Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1981 Jun;44(6):485–496. doi: 10.1136/jnnp.44.6.485

The effects of axotomy on the conduction of action potentials in peripheral sensory and motor nerve fibres.

T E Milner, R B Stein
PMCID: PMC491028  PMID: 7276961

Abstract

Medial gastrocnemius and sural nerves in one hindlimb of the cat were transected and prevented from regenerating. After periods ranging from 29-273 days, compound action potentials were recorded from axotomised and contralateral control nerves. The amplitude and integrated area of action potentials decreased and conduction velocity slowed following axotomy. The area under compound action potentials generated by stimulating sensory fibres declined significantly faster than that generated by stimulating motor fibres. Analysis of changes in whole nerve conduction velocity distributions showed that the velocities of fast conducting sensory fibres decreased at the most rapid rate. The conduction velocities of motor fibres and slow sensory fibres declined at significantly slower rates. The loss of electrical activity in the largest sensory nerve fibres following axotomy, may play a role in determining the faster rate at which their action potentials deteriorate.

Full text

PDF
496

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arbuthnott E. R., Boyd I. A., Kalu K. U. Ultrastructural dimensions of myelinated peripheral nerve fibres in the cat and their relation to conduction velocity. J Physiol. 1980 Nov;308:125–157. doi: 10.1113/jphysiol.1980.sp013465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bostock H., Sears T. A. The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. J Physiol. 1978 Jul;280:273–301. doi: 10.1113/jphysiol.1978.sp012384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CRAGG B. G., THOMAS P. K. Changes in conduction velocity and fibre size proximal to peripheral nerve lesions. J Physiol. 1961 Jul;157:315–327. doi: 10.1113/jphysiol.1961.sp006724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CRAGG B. G., THOMAS P. K. THE CONDUCTION VELOCITY OF REGENERATED PERIPHERAL NERVE FIBRES. J Physiol. 1964 May;171:164–175. doi: 10.1113/jphysiol.1964.sp007369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carlson J., Lais A. C., Dyck P. J. Axonal atrophy from permanent peripheral axotomy in adult cat. J Neuropathol Exp Neurol. 1979 Nov;38(6):579–585. doi: 10.1097/00005072-197911000-00002. [DOI] [PubMed] [Google Scholar]
  6. Czéh G., Gallego R., Kudo N., Kuno M. Evidence for the maintenance of motoneurone properties by muscle activity. J Physiol. 1978 Aug;281:239–252. doi: 10.1113/jphysiol.1978.sp012419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Czéh G., Kudo N., Kuno M. Membrane properties and conduction velocity in sensory neurones following central or peripheral axotomy. J Physiol. 1977 Aug;270(1):165–180. doi: 10.1113/jphysiol.1977.sp011944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis L. A., Gordon T., Hoffer J. A., Jhamandas J., Stein R. B. Compound action potentials recorded from mammalian peripheral nerves following ligation or resuturing. J Physiol. 1978 Dec;285:543–559. doi: 10.1113/jphysiol.1978.sp012588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Devor M., Govrin-Lippmann R. Maturation of axonal sprouts after nerve crush. Exp Neurol. 1979 May;64(2):260–270. doi: 10.1016/0014-4886(79)90267-x. [DOI] [PubMed] [Google Scholar]
  10. Devor M., Govrin-Lippmann R. Selective regeneration of sensory fibers following nerve crush injury. Exp Neurol. 1979 Aug;65(2):243–254. doi: 10.1016/0014-4886(79)90094-3. [DOI] [PubMed] [Google Scholar]
  11. GUTMANN E., HOLUBAR J. The degeneration of peripheral nerve fibers. J Neurol Neurosurg Psychiatry. 1950 May;13(2):89–105. doi: 10.1136/jnnp.13.2.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gordon T., Hoffer J. A., Jhamandas J., Stein R. B. Long-term effects of axotomy on neural activity during cat locomotion. J Physiol. 1980 Jun;303:243–263. doi: 10.1113/jphysiol.1980.sp013283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Govrin-Lippmann R., Devor M. Ongoing activity in severed nerves: source and variation with time. Brain Res. 1978 Dec 29;159(2):406–410. doi: 10.1016/0006-8993(78)90548-6. [DOI] [PubMed] [Google Scholar]
  14. Gutmann E., Sanders F. K. Recovery of fibre numbers and diameters in the regeneration of peripheral nerves. J Physiol. 1943 Mar 25;101(4):489–518. doi: 10.1113/jphysiol.1943.sp004002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoffer J. A., Stein R. B., Gordon T. Differential atrophy of sensory and motor fibers following section of cat peripheral nerves. Brain Res. 1979 Dec 14;178(2-3):347–361. doi: 10.1016/0006-8993(79)90698-x. [DOI] [PubMed] [Google Scholar]
  16. Jessell T., Tsunoo A., Kanazawa I., Otsuka M. Substance P: depletion in the dorsal horn of rat spinal cord after section of the peripheral processes of primary sensory neurons. Brain Res. 1979 May 25;168(2):247–259. doi: 10.1016/0006-8993(79)90167-7. [DOI] [PubMed] [Google Scholar]
  17. KIRALY J. K., KRNJEVIC K. Some retrograde changes in function of nerves after peripheral section. Q J Exp Physiol Cogn Med Sci. 1959 Jul;44:244–257. doi: 10.1113/expphysiol.1959.sp001397. [DOI] [PubMed] [Google Scholar]
  18. Koles Z. J., Rasminsky M. A computer simulation of conduction in demyelinated nerve fibres. J Physiol. 1972 Dec;227(2):351–364. doi: 10.1113/jphysiol.1972.sp010036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Milner T. E., Stein R. B., Gillespie J., Hanley B. Improved estimates of conduction velocity distributions using single unit action potentials. J Neurol Neurosurg Psychiatry. 1981 Jun;44(6):476–484. doi: 10.1136/jnnp.44.6.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moore J. W., Joyner R. W., Brill M. H., Waxman S. D., Najar-Joa M. Simulations of conduction in uniform myelinated fibers. Relative sensitivity to changes in nodal and internodal parameters. Biophys J. 1978 Feb;21(2):147–160. doi: 10.1016/S0006-3495(78)85515-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stein R. B., Pearson K. G. Predicted amplitude and form of action potentials recorded from unmyelinated nerve fibres. J Theor Biol. 1971 Sep;32(3):539–558. doi: 10.1016/0022-5193(71)90155-x. [DOI] [PubMed] [Google Scholar]
  22. Wall P. D., Gutnick M. Ongoing activity in peripheral nerves: the physiology and pharmacology of impulses originating from a neuroma. Exp Neurol. 1974 Jun;43(3):580–593. doi: 10.1016/0014-4886(74)90197-6. [DOI] [PubMed] [Google Scholar]
  23. Waxman S. G. Prerequisites for conduction in demyelinated fibers. Neurology. 1978 Sep;28(9 Pt 2):27–33. doi: 10.1212/wnl.28.9_part_2.27. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES