
The PhysioNet/Computing in Cardiology Challenge 2015: 
Reducing False Arrhythmia Alarms in the ICU

Gari D Clifford1,2, Ikaro Silva3, Benjamin Moody3, Qiao Li1, Danesh Kella4, Abdullah 
Shahin5, Tristan Kooistra5, Diane Perry5, and Roger G. Mark3

1Department of Biomedical Informatics, Emory University, Atlanta, GA USA

2Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA

3Institute for Medical Engineering & Science, Massachusetts Institute of Technology, USA

4Emory School of Medicine, Emory Univesrity, Atlanta, GA

5Beth Israel Medical Center, Harvard University, Boston MA, USA

Abstract

High false alarm rates in the ICU decrease quality of care by slowing staff response times while 

increasing patient delirium through noise pollution. The 2015 Physio-Net/Computing in 

Cardiology Challenge provides a set of 1,250 multi-parameter ICU data segments associated with 

critical arrhythmia alarms, and challenges the general research community to address the issue of 

false alarm suppression using all available signals. Each data segment was 5 minutes long (for real 

time analysis), ending at the time of the alarm. For retrospective analysis, we provided a further 30 

seconds of data after the alarm was triggered.

A collection of 750 data segments was made available for training and a set of 500 was held back 

for testing. Each alarm was reviewed by expert annotators, at least two of whom agreed that the 

alarm was either true or false. Challenge participants were invited to submit a complete, working 

algorithm to distinguish true from false alarms, and received a score based on their program’s 

performance on the hidden test set. This score was based on the percentage of alarms correct, but 

with a penalty that weights the suppression of true alarms five times more heavily than acceptance 

of false alarms.

We provided three example entries based on well-known, open source signal processing 

algorithms, to serve as a basis for comparison and as a starting point for participants to develop 

their own code. A total of 38 teams submitted a total of 215 entries in this year’s Challenge.

1. Introduction

In the 2015 PhysioNet/Computing in Cardiology Challenge, we aim to address the problem 

of high false rrhythmia alarm rates by encouraging the development of new algorithms to 

improve the specificity of ICU alarms. In this Challenge, we have focused on five types of 

life-threatening arrhythmia events, which we have defined as follows:

Asystole (ASY): There are no heartbeats at all for a period of four seconds or more.
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Extreme bradycardia (EBR): The patient’s heart rate is lower than 40 beats per 

minute; fewer than five beats occur within a period of six seconds.

Extreme tachycardia (ETC): The heart rate is higher than 140 beats per minute; 

more than 17 beats occur within a period of 6.85 seconds.

Ventricular tachycardia (VTA): There are five or more consecutive ventricular beats 

within a period of 2.4 seconds (a rate of 100 per minute.)

Ventricular fibrillation or flutter (VFB): The heart exhibits a rapid fibrillatory, 

flutter, or oscillatory waveform for at least four seconds.

Participants in the Challenge were given samples of ICU patient waveforms that were 

identified by the bedside monitor as falling into one of the above categories, and were tasked 

with devising an algorithm to determine which of these alarms represented true arrhythmias, 

and which were caused by other factors (such as noise, patient movement, leads falling off, 

or mis-identification of ECG features on the part of the monitor.)

The Challenge was divided into two events. Event 1 was a simulation of the real-time alarm 

suppression problem: the algorithm needed to determine whether the alarm was true or false 

based solely on the information available before the alarm was first triggered. In Event 2, 

algorithms were also able to see 30 seconds’ worth of waveform data following the time of 

the alarm, and could use this information to retrospectively classify the alarm as true or 

false. The development of an algorithm that could reliably solve either of these problems 

would be a major step forward in patient care.

2. Example algorithms

Key to rhythm detection is accurate heart rate estimation. Several ECG R-peak detection 

algorithms are freely available, several of which were used in the Challenge example entries.

eplimited (available at www.eplimited.com) [1], which used digital filtering and a 

group of decision rules.

sqrs (available on PhysioNet [2]) [3], which uses a single scan of the sampled data 

and combines digital filter preprocessing with a detector and feature extractor based 

on dynamically adjusted slope and timing criteria.

wqrs (available on PhysioNet) [4], which is based on the length transform.

gqrs (available on PhysioNet), which consists of a QRS matched filter with a 

custom built set of heuristics (such as search back).

coqrs [5–7] based on the peak energy (no search back).

jqrs [8] consists of a window-based peak energy detector but with replacement of 

the original band-pass filter with a QRS matched filter (Mexican hat) and an 

additional heuristic ensuring no detections were made during flat lines.

Detection of the onset of the pulses in the ABP and PPG signals can provide further 

information on rhythm and rate. An open-source algorithm, wabp [9], is available from 

PhysioNet. The algorithm consists of three components: 1) a low-pass filter which is to 
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suppress high frequency noise that might affect the onset detection; 2) a windowed and 

weighted slope sum function (SSF) which is to enhance the upslope of the pulse and to 

suppress the remainder of the pressure wave; 3) a decision rule which allows for detection of 

each SSF pulse onset.

We provided three example Challenge entries, based on these and other open-source 

algorithms, and implemented in various programming languages, to serve as a basis on 

which participants could develop their own code.

The simplest example entry (#1) used wabp and gqrs, along with the gqfuse tool (available 

on PhysioNet), to analyze all available signals and select the most stable sequence of RR 

intervals, in order to detect asystole, bradycardia, and tachycardia. To detect the onset of VF, 

this entry analyzed the ECG and pulsatile signals separately (using gqfuse for each), and 

searched for a 10-second interval where the QRS rate and pulse rate were equal, followed by 

a 3-second interval in which the QRS rate increased by at least 25% and the pulse rate 

decreased by at least 75%. This entry did not attempt to detect VT.

An example entry (#2) written in Matlab used wabp to detect the beats and used jSQI [10] 

and a template matching SQI [11] to estimate the signal quality from ABP and PPG 

channels. jSQI flags a signal as bad quality if derived parameters from a blood pressure 

wave are not in reasonable physiological ranges. The PPG signal quality [11] matches a 

running PPG template with the pulsatile beat by dynamic time warping, simple matching, 

linear resampling matching and a clipping detection. When the signal quality was equal or 

greater than 0.9 and the corresponding HR or beat-to-beat interval derived from either the 

ABP or PPG did not surpass a predefined HR threshold (4s for ASY, 40 bpm for EBR, 140 

bpm for ETC, 100 bpm for VTA and 250 bpm for VFB), the alarm was suppressed (i.e. 

false).

Finally, the last sample entry (#3) was provided for Octave users, with functions from by 

WFDB Toolbox for Octave/MATLAB [12]. This sample entry ran three QRS detectors from 

the WFDB Toolbox: wqrs on signal 1, sqrs on signals 1 and 2, and gqrs on signals 1 and 2. 

The results of the QRS detectors where then used to compute three tachograms. A decision 

was made on the truthfulness of the alarm based on the average pair-wise correlation 

between the tachograms 30 seconds prior to the alarm (a threshold was set arbitrarily based 

on the training data).

It should be noted that no ECG signal quality was used, although previous studies using the 

agreement of beat detectors have shown great promise in this area [13]. We also note that no 

ECG-based rhythm detection was used, although various open source algorithms have been 

made available to the Challenge participants [14].

We also implemented two voting algorithms. One used a simple unweighted voting of all the 

competition entrants’ final scores. The second used the N best performing final entries 

ranked by their score on the training data. A tied, absent or no vote was treated as ‘true’.
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3. Challenge data

Data for the Challenge consisted of waveform recordings from ICU patients in four hospitals 

in the USA and Europe, representing three major manufacturers of ICU monitoring 

equipment. For each arrhythmia alarm matching our selection criteria, we collected all 

available multi-parameter waveforms (including at least five minutes of data before and after 

each alarm), as well as the alarm messages themselves, and any other status messages 

reported by the monitor. If possible, we also collected a list of the fiducial points and types 

of beats that were detected by the monitor; in some cases, the monitor did not provide this 

information. All of the signals were filtered in order to remove spectral characteristics that 

might identify the manufacturer or the country of origin. They were then resampled to 250 

Hz and scaled to a 16-bit range. The specific names of the various alarm annotations were 

also normalized to anonymize the data.

3.1. Expert labeling

To build the “gold standard” list of true and false alarms, a team of experts visually 

inspected the waveform record at the time of each alarm. Each annotator worked 

independently and was assigned a randomized list of patients to review. For each alarm, the 

annotator was initially shown 15 seconds of waveforms prior to the alarm and 5 seconds 

after it, but could resize and scroll the window in order to examine earlier and later portions 

of the record. If possible, the monitor-computed beat labels were also displayed.

After examining the alarm label and surrounding waveforms, the annotator was asked to 

press one of four buttons: True, False, Reject, or Uncertain. The Reject label was used for 

records that were clearly fallacious (usually due to bugs in the monitor’s data-exporting 

interface.) In order for an alarm to be included in the Challenge data set, it had to be 

independently reviewed by at least two annotators of whom a two-thirds majority had to 

agree that the alarm was either True or False.

3.2. Training and test data

From the set of 1,564 alarms meeting all of the above criteria, we randomly picked 1,250 to 

serve as training and test data for the Challenge (see table 1). The distribution of alarms was 

chosen to reflect the distribution of alarm types in the original data set (17% ASY, 11% 

EBR, 17% ETC, 47% VTA, 7% VFB) as well as to maintain the approximate true-to-false 

ratio for each alarm type. No single patient appeared in both the training and test sets, and no 

single manufacturer or hospital made up more than half of the records in either set.

Up to four signals were selected from each record: two ECG leads (preferably one limb lead 

and one precordial lead), and up to two other signals, including ABP, PPG, or respiration. 

The public training set consisted of 375 “short” records, containing only the five minutes 

leading up to the alarm, and 375 “long” records, containing a further 30 seconds after the 

alarm. The hidden test set consisted of 250 “short” records (used only for Event 1) and 250 

“long” records (used for both events.) Each record was labeled with the alarm type, and in 

the case of the training set, veracity (true or false). The records did not include the monitor-

computed beat locations or heart rate.
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4. Scoring

Participants were asked to submit their entries in the form of a ‘zip’ or ‘tar’ archive that 

included everything needed to compile and run their program on a GNU/Linux system, 

together with the results that they expected their program to produce for the records in the 

public training set. When an entry was uploaded, the scoring system would first attempt to 

compile the program and run it over a randomly selected subset of the training set; if this did 

not produce the expected results, evaluation stopped and the error messages were sent back 

to the submitter.

Once the program was successfully compiled and validated, it was then invoked for each 

record in the test set. (For the 250 “long” records, the program was invoked twice: once with 

the full record as input, and once with a truncated version.) If the program failed to produce 

output for a given record, it was treated as if it had classified that alarm as true.

For each category, the entry’s score was computed based on the number of true positives 
(true alarms classified as true), false positives (false alarms classified as true), true negatives, 

and false negatives. The scoring function was designed to treat false negatives – genuinely 

life-threatening events that the program considered unimportant – especially harshly, and 

was defined as:

5. Results, Discussions & Conclusions

A totla of 29 closed-source entries and 215 open-source entries were submitted in the 

Challenge. Table 2 provides a breakdown of the top scoring entries. A different contestant 

ranked highest in each separate alarm category, indicating that there was no best general 

algorithm. Interestingly, a simple majority vote of all the 38 competitors’ final entries gave 

scores of 60.15 in the real-time event and 62.41 in the retrospective event. These moderate 

performances, well below the top 10 algorithms, indicating that simple voting schemes do 

no yield an improved performance in this context, since the performance tail is long. A 

voting algorithm using the N=13 best performing final entries ranked by their score on the 

training data, provided the highest scores in both event 1 (84.26) and event 2 (87.04), 

although N=11 was sufficient to beat the best performance in either event. A weighted 

voting scheme may well improve these scores. We note, however, that N was selected on the 

test data, so these results should not be considered truly out of sample.

For the top performing entrants, it was the VTA alarm that proved the hardest to classify 

accurately. We note that retrospective scores were generally higher than ‘real-time’ scores, 

with the highest performing retrospective approach only suppressing 1% of the true alarms, 

while 80% of the false alarms were suppressed. Although debatable, this may be acceptable 

as a clinical algorithm if a 30 second window were acceptable. We suggest that this may 

spur a re-consideration of the AAMI guidelines for maximum alarm latency. A special issue 

in the journal Physiological Measurement will follow this competition and provide a forum 
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for an extended editorial which will discuss the methods and results in more detail, and 

provide the opportunity for entrants to revise their algorithms.
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Table 1

Types of alarms and signals used in the Challenge. Each of the N records included two ECG channels.

Training (N=750) Test (N=500)

False True False True

ASY 100 20 90 12

EBR 45 45 38 26

ETC 8 131 5 68

VTA 253 90 176 45

VFB 52 6 34 6

PPG 227 178 158 83

ABP 59 63 58 39

Both 172 51 127 35

Total 458 292 343 157
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