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STAT3 inhibition for cancer therapy: Cell-autonomous effects only?
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ABSTRACT
A paper recently published in Science Translational Medicine describes a next-generation antisense
oligonucleotide that specifically downregulates the expression of human signal transducer and activator
of transcription 3 (STAT3). Such an oligonucleotide, AZD9150, exerts antineoplastic effects on a selected
panel of STAT3-dependent human cancer cells growing in vitro and in vivo (as xenografts in
immunodeficient mice). Moreover, preliminary data from a Phase I clinical trial indicate that AZD9150 may
cause partial tumor regression in patients with chemorefractory lymphoma and non-small cell lung
carcinoma. STAT3 not only participates in cell-autonomous processes that are required for the survival and
growth of malignant cells, but also limits their ability to elicit anticancer immune responses. Moreover,
STAT3 contribute to the establishment of an immunosuppressive tumor microenvironment. Thus, the
inhibition of STAT3 may promote immunosurveillance by a dual mechanism: (1) it may increase the
immunogenicity of cancer cells via cell-autonomous pathways; and (2) it may favor the reprogramming of
the tumor microenvironment toward an immunostimulatory state. It will therefore be important to
explore whether immunological biomarkers predict the efficacy of AZD9150 in the clinic. This may
ameliorate patient stratification and it may pave the way for rational combination therapies involving
classical chemotherapeutics with immunostimulatory effects, AZD9150 and immunotherapeutic agents
such as checkpoint blockers.
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A report from Hong and colleagues recently published in Sci-
ence Translational Medicine provides major advances in our
understanding of the role of the transcription factor STAT3 in
cancer cell biology, at several levels. First, the paper describes
for the first time an antisense oligonucleotide specific for
human STAT3 bearing chemical modifications that allow it to
freely cross the plasma membrane, and hence to abolish
STAT3 expression in cultured human cells at nanomolar con-
centrations. This oligonucleotide, AZD9150, also reduces
STAT3 levels in xenotransplanted human tumors growing on
immunodeficient mice.1 Second, the authors provide convinc-
ing evidence that AZD9150 can reduce the proliferation of
selected STAT3-dependent cancer cells, most likely via an on-
target effect. Such an antineoplastic activity was observed in
vitro, on human cancer cell lines and freshly isolated primary
malignant cells, as well as in vivo, on human cancer xenografts
implanted into immunodeficient mice.1 Third, the article
reports preliminary data from a Phase I clinical trial aimed at
investigating safety profile of AZD9150 in cancer patients. This
study identified thrombocytopenia as the main dose-limiting
toxicity of AZD9150 (presumably also an on-target effect).
Moreover, the authors monitored the circulating levels of inter-
leukin-6 (IL-6), which is a well-characterized transcriptional
target of STAT3, as a biomarker of AZD9150 activity, finding

that IL-6 was reduced in the circulation of a majority of
AZD9150-treated individuals. Finally, several patients with
chemorefractory malignancies enrolled in the study (in particu-
lar: four subjects with lymphoma and one individual with non-
small cell lung carcinoma) achieved partial responses on
AZD9150, as monitored on 18F-fluorodeoxyglucose (18F-FDG)
positron emission tomography (PET).1 Unfortunately, no
information on the expression of STAT3 in cancer patients
before and after the administration of AZD9150 is available.

STAT3 is well known as a transcription factor activated by
Janus kinase 1 (JAK1) and JAK2, correlating with the ability of
phosphorylated (but not dephosphorylated) STAT3 to translo-
cate from the cytoplasm to the nucleus. Nuclear STAT3 trans-
activates numerous genes, hence switching on a genetic
program that sustains cellular survival, proliferation, as well as
the secretion of pro-inflammatory factors that may promote
tumor progression.2-4 However, like several other transcription
factors, STAT3 also has cytoplasmic functions.5 Notably, cyto-
plasmic STAT3 regulates oxidative phosphorylation by mito-
chondria and inhibits autophagy, implying that the JAK1- or
JAK2-dependent translocation of STAT3 to the nucleus has an
immediate effect on cellular metabolism (which manifests with
an increase in autophagic flux).6-9 Based on these considera-
tions, it will be important to study how AZD9150 affects tumor
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metabolism, especially in relationship with 18F-FDG PET.1 In
particular, does AZD9150 truly reduce tumor mass, or does it
merely (and perhaps transiently) affect 18F-FDG uptake by can-
cer cells?

STAT3 inhibition most likely does not exert antineoplastic
effects by purely cell-autonomous mechanisms.4 Indeed, the
inhibition of STAT3 in cancer cells is expected to limit the pro-
duction of pro-inflammatory factors (such as IL-6), hence
reducing local inflammatory reactions that may contribute to
tumor progression.4,10-12 Moreover, the inhibition of STAT3
allows malignant cells to secrete high amounts of Type I inter-
feron and other products of so-called interferon response genes
(IRGs), including chemokine (C-X-C motif) ligand 9 (CXCL9)
and CXCL10.13,14 By virtue of this mechanism, STAT3 inhibi-
tion stimulates the recruitment of immune effectors into the
tumor bed and improves immunosurveillance, especially in the
context of ongoing anticancer immune responses.13 Indeed,
STAT3 inhibitors can be advantageously combined with immu-
nogenic cell death (ICD)-inducing chemotherapeutic agents.13

Given the clinical impact of ICD inducers,15-22 it will be impor-
tant to explore this possibility in properly designed trials.

STAT3 inhibition may also affect non-malignant compart-
ments of the tumor microenvironment. AZD9150 specifically
target human (not murine) STAT3,1 meaning that its effects on
xenografted human tumors evolving in immunodeficient mice
must reflect cancer cell-autonomous effects. However, in some
of such experiments, AZD9150 only became active against
human lymphomas when it was combined with another anti-
sense oligonucleotide that target mouse STAT3 as well,1 under-
scoring the contribution of host STAT3 to tumor progression.
It is not clear which non-malignant components of the tumor
mass (fibroblasts, endothelial cells, tissue-resident macro-
phages, etc.) contribute to the growth of human tumor xeno-
grafts in this particular case. Surely, such an effect cannot be
attributed to lymphocytes, as the mice used in these experi-
ments (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice) are severely
immunocompromised as they completely lack T and B lym-
phocytes as well as natural killer (NK) cells.1

Experiments performed in immunocompetent mice bearing
histocompatible tumors demonstrated that STAT3 also plays
major roles in the subversion of anticancer immunosurveil-
lance. For instance, the immunosuppressive functions of mye-
loid-derived suppressor cells (MDSCs) critically rely on
STAT3.23,24 Mice specifically lacking STAT3 in myeloid cells
are indeed more resistant than their wild-type counterparts to
carcinogen-induced oncogenesis, and exhibit a superior immu-
nological control of transplanted tumors.25 Notably, the expres-
sion of CD274 (a potent immunosuppressive molecule also
known as PD-L1) by MDSCs and other immunosuppressive
myeloid cells also depends on STAT3.26 This latter observation
suggests that STAT3 inhibition may downregulate PD-L1,
implying that combining AZD9150 with checkpoint block-
ers27,28 targeting the interaction between PD-L1 and its main
receptor (programmed cell death 1, PDCD1, best known as
PD-1) may not be useful. However, this conjecture remains to
be investigated at the experimental level.

Undoubtedly, the paper by Hong et al. will spur
renewed interest in STAT3 as a target for cancer therapy. Given
the importance of STAT3 in pro-inflammatory and

immunosuppressive pathways, the possibility of using STAT3
inhibitors as immunostimulatory agents (and de facto check-
point blockers) awaits urgent verification in clinical settings.
Moreover, the observations presented above suggest that multi-
ple immunological parameters should be evaluated as possible
biomarkers that predict the clinical efficacy of STAT3 inhibi-
tion (and hence allow for patient stratification). Finally, the
possibility to associate AZD9150 (or its derivatives) with other
immunologically active compounds (including, but not limited
to, ICD inducers) should be actively investigated.
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