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ABSTRACT
Agonistic tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-receptor-specific
antibodies are attractive antitumor therapeutics. Recently, our group has generated several human
monoclonal antibodies (mAbs) to TRAIL-receptor-1 (TRAIL-R1) (TR1-IgGs) using ISAAC technology.
However, these TR1-IgGs did not demonstrate ideal apoptosis-inducing capacity in the absence of
additional antibodies. To overcome this limitation, we class-switched the TR1-IgGs to TRAIL-R1 IgM
antibodies (TR1-IgMs); TR1-IgMs might possess high valency and facilitate the crosslinking of the cell
surface receptors. We showed that the TR1-IgMs bound TRAIL-R1, activated the caspase signal, and
induced strong apoptosis (100-fold higher compared with the IgG form in one case) in human tumor cell
lines without any additional crosslinking in vitro. We further demonstrated that these TR1-IgMs
dramatically inhibited tumor growth in a xenograft model through the caspase activation cascade. These
data suggest that TR1-IgMs may become potential immunotherapeutic agents for cancer therapy.

Abbreviations: DISC, death-inducing signaling complex; EC50, 50% effective concentration; ELISA, enzyme-linked
immunosorbent assay; FITC, fluorescein isothiocyanate; IgG, immunoglobulin G; IgM, immunoglobulin M; mAbs,
monoclonal antibodies; PE, phycoerythrin; SCID, severe combined immunodeficient; TRAIL, tumor necrosis factor-
related apoptosis-inducing ligand; TRAIL-R, TRAIL receptors; TR1-IgG, TRAIL-R1-specific IgG; TR1-IgM, TRAIL-R1-spe-
cific IgM
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Introduction

Apoptosis is a cellular process in which the organism regulates
the number of cells in normal tissue compartments and elimi-
nates unnecessary or damaged cells.1 There are two major sig-
naling pathways that trigger apoptosis in mammalian cells: the
intrinsic and extrinsic pathways.2 The TRAIL, a member of the
TNF superfamily of cytokines, is a trimeric protein that is capa-
ble of activating both the extrinsic and intrinsic pathways for cel-
lular apoptosis.3,4 By binding to TRAIL-R1 and -R2, TRAIL
induces the formation of the death-inducing signaling complex
(DISC), which consists of a Fas-associated death domain and
procaspase-8 and -10.5,6 The activated caspase-8 then triggers
the apoptotic pathway by activating caspase-3, -6, and -7, which
leads to cell death.6-8 In addition to TRAIL-R1 and -R2, there
are other receptors, such as TRAIL-R3, -R4, and osteoprotegerin
(OPG), although these receptors cannot induce cellular apopto-
sis because they lack functional death domains.9-12

It is worth noting that TRAIL-induced apoptosis only occurs
in human cancer cell lines, whereas it rarely occurs in normal
cells.13-17 Accordingly, TRAIL-R1 and -R2 have been widely
studied as potential therapeutic targets of cancer in the past,
and TRAIL variants and mAbs of TRAIL-R1 and -R2 have

been developed as possible reagents for cancer treatment. How-
ever, the hepatotoxicity and short half-life of TRAIL variants
have hampered their application.18 Therefore, TRAIL-R1/2
antibodies are expected to be more attractive for cancer
therapy.

TRAIL-R1/2 can independently self-assemble into trimers
without any other ligands.19 Their further assembly with
ligands is a prerequisite for activating apoptosis.20 Previous
studies using xenograft tumor-bearing mice that were immune-
deficient and lacked endogenous IgGs demonstrated that the
anti-TRAIL-R1 or -R2 antibodies showed ideal antitumor
effects by crosslinking the Fcg receptors (FcgRs) on immune
cells.21-25 However, a series of clinical trials based on these
effective antitumor antibodies have failed26,27 because the cross-
linking with FcgR might be impaired in the presence of com-
petitive endogenous IgGs.28

Regarding other crosslinking, the use of secondary antibod-
ies is not suitable for clinical treatments in patients because
these antibodies are usually prepared from animals and may
induce side effects due to their antigenicity.29 Therefore, ago-
nistic TRAIL-R1/2-specific mAbs that induce cancer cell apo-
ptosis in the absence of crosslinking reagents are desired for
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cancer therapy. In this context, Pukac et al. developed a fully
human agonistic TRAIL-R1 mAb, HGS-ETR1, which achieved
significant apoptosis of tumor cells in vitro and in vivo, without
additional crosslinking.22 However, HGS-ETR1 did not show
antitumor effects in clinical trials.30-32

We have also developed a series of human TRAIL-R1-specific
IgGs (TR1-IgGs) that induce apoptosis using the ISAAC tech-
nology33 and human immunoglobulin g and k loci chimeric
TransChromo (TC) mice.34 However, these mAbs could not
induce apoptosis in the absence of crosslinking antibodies.35

Antibodies of the IgM class play an important role in primary
immune responses.36,37 The predominant structure of IgM in
serum is a pentameric form.38 Recently, Kunert’s group con-
structed a class-switched HIV-specific IgM by combining the
variable region of HIV-IgG with the constant region of IgM.39,40

Considering this finding, we hypothesized that the conversion
of TR1-IgG to pentameric IgM might facilitate the cell surface
receptor crosslinking due to the high valency of IgM. In this
study, we generated TRAIL-R1-IgM antibodies (TR1-IgMs) by
combining the variable region of TR1-IgGs35 with the constant
region of IgM. The resulting TR1-IgMs induced strong apopto-
sis in not only various human cancer cell lines but also xenograft
tumor-bearing mice. These TR1-IgMs antibodies may become
an expectable immunotherapeutic agent for cancer therapy.

Results

TR1-IgMs bind specifically to human TRAIL-R1

To produce the TR1-IgMs, we constructed the TR1-IgM
cDNA by substituting the constant region of five clones (401,
404, 419, 422, and 438) of TR1-IgG with that of IgM.35 We
then co-transfected the cells with the heavy- and light-chain
cDNAs together with or without the joining (J) chain cDNA.
An anti-influenza IgM was also produced as a control using
the same method. The purified TR1-IgMs and the control-
IgM were confirmed by western blotting (Fig. 1A). Previous
reports stated that the J chain existed only in pentameric
IgMs, whereas the hexameric and pentameric forms of IgM
were produced without the J chain.41 Consistently, western
blot analysis revealed that without J chain, the TR1-IgMs
(TR1-IgM(J-)s) and control-IgM(J-) were present in both the
pentameric and hexameric forms, whereas the TR1-IgM(J+)s
and control-IgM(J+) with the J chain only formed pentamers
(Fig. 1A). The TR1-IgM(J+)s and control-IgM(J+) were
adopted in the subsequent studies because the pentameric
form of IgM is predominant in human serum.38

To clarify whether the TR1-IgM(J+)s bind to recombinant
human TRAIL receptor (TRAIL-R), we performed an enzyme-
linked immunosorbent assay (ELISA) using chimeric recombi-
nant human TRAIL-R-Fc proteins. All five TR1-IgM(J+)s
speci-fically bound to TRAIL-R1-Fc, but not to TRAIL-R2-Fc,
TRAIL-R3-Fc, TRAIL-R4-Fc, or OPG (Fig. 1B). The control-
IgM did not bind to any of the proteins. The binding of TR1-
IgM(J+) 401 to rhTRAIL was significantly weak. This weak
binding may be due to its previously demonstrated low affin-
ity.35 In agreement with a previous study,35 flow cytometry
analysis also revealed that the TR1-IgM(J+)s bound to the
surfaces of tumor cells that expressed TRAIL-R1 (Fig. 1C and

Fig. S1). Together, these results indicated that our five clones of
TR1-IgMs specifically bound to TRAIL-R1.

TR1-IgMs induce cell death by activating caspase signaling
in human tumor cell lines

Next, we investigated whether the TR1-IgM(J+)s could induce
cell death in cancer cell lines without additional crosslinking.
Treatment of the TRAIL-sensitive Colo205 cell line42 with vari-
ous concentrations of TR1-IgM(J+)s resulted in a significant
and dose-dependent reduction of cell viability at 24 h, whereas
the groups treated with control-IgM(J+), control-IgG, or TR1-
IgGs did not show cytotoxic activity, except that the TR1-IgG
438-treated group exhibited a weak induction of cell death
(Fig. 2A). The 50% effective concentration (EC50) of TR1-IgM
(J+)s for the Colo205 cell line ranged from 0.5 to 100 ng/mL
(Table 1 and Fig. S2). We compared the cytotoxic activity of
TR1-IgG in the presence of the secondary crosslinking anti-
body with that of TR1-IgM (Fig. S3). TR1-IgG 422 with the sec-
ondary crosslinking antibody induced apoptosis in Colo205 cell
line with EC50 of approximately 1,000 ng/mL, whereas that of
TR-IgM 422 was 0.5 ng/mL, showing the remarkably higher
cytotoxic activity of TR1-IgM compared to TR-1 IgG even in
the presence of crosslinking antibody. TR1-IgM(J+) effectively
induced apoptosis in the TRAIL-sensitive DU145 cell line43

but not in the TRAIL-resistant A54944 and MCF745 cell lines
(Fig. S4). The current results demonstrated that the TR1-IgM(J
+)s effectively induced apoptosis in the TRAIL-sensitive cell
lines.

It has been reported that TRAIL-induced apoptosis in
human cancer cells is primarily triggered by the activation of
caspase-8 and -3, the major caspases that are responsible for
apoptosis.6 To verify whether TR1-IgMs induce cell death via
the caspase activation pathway, we incubated Colo205 cells
with TR1-IgM(J+)s, and the caspase activation was investi-
gated. As shown in Fig. 2B, caspase-8 and capase-3/7 were
clearly activated in a dose-dependent fashion after 3 and 6 h of
culture, respectively. The control-IgM(J+) did not induce cas-
pase-8 or caspase-3 activity in Colo205 cells. Furthermore, the
presence of a pan-caspase inhibitor, z-VAD-fmk, which has
been reported to block caspase-mediated apoptosis,46 prevented
the TR1-IgM(J+)s-induced reduction of cell viability corre-
sponding to TRAIL-induced apoptosis (Fig. 2C). These results
showed that TR1-IgM(J+)s induced cell death in TRAIL-R1-
expressing cell lines in a caspase-dependent fashion.

In vivo antitumor effect of the TR1-IgM antibodies without
a crosslinking reagent

To assess the antitumor activity of TR1-IgM(J+)s in vivo, we
evaluated the capacity of the most effective TR1-IgM(J+) 422
antibody (Table 1) in xenograft models using Colo205 tumor-
transplanted SCID mice. The tumors were pre-established to a
volume of approximately 100 mm3, and different doses of TR1-
IgM(J+) 422 (1, 3.3, and 10 mg/kg body weight) and control-
IgM(J+) (10 mg/kg body weight) were then intravenously (i.v.)
administered to the mice three times per week. As shown in
Fig. 3A and 3B, treatment with TR1-IgM(J+) 422 resulted in an
initial reduction in the tumor size and the retardation of tumor
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growth in a dose-dependent manner. The control-
IgM(J+) treatment did not inhibit tumor growth. Histological
analysis of the tumor sections demonstrated that TR1-IgM(J+)
422 induced cell death within 2 d after treatment (Fig. 3C). To
clarify whether the cell death was due to the caspase-dependent
apoptosis, we analyzed caspase-3 activation in the tumors that
had been treated with the TR1-IgM(J+) 422 antibody. We
found that antibody administration clearly induced caspase-3
activation in the pre-developed Colo205 tumor cells 4 h after
administration (Fig. 3D). These data demonstrate that the
TR1-IgM(J+) 422 antibody penetrated the tumor in vivo to

induce immediate caspase-dependent apoptosis and cell death,
exhibiting a potent antitumor effect.

Discussion

Previously, we used TC mice to develop fully human TR1-IgGs
with tumoricidal activity,35 but these mAbs required additional
crosslinking antibodies to induce apoptosis in the target cells.35

Additional antibodies may induce serious side effects due to
their antigenicity29 and the formation of immune complexes
with blood IgGs. To overcome this limitation, we converted the

Figure 1. Construction and evaluation of the TR1-IgMs. (A) Western blot analysis of the recombinant purified TR1-IgMs. Ten nanograms of each of the biotinylated-TR1-
IgM(+/¡)s (TR1-IgM(J+/¡)-401, 404, 419, 422, and 438) and control-IgM(+/¡) was immunoblotted with horseradish peroxidase-conjugated streptavidin. (B) Reactivity of
the TR1-IgM(J+)s with the recombinant human TRAIL-R family. The binding of the TR1-IgM(J+)s to human TRAIL-R1-Fc, TRAIL-R2-Fc, TRAIL-R3-Fc, TRAIL-R4-Fc, or OPG
was examined by ELISA. Control-IgM(J+) was used as a control. The data are shown as the mean § SD of triplicate cultures. (C) The binding of the TR1-IgM(J+)s to the
Colo205 cell line was analyzed by flow cytometry. The cells were stained with 5 mg/mL of biotinylated-TR1-IgM(J+)s and control-IgM(J+) as indicated, followed by R-PE-
conjugated streptavidin, and analyzed with flow cytometry. X-axis, fluorescence intensity of PE; Y-axis, relative cell number. Representative data of three independent
experiments in which similar results were obtained are shown.
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TR1-IgGs to TR1-IgMs because secreted IgMs have 10 antigen-
binding sites and have a superior capacity to crosslink mole-
cules compared with IgGs.47 The resulting TR1-IgMs are
expected to induce apoptosis in vitro and in vivo in the absence

of additional crosslinking and, thus, would be more suitable for
cancer therapy.

High functionality is one of the critical parameters for anti-
bodies to be used as potent and efficacious therapeutics.48 In
the present study, we demonstrated that one of the TR1-IgMs,
TR1-IgM(J+) 422, showed high antitumor activity on the
Colo205 cell line in vitro, with an EC50 of approximately
0.5 ng/mL. This result was approximately 200-fold higher than
that of HGS-ETR1, an agonistic anti-TR1 antibody used in clin-
ical trials.22 Therefore, TR1-IgM(J+) 422 could be an efficient
antitumor agent in cancer therapy.

One of drawbacks of IgM-form antibodies as therapeutic
antibodies is that they are difficult to produce compared with

Figure 2. TR1-IgMs induce tumor cell killing by apoptotic signaling. (A) Cell viability assay. Colo205 cells were incubated with the indicated antibodies for 24 h, and cell
viability was measured. (B) Measurement of activated caspases. The cells were incubated with the indicated concentrations of TR1-IgM(J+)s or control-IgM(J+). Activated
caspase-8, and -3/7 were measured after 3 and 6 h of culture, respectively. (C) Caspase-dependent cell death in Colo205 cells. The cells were incubated with or without
the indicated concentrations of z-VAD-fmk for 4 h. Then, the cells were cultured with TR1-IgMs or control-IgM for 24 h. After cell culture, the cell viability was determined.
The data are shown as the mean § SD of triplicate cultures. �p < 0.05 by Student’s t-test.

Table 1. EC50 values of the TR1-IgM(J+)s

IgM EC50 (ng/mL)

TR1-IgM(J+) 401 70
TR1-IgM(J+) 404 9
TR1-IgM(J+) 419 12
TR1-IgM(J+) 422 0.5
TR1-IgM(J+) 438 100

Note: EC50 values were determined from the data in Fig. S2.
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IgG-form antibodies. In this context, Tchoudakova et al devel-
oped a PER.C6® cell line that could produce large amounts of
IgMs, which promotes the scale-up of IgM production for clini-
cal use.49 The second drawback of IgM-form antibodies is that
their half-life in the blood is shorter than that of IgG.50 In fact,
in the xenograft model, the administration of a high dose
(10 mg/kg) of TR1-IgM(J+) 422 elicited significant tumor
regression during the first 8 d in all of the mice. However,
beginning day 9, the tumors slowly began to re-grow. With
these drawbacks, the protocol for TR1-IgM production and
administration should be further optimized.

It has been reported that combination treatments with anti-
TRAIL-R1 or R2 antibodies and different chemotherapeutics

resulted in enhanced cell killing in vitro compared to antibodies
or chemotherapeutics alone.22-25,28,51,52 The enhanced cell
death may be because the chemotherapeutics can upregulate
TRAIL-R1/253,54 and proapoptotic protein55 and decrease anti-
apoptotic protein expression levels.53 In addition, Tuthill et al.
found that an anti-TRAIL-R2 antibody and recombinant
TRAIL can synergize to kill cancer cells.56 In our previous
study, the combination of TR1-IgGs and recombinant TRAIL
significantly induced cell death compared with TR1-IgG or
recombinant TRAIL alone.35 Therefore, the combination of
TR1-IgMs with TRAIL or chemotherapeutics should be exam-
ined to determine whether they enhance the antitumor activity
in non-sensitive cell lines.

Figure 3. Antitumor efficacy of TR1-IgMs on Colo205 cell-derived mouse xenograft tumors in vivo. (A) The tumor growth curves of each group of tumor-bearing mice.
SCID mice (10 per group) bearing Colo205 xenograft tumors were i.v. injected with TR1-IgM(J+) 422 or control-IgM(J+) on the indicated days (arrows). Each time point
represents the mean value (§S .E.M.) of the tumor sizes within the treated group on the day of measurement. (B) Representative photographs of the Colo205 tumor-bear-
ing mice in each group on day 0 or day 20 after treatment. The magnified photo shows that the tumors (within dotted lines) in the TR1-IgM(J+) 422 (10mg/kg)-treated
mice were notably reduced compared with the tumors in the control-IgM(J+) (10mg/kg)-treated mice. (C) Representative photomicrographs of hematoxylin and eosin
staining of the tumor tissues from each group of mice at 2 d post-treatment. Expanded views of the region marked with black boxes are shown (right). Original magnifica-
tion, £100 (left), £400 (right). (D) Caspase-3 activation following the injection of TR1-IgM(J+) 422. SCID mice that had pre-established Colo205 tumor xenografts were
injected with a single dose (10 mg/kg body weight) of TR1-IgM(J+) 422 (solid line) or control-IgM (shaded peak). The tumors were then excised 4 h after injection, and
activated caspase-3 induction was analyzed by flow cytometry. X-axis; fluorescence intensity of fluorescein isothiocyanate (FITC), Y-axis; relative cell number.
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Regarding the correlation between tumoricidal activity
and TR1-IgM affinity, we prepared five clones of TR1-IgMs
in this study (Table 1 and Fig. S2). Among them, TR1-IgM
(J+) 422 showed the highest antitumor activity (EC50 =
0.5 ng/mL) and moderate affinity (1.4 £ 10¡8 M).35 By con-
trast, TR1-IgM(J+) 404 showed approximately 10-fold
higher affinity (1.5 £ 10¡9 M)35 compared with TR1-IgM(J
+) 422, but the EC50 of TR1-IgM(J+) 404 was approxi-
mately 20-fold lower (9 ng/mL) than that of TR1-IgM(J+)
422. These results suggest that the antitumor effect was not
correlated with the IgM affinity. We previously analyzed the
relative epitopes of the TR1-IgG antibodies57 and showed
that the TR1-404 antibody and TRAIL competitively bound
to TR1, but the TR1-422 antibody did not. Thus, the antitu-
mor activity may depend on the epitope that is recognized
by the individual antibodies. Taken together, we believe
that TR1-IgMs may greatly contribute to the promotion of
apoptosis for the clinical treatment of cancer.

Materials and methods

Production and purification of the antibodies

We cloned the J chain cDNA (GenBank accession number:
NM_144646) and inserted it into a pcDNA3.4 expression vec-
tor (Life Technologies, Carlsbad, CA). We also amplified the
antibody cDNAs encoding the VH of TR1-IgGs35 or an anti-
influenza IgG (control antibody)33 and cloned them together
with cDNA encoding the entire immunoglobulin constant
region for IgM (GenBank accession number: X57086) into a
pcDNA3.4 expression vector, respectively. We co-transfected
Expi293FTM cells (Life Technologies, Carlsbad, CA) with the
TR1-IgMs or control-IgM heavy chain and light chain vectors
with or without the J chain expression vectors. We then col-
lected the culture supernatants and purified the antibodies
using HiTrap IgM Purification HP Columns (GE Healthcare,
Marlborough, MA), according to the manufacturer’s instruc-
tions. We then conjugated biotin to the IgMs using the biotin
Labeling Kit-NH2 (Dojindo, Kumamoto, Japan), according to
the manufacturer’s instructions.

SDS-PAGE and western blotting analysis of the
recombinant IgMs

We resolved the biotinylated IgMs on polyacrylamide-agarose
composite gels under non-reducing conditions, as previously
described.58 Briefly, the gel was prepared using 3% acrylamide-
N,N"diallyltartardiamide (29/1), 0.5% agarose, 0.1 M phosphate
buffer (pH 7.0), 0.1% SDS, and 15% glycerol. The sample buffer
contained 0.02 M phosphate buffer (pH 7.0), 30% glycerol, 1%
SDS, and 0.1% bromophenol blue. The electrophoresis buffer
contained 0.1 M phosphate buffer (pH 7.0) and 0.1% SDS.
After electrophoresis, we transferred the proteins from the gel
onto an Immobilon-P nylon membrane (Millipore, Bedford,
MA). We treated the membrane with 0.04% skim milk and
probed it with the antibodies. Visualization was performed
using an ECL detection system (GE Healthcare, Marlborough,
MA).

ELISA

We coated 96-well MaxiSorp plates (Nunc, Neptune, NJ)
with 50 mL per well of either 1 mg/mL recombinant
TRAIL-R1-Fc, TRAIL-R2-Fc, TRAIL-R3-Fc, TRAIL-R4-Fc,
or OPG (R&D Systems, Inc., Minneapolis, MN) in PBS and
subsequently blocked the plates with 3% bovine serum albu-
min (BSA) in PBS. After washing, we added 1 mg/mL of the
antibodies to the plates and incubated them at room tem-
perature (r.t.) for 1 h. We detected the antibodies that
bound to the antigens using IgM-specific antibodies conju-
gated to alkaline phosphatase (Sigma, St. Louis, MO) and
p-nitrophenylphosphate (Sigma, St. Louis, MO). We mea-
sured the optical absorbance at 405 nm with an ELISA
reader (BMG LABTECH, Offenburg, Germany), according
to the manufacturer’s instructions.

Flow cytometry analysis

Colo205, MCF7, DU145, and A549 cell lines were incubated
with 5 mg/mL of biotinylated-IgM(J+)s for 20 min at r.t.
The cells were then washed and stained with R-phycoery-
thrin (PE)-conjugated streptavidin for 20 min at r.t. After
washing, the cells were analyzed with a FACSCanto flow
cytometer (Becton Dickinson Biosciences, San Jose, CA).
FlowJo 8.4.7 software (Tree Star, Inc.., Ashland, OR) was
used for data analysis.

Cell viability assays

Colo205, DU145, A549, and MCF7 cell lines were cultured in
96-well white plates (Nunc, Neptune, NJ) (1£104 cells per well)
and incubated with the indicated concentrations of antibodies
at 37�C and 5% CO2 for 24 h. Cell viability was determined by
CellTiter-GloTM Luminescent Cell Viability Assay (Promega,
San Luis Obispo, CA), according to the manufacturer’s
instructions.

Caspase activity assays

The Colo205 cell line was cultured in 96-well white plates
(1£104 cells per well) and incubated with the indicated concen-
tration of antibodies at 37�C and 5% CO2 for 3 and 6 h to ana-
lyze the caspase-8 and caspase-3/7 activities, respectively. The
caspase-8 and caspase-3/7 activities were measured using
Caspase-GloTM 8 Assays (Promega, San Luis Obispo, CA) and
Caspase-GloTM 3/7 Assays (Promega, San Luis Obispo, CA),
respectively, according to the manufacturer’s instructions. The
potency of caspase activation was compared with the levels in
non-treated cells.

For the caspase inhibition experiments, Colo205 cells
were cultured in 96-well white plates and incubated with or
without the indicated concentrations of the pan-caspase
inhibitor z-VAD-fmk (R&D Systems, Inc.., Minneapolis,
MN) at 37�C and 5% CO2 for 4 h and then cultured
with the indicated concentration of antibodies for 24 h
in 5% CO2. Cell viability was determined as described
above.
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In vivo tumor models

The experiments using mice were approved by the Commit-
tee on Animal Experiments at the University of Toyama.
Seven-week-old female severe combined immunodeficient
(SCID) mice (C.B-17/IcrHsd-Prkdcscid; Sankyo Lab Service,
Tokyo, Japan) were used. Colo205 cells (1£107) were sub-
cutaneously (s.c.) inoculated in the lower right flank of the
mouse. Treatment was initiated when the tumor volume
reached »100 mm3, and 10 mice per group were used for
each treatment group. TR1-IgM(J+) or control-IgM(J+) was
administered to the animals i.v. via the tail vein in a dose/
weight-matched fashion on the indicated days. The tumors
were measured in the two largest dimensions, and the
tumor volumes in mm3 were calculated using the following
formula: tumor volume = length £ width2 £ 1/2. The
experiments were concluded three weeks after the initial
dosing.

Histological analysis of the xenograft tumors

The mice bearing the Colo205 cell-derived xenograft tumors
were i.v.-treated with three doses of TR1-IgM(J+) 422 or con-
trol-IgM(J+). 2d after the antibody treatment, the mice were
sacrificed, and the tumors were excised. The tumor tissues were
placed into formalin for overnight fixation at r.t. The tissues
were processed into paraffin blocks, and 4-mm-thick sections
were stained with hematoxylin and eosin (Wako, Osaka,
Japan).

Cleaved caspase-3 activity in xenograft tumors

The mice bearing the Colo205 cell-derived xenograft tumors
were i.v. injected with a single dose of TR1-IgM(J+) or control-
IgM(J+). 4h after treatment, the mice were sacrificed, and the
tumors were excised. Single-cell suspensions were prepared
using the Tumor Dissociation Kit, human (Miltenyi Biotec,
Bergisch Gladbach, Germany), and the gentle-
MACSTMDissociator (Miltenyi Biotec, Bergisch Gladbach,
Germany) according to the standard protocol provided with
the kit. After fixation and permeabilization with IntraPrepTM

(Beckman Coulter, Miami, FL), the single-cell suspensions
were incubated with a rabbit anti-cleaved caspase-3 antibody
(Cell Signaling Technology, Beverly, MA) for 20 min at r.t. The
cells were then washed and stained with R-PE-conjugated
streptavidin for 20 min at r.t. After washing, the cells were ana-
lyzed using a FACSCanto flow cytometer (BD Biosciences, Bed-
ford, MA).
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