to

factors significant in single predictor models. Figure 3
demonstrates the probability of demonstrating each of the
three temperament profiles (y-axis) stratified by adjusted

Table 1 Characteristics of the study cohort compared to the parent PROGRESS cohort and the general Mexican population

Participant Characteristics Mexican population [44] Selected study
cohort (n = 500)

PROGRESS families not in
the selected cohort (n = 260)

Continuous variables

Maternal age (years) 26.9 ± 5.5 27.3 ± 5.3

Maternal 2nd trimester blood Pb, (median (IQR), ug/dL) 2.8 (2.7) 2.8 (2.4)

Maternal postpartum tibia Pb (mean ± SD, ug/g bone mineral) 2.6 ± 8.6 2.7 ± 8.3

Maternal postpartum patella Pb (mean ± SD, ug/g bone mineral) 4.9 ± 8.9 4.3 ± 8.0

Maternal EPDS score, 2nd or 3rd trimester (mean ± SD) 8.3 ± 5.7 8.9 ± 6.0

Categorical variables

Maternal education

More than high school 117 (23.4 %) 60 (23.1 %)

High school 171 (34.2 %) 104 (40.0 %)

Less than high school 212 (42.4 %) 96 (36.9 %)

Socioeconomic index

High 21.2 % 46 (9.2 %) 33 (12.7 %)

Middle 53.7 % 177 (35.4 %) 105 (40.4 %)

Low 25 % 277 (55.4 %) 122 (46.9 %)
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Table 2 Associations Between Prenatal Exposures and TTS Subscales [β (p-value)] by Linear Regression Modeling

Activity Rhythmicity Approach Adaptability Intensity Mood Persistence Distractibility Threshold

1. SES −0.014 (0.54) −0.081 (0.005)* −0.027 (0.47) −0.017 (0.56) −0.026 (0.28) −0.040 (0.12) 0.013 (0.55) 0.034 (0.19) 0.067 (0.030)*

2. EPDS 0.021 (0.0003)* 0.029 (<0.0001)* 0.020 (0.037)* 0.031 (<0.0001)* 0.005 (0.46) 0.032 (<0.0001)* 0.018 (0.001)* 0.008 (0.24) −0.020 (0.015)*

3. Blood lead −0.009 (0.38) 0.016 (0.21) −0.012 (0.46) 0.018 (0.17) −0.005 (0.63) 0.005 (0.67) 0.001 (0.91) −0.002 (0.84) −0.009 (0.53)

4. Blood lead x EPDS <0.001 (0.98) −0.005 (0.11) −0.004 (0.37) −0.003 (0.46) 0.006 (0.05)* 0.001 (0.74) 0.004 (0.11) 0.004 (0.20) 0.005 (0.14)

5. Tibia lead −0.002 (0.56) 0.004 (0.32) −0.001 (0.79) −0.0008 (0.86) −0.002 (0.67) 0.0008 (0.84) −0.003 (0.42) −0.006 (0.11) −0.011 (0.017)*

6. Tibia lead x EPDS <0.0001 (0.99) −0.003 (0.01)* −0.002 (0.22) −0.001 (0.31) −0.0003 (0.73) −0.0008 (0.37) 0.0007 (0.38) −0.0009 (0.37) −0.0001 (0.93)

7. Mercury 0.12 (0.49) 0.28 (0.21) −0.25 (0.40) 0.16 (0.50) 0.35 (0.07) 0.10 (0.61) −0.13 (0.45) 0.30 (0.16) 0.090 (0.71)

8. Mercury x EPDS 0.088 (0.04)* 0.053 (0.33) 0.002 (0.97) 0.13 (0.03)* 0.022 (0.64) 0.071 (0.15) 0.028 (0.51) 0.031 (0.55) 0.091 (0.13)

Maternal blood lead and toenail mercury were measured in the second trimester of pregnancy. Tibia lead was measured by K-XRF one month post-partum
Models 2–8 were adjusted for SES
Models 4, 6, and 8 evaluated the interaction between exposures of interest
N = 500
*p ≤ 0.05
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prenatal EPDS score dichotomized at 13, and illustrates
the joint impact of exposure to increasing prenatal lead
exposure (x-axis) and for high or low maternal depression
score (dotted versus solid lines). High adjusted prenatal
depression scores increased the probability that a child
demonstrated a difficult temperament. When tibia lead
concentration and adjusted prenatal depression score
were low (25th percentile or lower), a child demonstrated
an easy or intermediate temperament approximately 70 %
of the time. As prenatal lead exposure increased, the prob-
ability of demonstrating an easy or intermediate tempera-
ment fell and the probability of demonstrating a difficult
temperament rose. This effect was more pronounced
when the adjusted prenatal depression risk score was high.
Similar results were seen when maternal blood lead was
used as a measure of prenatal lead exposure, although re-
sults were less significant. Prenatal mercury exposure did
not alter the effect of prenatal maternal depression on
temperament (results not shown).

Discussion
While associations between prenatal exposure to metals
or maternal depression and cognitive development have
been widely reported [12, 13, 20, 44–47], the role of

such exposures in early life behavioral development is
less well-understood. Effects seen in behavior early in life
can help to parse the contribution of prenatal vs later
life exposures, since exposures through the life-course
are often correlated. Also, early life behavioral changes
that result from environmental exposures may serve as
intermediates for later life behavioral phenotypes, helping
us to understand the complex interrelationships among
exposure and behavioral development. Environmental
health research focused on intelligence has generated a
great appreciation for the impact of perinatal environmen-
tal exposures on ultimate IQ and intellectual achievement.
However, learning and intellectual performance are com-
plex processes that clearly interact with behavioral traits
to produce psychological health. The importance of be-
havioral traits to overall child development is becoming
increasingly apparent [73]. Cognition and cognitive
performance is dependent on many behavioral traits
such as attention and impulsivity that integrate with
intellectual processes such as memory and mathemat-
ical ability in everyday life. To better understand cen-
tral nervous system toxicity, the role of toxins in
altering behavioral development and cognitive traits
should be considered equally important. Prenatal and

Table 3 Associations Between Prenatal Exposures and TTS Profile by Multinomial Logistic Regression Modeling

EPDSa SES Blood leadb Tibia leadc Patella leadc Mercuryc

Temperament OR 95 % CI OR 95 % CI OR 95 % CI OR 95 % CI OR 95 % CI OR 95 % CI

Easy Ref – – Ref – – Ref – – Ref – – Ref – – Ref – –

Intermediate 1.23 0.78 1.93 0.71 0.26 1.9 0.88 0.59 1.3 1.25 0.95 1.65 0.99 0.96 1.02 0.82 0.11 6.15

Difficult 2.53 1.69 3.77 1.38 0.46 4.15 1.52 1.03 2.26 1.32 1.01 1.73 1.01 0.98 1.04 1.89 0.29 12.28
aOdds ratio (OR) and 95 % CI corresponding to IQR change in adjusted EPDS score (IQR = 7.3)
bOR and 95 % CI corresponding to 1 unit change of ln(maternal blood lead ug/dl), which corresponds to a 2.7 fold increase in second trimester maternal blood
lead level
cOR and 95 % CI corresponding to per 1 unit change per 10 ug/g change in metal measurement
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Fig. 2 Performance on the Language Scales of the BSID by Temperament Profile. As expected based on prior studies of temperament and
language ability [68, 70, 72], children in the easy temperament profile performed well while children in the difficult temperament profile
performed poorly
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childhood exposure to maternal depression [74–76], lead
[17, 77–79], and mercury [18, 22, 80] have been associated
with behavior problems from middle childhood through
adolescence. Measurable early life behaviors, such as tem-
perament, predict psychiatric traits later in life including
externalizing and internalizing disorders in school age

children and ADHD [81, 82]. If early life temperament is
predictive of later life psychiatric traits, then our results
suggest that cumulative lead exposure and maternal de-
pression may set these trajectories as early as age two. If
we are to develop effective treatments or prevention mea-
sures for behavioral disorders, we need to both better

Difficult Temperament

Intermediate Temperament

Easy Temperament

Maternal tibia XRF measurement one month postpartum (µg/g)
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Fig. 3 Relationship of Prenatal Exposure to Maternal Depression, Lead, and Toddler Temperament. The probability of demonstrating each of the
three temperament profiles (y-axis for each panel) was impacted by both increasing prenatal lead exposure (maternal tibia XRF; x-axis) and
adjusted prenatal EPDS score (dotted versus solid lines; dichotomized at 13)
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understand the role of exposure timing and develop
methods for early detection of deficits so that develop-
mental plasticity can be leveraged to mitigate the neuro-
toxic effects of chemical and non-chemical exposures.
Evaluation of temperament may provide this intermedi-
ate outcome as both sensitive to environmental expo-
sures and measurable at a point in development when
effective interventions can be initiated to reduce long-
term morbidity.
Our data demonstrate a relationship between cumulative

prenatal lead exposure and the likelihood of demonstrating
a difficult temperament. Additionally, those mothers in our
cohort with highest scores on prenatal depression
screening had toddlers most likely to demonstrate diffi-
cult temperament traits, even after adjusting for mater-
nal depression at the time of temperament assessment.
As shown in Fig. 3, the association of cumulative prenatal
lead exposure with difficult temperament was most pro-
nounced among toddlers whose mothers had the highest
adjusted prenatal depression scores. This indicates that
both prenatal lead exposure and exposure to prenatal ma-
ternal depression impact the developing temperament of
the child. The inclusion in our models of the mother’s
prenatal depression score adjusted for the 24-month
post-partum depression risk scores allows us to differ-
entiate an association between prenatal depression risk
and temperament from the known association between
concurrent maternal depression and maternal report of
difficult temperament. Prenatal mercury exposure and
SES did not modify the effect of prenatal depression on
infant temperament in our analyses.
The impact of in utero exposure to maternal depres-

sion and/or environmental chemicals on temperament
and the interplay of multiple co-exposures on the estab-
lishment of temperament have not been evaluated previ-
ously. Our data suggest that cumulative lead exposure
rather than a single second trimester lead measurement
best predicts the lead-temperament association and that
the joint impact of lead and prenatal depression is most
predictive of difficult temperament. Tibia bone lead level,
which has a half-life of 12 years or more, reflects cumula-
tive lead exposure over the mother’s life-time [46, 83]. Pre-
vious studies have demonstrated that bone lead is a better
predictor of infant development than blood lead, perhaps
due to its longer half-life [48, 84]. However, bone lead
cannot distinguish whether there is a specific window
of sensitivity for lead exposure. Understanding the role
of exposure timing could allow us to develop early
intervention strategies.
As the PROGRESS cohort ages, we are measuring other

neurobehavioral domains, such as attention, impulsiv-
ity, spatial memory, motivation, time estimation and
internalizing/externalizing behaviors to further assess the
impact of exposure to metals and maternal depression on

child behavioral development. We will also address the
role of temperament as a predictor of these neurobehav-
ioral phenotypes.
Our study has a number of strengths. As a large,

prospective birth cohort study focused on perinatal
environmental exposures, both social and chemical
environmental factors were assessed prospectively and
longitudinally multiple times through pregnancy and
early childhood. The EPDS, the BSID and the TTS are
validated research measures that were administered by
trained study staff, all of whom had masters or doctoral
degrees in child psychology. Our statistical approach using
LPA reduced the dimensionality of the multiple outcome
subscales into a single 3 level index that clearly identified
distinct phenotypes similar to those described in prior
studies of infant temperament. The relationship of these
three phenotypes with BSID performance further allowed
us to validate our LPA profiles. Collecting multiple
measures of lead exposure allowed us to distinguish be-
tween effects of blood lead level at a specific time point
as well as cumulative lead.
Our study also has some limitations. The study popula-

tion is composed of families in urban Mexico, and results
may not be fully generalizable to other populations in
other settings. Lead exposure in our cohort is generally
higher and SES lower than in the United States, but this
allows us to test our hypotheses more cost-effectively. Ma-
ternal depression was estimated by the EPDS, which is a
screening rather than a diagnostic tool, so some women
who had positive screens may not have met diagnostic cri-
teria for clinical depression. As is the case for most assess-
ment tools of temperament in childhood, the TTS relies
on subjective maternal report.

Conclusions
Prenatal exposure to maternal depression is associated with
more difficult temperament traits at age two. This asso-
ciation is potentiated by concurrent prenatal exposure
to environmental lead.
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