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ABSTRACT
Intestinal permeation enhancers (PEs) are key components in »12 oral peptide formulations in
clinical trials for a range of molecules, primarily insulin and glucagon-like-peptide 1 (GLP-1) analogs.
The main PEs comprise medium chain fatty acid-based systems (sodium caprate, sodium caprylate,
and N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC)), bile salts, acyl carnitines, and EDTA. Their
mechanism of action is complex with subtle differences between the different molecules. With the
exception of SNAC and EDTA, most PEs fluidize the plasma membrane causing plasma membrane
perturbation, as well as enzymatic and intracellular mediator changes that lead to alteration of
intestinal epithelial tight junction protein expression. The question arises as to whether PEs can
cause irreversible epithelial damage and tight junction openings sufficient to permit co-absorption
of payloads with bystander pathogens, lipopolysaccharides and its fragment, or exo- and
endotoxins that may be associated with sepsis, inflammation and autoimmune conditions. Most PEs
seem to cause membrane perturbation to varying extents that is rapidly reversible, and overall
evidence of pathogen co-absorption is generally lacking. It is unknown however, whether the
intestinal epithelial damage-repair cycle is sustained during repeat-dosing regimens for chronic
therapy.
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Introduction

Pharmaceutical companies have renewed their interest
in oral peptides technologies and two biotech compa-
nies have formulations that reach primary endpoints in
recently-completed Phase III clinical trials for oral
salmon calcitonin (sCT) and octreotide.1 Many formu-
lations in trials contain intestinal permeation
enhancers (PEs) to assist the poorly-permeable pay-
loads including insulin and glucagon-like Peptide 1
(GLP-1) analogs in overcoming the intestinal epithelial
barrier. The main safety concerns regarding the use of
PEs are due to associated intestinal epithelial damage
that may cause intestinal inflammation, as well as co-
absorption of pathogenic “bystander” agents and tox-
ins. This review will focus on PEs that are in formula-
tions which are currently in clinical trials. We discuss
whether they truly cause irreversible epithelial damage
of clinical relevance and also as to whether there is any
evidence to support the widely-held assertion that they
permit entry of xenobiotics. For more information
about the current status of oral formulations in clinical
trials, see a number of recent reviews.1-5

Intestinal PEs in Clinical Trials for Oral Peptides

The mechanism of action is only partly known for PEs
in clinical trials and, in many cases, there is consensus
that most work in a multitude of ways involving modu-
lation of tight junctions (TJs) arising from initial fluidi-
zation of small intestinal epithelial plasma membranes.
The main candidates in oral peptide trials are the
medium chain fatty acid (MCFA)-based sodium cap-
rate (C10), sodium caprylate (C8), and the C8 derivative
(SNAC), as well as acyl carnitines, EDTA, and selected
bile salts.6,7 EDTA is different from the other PEs in
that it acts by chelating calcium and thus affecting the
TJs. In their seminal 1994 review on the toxicology of
PEs, Curatolo and Ochoa remind us of the fact that
many PEs are surfactants with a history of use in man
in drug products and in the food processing industry,
and that extensive safety testing was carried out on
many of these PEs in the 1950s.8

Fatty Acids

Sodium caprate (C10) is the sodium salt of capric acid
and is one of the most widely researched PEs.9-13
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Capric acid can be found in dairy products such as
milk, at levels as high as 0.2mM and in oils such as
coconut. It is an approved food additive with no daily
limit set by the World Health Organization and the
US Food and Drugs Administration.10,14

C10 is the main PE found in Merrion Pharmaceuti-
cal’s (Dublin, Ireland) Gastro-Intestinal Permeating
Enhancement Technology (GIPET�) technology, a
solid dose enteric coated matrix tablet with very high
concentrations of the MCFA and the payload; this sys-
tem was licensed in full to Novo-Nordisk. C10 along
with sodium caprylate (C8) is also present in NOD
Pharma’s (Shanghai, China) oral peptide formula-
tion.2 GIPET� I consists of an enteric coated matric
tablet, whereas GIPET� II is a microemulsion in an
enteric coated soft gel capsule containing C8 and
C10.

15 These fatty acids are mild surfactants and act as
detergents by fluidising the plasma membrane, leading
to an increase in intracellular calcium and alteration of
claudin-5 and tricellulin expression in TJs.10,12,16 Eme-
sis, weight loss and a reduction in food consumption
were observed in studies involving dogs administered
GIPET� I containing a dose of 0.9g/kg/day, but this
was likely due to the fact that the dogs ingested 18 tab-
lets a day. No morphological changes were showed
upon histological examination of canine intestinal tis-
sue,17 and further studies involving dogs given daily
doses of GIPET� I and II were well tolerated.

Chiasma’s (Jerusalem, Israel) Transient Permeabil-
ity Enhancer (TPE�) consists of a combination of
pharmaceutical excipients that result in an oily sus-
pension (OS) of hydrophilic particles in a hydropho-
bic matrix. TPE� has successfully completed
pharmacokinetic and pharmacological studies in rats
and monkeys and subsequently a multicentre 13
month Phase III trial in 155 acromegaly patients with
the somatostatin analog, oral octreotide
(MycappsaTM).18,19 It consists of octreotide solubilized
with C8 and other common excipients in the hydro-
philic component. As with other MCFAs, C8 in the
OS temporarily rearranged zonula occludens-1 (ZO-1)
in the tight junction.20 Furthermore, to establish safety
of long term use, daily doses of oral OS were adminis-
tered in high doses to Cynomolgus monkeys for 9
months.20 There were no significant changes in body-
weight, electrocardiogram, ophthalmic parameters,
haematological scoring or clinical pathology. Adverse
effects such as nausea were noted in the Phase III trial,
most of which occurred in the first 3 months, but

these were comparable to the injectable peptide coun-
terpart, suggesting these were not due to sodium
caprylate.

SNAC

The EligenTM technology (Emisphere, NJ, USA) com-
prises primarily the 3 low molecular weight molecules,
5–CNAC 8–(N-2-hydroxy-5-chloro-benzyol)-amino-
caprylate), SNAC (N-[8-(2-hydroxybenzoyl)amino]
caprylate and 4-CNAB (N-(4-chlorosalicyylol)-4-ami-
nobutyrate) for oral co-administration with peptides
including GLP-1, insulin, human parathyroid hor-
mone (PTH), and calcitonin.4,21,22 The Eligen� mole-
cules are thought to work by non-covalently
complexing with the peptide to form a hydrophobic
ion-pair, without reducing peptide bioactivity. SNAC
also reduced transepithelial electrical resistance
(TEER) and increased membrane fluidity in Caco-2
monolayers and increased the transepithelial transport
of heparin in vitro and in vivo.23-25 That TEER was
reduced in Caco-2 monolayers more reflected damage
caused by the high concentrations of SNAC required
to induce permeability increases in vitro rather than
any specific effect on tight junction openings. Riley
et al., carried out a sub-chronic oral toxicity test of
SNAC in rats and found a no observed adverse effect
(NOAEL) level of 1 g/kg/day in rats, with a massive
dose of 2 g/kg/day eventually causing significant mor-
tality.26 Gastrointestinal (GI) effects such as emesis
and diarrhea were observed in studies involving mon-
keys at a huge dose of � 1.8 g/kg/day. A number of
clinical studies have been published involving SNAC
and also the related enhancer, 5-CNAC.21,27–29 One
study was carried out in which sCT was administered
orally with 200mg 5-CNAC twice daily over 2 weeks
to 36 men and 37 postmenopausal women.21 Forty-
four mild adverse events were observed, some of
which were in the placebo group. Analysis of blood,
faeces and urine showed no effects on organs. Adverse
events relating to the GI tract were reported across all
study groups. GI disturbances such as nausea, diar-
rhea, abdominal pain, vomiting, loose stools and con-
stipation were also shown in a study with 5-CNAC
involving 277 postmenopausal women with 32%
reporting at least one event.28 Similar effects were seen
in another 5-CNAC study which included over 2000
participants and concluded that there were more
adverse GI reports in the patients receiving 0.8mg sCT
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formulated in the 5-CNAC carrier orally compared to
the matched placebo (26-30% compared to 46%).29 It
was thought that these adverse events were related to
sCT as they were comparable to those observed with
subcutaneous injection of sCT.

It is worth noting that the amount of 5-CNAC
administered in clinical trials to humans (200mg twice
daily) would equate to 0.005g/kg/day for a 80kg man
which is 200 times lower than the NOEL of 1g/kg/day
found in rats and doses found to be toxic in monkeys
(1.8g/kg/day).29 This suggests that the concentration
needed to be efficacious in humans is below that
which has been found to be toxic in animals.

SNAC is already on themarket in an oral product con-
taining large doses of the agent combined in tablets with
vitamin B12.

30 It has also recently been tested in Phase II
trials for the long-acting GLP-1 analog, semaglutide, by
NovoNordisk1 and has now entered Phase III.31

Acyl Carnitines

Carnitines, such as lauroyl carnitine chloride (LCC) and
palmitoyl carnitine chloride (PCC), have been shown to
act as PEs since the 1980s and have been included in for-
mulations by Enteris Technologies (NJ, USA) for para-
thyroid hormone (a PTH 1-34 analog) and the analgesic,
CR845. The PeptelligenceTM technology consists of an
enteric coated tablet containing citric acid, the peptide,
excipients and acyl carnitines. rhPTH (1–34)OH, an ana-
bolic peptide for the treatment of osteoporosis in post-
menopausal women was formulated with either LCC or
PCC and tested in a Phase II trial. LCC and PCC have
been found to reduce TEER and act by fluidising the
plasma membrane and altering the expression of tight
junction proteins such as ZO-1, Claudins (1,3 and 5) in
vitro.32,33 An oral sCT (TbriaTM) completed Phase III in a
study carried out by Tarsa Therapeutics in 2015, but citric
acid and not carnitines were included in the formulation
in this first application of this technology to the FDA,
although some literature remains somewhat confused
over this point.34 A study of a formulation containing
[rhPTH(1-31)NH2] with an acylcarnitine in postmeno-
pausal women with osteoporosis had adverse events such
as abdominal pain, but they were attributed to PTH
rather than the acylcarnitine.35

Bile Salts

Bile salts including sodium taurodeoxycholate, ursodeox-
ycholate, taurocholate and chenodeoxycholate have been

used to enhance the intestinal permeability of insulin.36

Bile salts are naturally occurring in the small intestine,
at concentrations up to 8mM in the fasted state and
18mM in the fed state, and can form mixed micelles
with lecithin, fatty acids and cholesterol.37,38 The NOD
formulation is an enteric coated nanoparticle consisting
of insulin and other components, one of which is a bile
salt. Oramed’s (Jerusalem, Israel) PODTM technology
consists of PEs including EDTA and bile salts combined
with a peptide in an oily suspension with omega-3 fatty
acids.1 Oramed has completed 2 Phase IIa trials for
insulin and recently enrolled patients for a Phase IIb
trial.1

Due to the fact that a lot of the formulations in clin-
ical trials are proprietary, the accurate determination
and concentrations of PE(s) included may be undis-
closed and most trials are not published in peer-
reviewed literature. This makes it difficult to comment
on the effects they may have on epithelial damage and
repair and, therefore, apart from summaries of trial
safety, the specific evidence to assess is primarily based
on preclinical studies. In clinical trials the PE is
administered in a formulation containing both the
active pharmacological ingredient (API) and it is usu-
ally not possible to discriminate the adverse events.

Damage and Repair

It has been hypothesized that the high concentrations of
PEs required to be efficacious in man are more consistent
with an initial event of perturbation of the plasma mem-
brane rather than selective paracellular flux enhance-
ment.39 The peptides may then traverse either
paracellularly, and/or transcellularly in mixed micelles
with bile salts, although evidence for the latter pathway is
yet to be fully deciphered.40 It is known that the concen-
tration of PE and the time it is in contact with the epithe-
lia plays a role in the extent of the perturbation caused.

Normal repair mechanism

In order for a PE to perturb the intestine it must first
overcome physiological defense mechanisms. Extrin-
sic barriers including mucus, bicarbonate and prosta-
glandins (PGE) as well as gastrointestinal (GI)
motility are involved in preventing damage to small
intestinal tissue.8,41,42 The small intestine can be
exposed to and can normally cope with a range of
challenges: e.g. alcohol, food (spices and fatty meals)
and drug molecules (e.g., non-steroidal anti-
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inflammatory drugs, laxatives and chenodeoxycholate,
a bile salt used to dissolve gall stones).42-44 Every 3
days the small intestinal epithelia is entirely renewed,
and each day, 1011 epithelial cells are shed.45,46 There
is a high rate of cellular turnover and the intestine has
a high capacity to replace cells, due to migrating stem
cells from the intestinal crypt (Fig 1). There are also a
reserve of stem cells that are dormant until epithelial
injury occurs, at which point they are recruited to

assist with restoration.46,47 Intestinal repair is a com-
plex process which involves many factors that are still
not completely understood. For a compressive review
of repair and restoration of the intestinal barrier see
Blikslager et al.48

The main outcome from repair is to restore the
integrity of the barrier. Stage 1 involves contraction of
the villi to reduce the surface area that requires
repair.48 Synthesis of cyto-protective prostaglandin E

Figure 1. Intestinal epithelium: Scanning electron micrograph (SEM) (left) of (a) small intestine, villus can be observed, (b) colon which
has no villi but multiple crypts. Diagram of the intestine (right) showing the crypt which contain stem cells which divide into proliferat-
ing transint-amplyfing (TA) cells which differentiate into cells such as enterocytes, goblet cells (which secrete mucus) and tuft cells. +4
stem cells are believed to act as reserve stem cells to replace LGR5+ stem cells during injury thus restoring the normal cell renewal pro-
cess. During cell renewal, which takes 3-5 days, cells migrate from the crypt up toward the villi. At the top of the villi, anoikis or pro-
grammed cell death occurs. This is also the site of cell sloughing during intestinal injury. Reproduced with permission.46
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analogs and prostacyclin also increase after injury.49

Stage 2 is restitution or migration, where adjacent
healthy epithelia begin crawling using lamellipodia in
order to patch exposed areas between cells.43 A num-
ber of cofactors including polyamines and trefoil pep-
tides are also involved. Stage 3 is restoration of the
barrier involving repair and closure of paracellular
spaces. For the repair to be complete, the TJs must
become fully functional again; ZO-1 and ZO-2 are
particularly important as they are integral to assembly
and maintenance of TJs as they have physical contact
with most of the other TJ proteins.50 Within 18-24 h
cell proliferation from the crypt cells is activated.
Inflammation also plays a role in damage repair: neu-
trophils in the lamina propria and sub-epithelium are
sources of inflammatory prostaglandins and IL-1b;
they also affect tight junctions and increase paracellu-
lar permeability when migrating across the tissue by
releasing TJ-damaging proteases.48 Studies have been
carried out on the mechanism by which damage
caused by ischemia is repaired 48 Damage includes cell
sloughing at the tip of the villi and in the crypts,
depending on the extent of the damage, and this is
commonly seen with PEs in rodent studies. This indi-
cates that the intestinal epithelia is highly robust and
would suggest that any damage caused by PEs should
be equally capable of being rapidly repaired, and this
has been confirmed in a range of in vitro, ex vivo and
in vivo preclinical intestinal models, as well as in a
human study with C10.

17

PE-induced intestinal epithelial damage

At effective concentrations, sodium caprate (C10), has
been shown to reversibly reduce TEER in Caco-2
monolayers.9,12,51 The tight junctional integrity can be
monitored in real time by quantifying TEER, many
PEs fluidise the epithelial plasma membrane and ulti-
mately rearrange tight junctions, so TEER decreases
are seen as a secondary effect. C10 reversibly reduced
TEER at 8.5 mM in Caco-2 monolayers, which then
recovered within 4 h of exposure.13 This study also
investigated the effect of pre-treatment with the pros-
taglandin analog, misoprostol, which is a cytoprotec-
tant and prevents damage induced by repeat dosing of
non-steroidal anti-inflammatory drugs (NSAIDs).
PGE regulates a number of intestinal processes such
as blood flow and motility and in part prevented both
the C10-induced permeability increases and epithelial

damage in monolayers and in rat in situ intestinal
loop instillations.13

High content analysis (HCA) is a cell-based high
throughput assay which analyses sub-lethal cytotox-
icity parameters including plasma membrane per-
meability (PMP) and intracellular calcium. PMP
after exposure to 8.5mM C10 was transiently
increased and recovered to control levels after
8 h.13 Damage and recovery of the intestinal barrier
histology to exposure to 8.5 mM C10 was further
confirmed in isolated rat intestinal mucosae in
Ussing chambers and also in situ instillations of
intact rat intestinal loops when exposed to 100mM
C10. In the in situ intestinal instillation rat model,
repair occurred within 30-60 min; due to an intact
mesenteric blood supply, this was much faster than
in the in vitro models.39 In the in situ study, fluo-
rescein isothiocyanate-labeled dextran (4 kDa)
(FD4) was instilled either at the same time or 10,
30 or 60 min following addition of C10. The highest
absolute bioavailability (33%) and membrane per-
turbation was seen when C10 and FD4 were co-
administered together, whereas FD4 instilled 60min
after C10 had a bioavailability of just 4% . The lack
of FD4 bioavailability from the protocols where C10

was administered ahead of it was likely due to the
intestinal barrier recovering from C10 in advance of
FD4 exposure, although it is also possible that
luminal concentrations of C10 dropped off as it per-
meated per se (Fig 2). Studies were also carried out
in 24 human subjects investigating the ratio of
mannitol and lactulose (LMER) in urine to see the
effects of C10 on intestinal paracellular permeability
in vivo. The two sugars were given orally 20, 40
and 60 mins following intra-jejunal administration
of 0.5g C10. Similarly to the results obtained by
Wang et al, only when the sugar was administered
20 min after the C10 was an increase in LMER
seen, whereas no differences were detected at 40
and 60 min gaps. This human study also suggests
that the epithelium had repaired from the mild
challenge before the sugars were ingested.17

Chiasma also tested their Transient Permeability
Enhancer (TPE�) formulation in rats using a similar
study design.20 FD4 was administered into the jejunum
via a cannula 0, 30 and 60 min after their formulation
and it was found that the area under the curve (AUC)
was reduced when the FD4 was administered 60 min
(8§ 1 AU) after the C8-containing formulation
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compared to 10min (64§ 15 AU). These results suggest
that, as with C10, the effects on intestinal permeability
are temporary and reversible for TPE�.

Swenson et al. also investigated toxicity of a num-
ber of surfactants including the bile salts, sodium taur-
ocholate (TC) and sodium taurodeoxycholate (TDC)
in rats.45 Using an intestinal single pass perfusion
model, they used biochemical read-outs (e.g., lactase
dehydrogenase (LDH)) and morphological changes
(e.g. shortening of the villi) to assess PE-induced dam-
age associated with absorption of the marker, phenol
red. Their results suggest that damage was reversible
in this model within 1-3 h after removal of surfactant,
which would likely occur during normal gut transit.
Using pig ileal tissue in Ussing chambers, Gookin

et al. found that the bile salt sodium deoxycholate
(6 mM, 15 min) reduced TEER, but that recovery was
also observed within 3 h.49 Epithelial villous tip dam-
age was observed post-treatment, but it had begun to
be restored at 210 min (Fig 3). Overall, intestinal epi-
thelia structural and functional recovery seems to
occur within 1-3 h in many different in vitro and in
vivo bioassays with most of the PEs that are currently
present in oral peptide formulations in clinical trials.

PE-induced intestinal permeability of LPS
and xenobiotics

One of concerns about PEs is that the compromised
barrier may allow translocation of potentially

Figure 2. Histology of rat colonic tissue (haemotoxylin and eosin stained) following instillations (A) saline control, (B) C10 (100 mM) after
10 min (C) C10 (100 mM) after 30 min, (D) and C10 (100mM) after 60 min. Horizontal bars = 250 mm. Cell sloughing, one of the first signs
of mucosal damage can be observed in B. Note that these high concentrations are the minimum required to induce increased perme-
ability in preclinical rat models in vivo. Reproduced with permission.39

Figure 3. Histologic appearance of porcine tissue after removal from the Ussing chamber. Tissue was treated with the bile salt, sodium
deoxycholate. After 30min, epithelial loss is visible from the tips of villi. Epithelial losses continued for the first 45-min of recovery culmi-
nating in peak injury at time = 75-min. Between 75 and 210-min there was partial restitution of the injured villi by flattened to cuboidal
migrating enterocytes. Uninjured control tissue maintained epithelial continuity throughout the study period. Magnification, 314X.
Reproduced with permission.49
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dangerous bystanders such as bacteria, viruses, lipo-
polysaccharide (LPS), LPS fragments, toxins and
allergens. LPS refers to the cell wall endotoxin com-
ponents of Gram-negative bacteria and it consists of
a hydrophobic lipid (Lipid A) and a hydrophilic car-
bohydrate core with polysaccharide O-antigen,
which can promote an inflammatory response.52

LPS in the gut lumen does not normally permeate
intestinal epithelia, whereas, when the intestinal bar-
rier is compromised in certain diseased states, it is
thought to have some capacity to translocate.53,54 A
recurring concern over the safety of intestinal PEs is
therefore co-absorption of LPS or other xenobiot-
ics.10 This concern is controversial, as theoretically
the maximum diameter of an open small intestinal
TJ is »10nm when co-administered with PEs work-
ing in part by that mechanism, whereas the TJ
diameter is »1nm in the normal state.55 LPS itself
induces an increase in intestinal permeability via an
intracellular mechanism involving TLR-4 receptors,
however, this was only observed in vitro when LPS
was present in the basolateral chamber of Caco-2
monolayers or in vivo when injected via intra-peri-
toneal route.56,57 It has also been shown that gut
ischemia increases the permeability of LPS by pas-
sive transcellular diffusion58 and in addition,
Shigella-derived LPS was trafficked across epithelial
cells by endosomal compartments.59 This suggests
that the presence of LPS in the gut lumen does not
affect intestinal permeability per se, but there is
debate over whether its passage can be promoted in
vivo by selected PEs, and if so, to what extent.

The following analysis may help clarify matters.
The relationship between the molecular weight (MW)
and paracellular permeability across intestinal epithe-
lia has been well established, with limited permeability
detected for polyethylene glycol (PEG) >700 Da
across human jejunal tissue.60 C8-induced permeation
enhancement of FITC-dextrans across the rat small
intestinal epithelium in vivo was inversely correlated
with dextran MW and insignificant permeation was
detected at 70 kDa.20 As the MW of enterobacterial
toxins range from 70-900 kDa and LPS is >100 kDa,
it would suggest that PEs are unlikely to open TJs suf-
ficiently to allow 'by-stander’ LPS or xenobiotics to
permeate.20 Furthermore, E. coli (pHTK3) was not
able to translocate across Caco-2 monolayers in the
presence of C10, but it was translocated in the presence
of the strong detergent, Triton�-X-100 (16mM),10

easily accounted for by the irreversible monolayer
damage and compromised barrier. S. typhimurium
was not able to translocate across isolated rat ileal
mucosa upon co-exposure to C10 (1-30mM).61 The
lack of facilitation by C10 may in part be due to known
anti-bacterial effects of MCFA, which may pose ques-
tions on its possible unbalancing effects on gut micro-
biota, although this would be unlikely to occur due to
the rapid absorption of MCFAs in the gut. In relation
to other oral peptide technologies based on nanotech-
nology, when LPS was administered to mice orally for
7 consecutive days with or without co-administration
of a chitosan-based insulin-entrapped nanoparticle
(Fig 4), there was no increase in LPS serum levels nor
damage to hepatic tissue.62 Furthermore, the cell-pen-
etrating peptide (CPP) penetratin, acts as a transient
transcellular absorption enhancer based on non-cova-
lent electrostatic interaction with the insulin payload,
not unlike the mechanism of the Eligen� technology.
When penetratin was also orally co-administered with
LPS daily for 7 days in mice, there was no significant
increase levels in liver enzymes.63 Although, one par-
ticular study demonstrated an increase in serum LPS
after prolonged exposure to food- and pharmaceutical
grade emulsifiers, carboxymethylcellulose (1% w/v) or
polysorbate-80 (1% w/v) in wild type and IL-10
knock-out mice.64

However, the foregoing is predicated on the risk for
bystander entry solely according to a MW and molec-
ular diameter-based argument. This can lead to other
more subtle aspects being overlooked, such as the
potential of PE-induced permeability of LPS frag-
ments,65 permeability of food allergens,66,67 damage
due to repeat dosing of PEs, and exacerbation of dam-
age to people with impaired intestinal function due to
disease state or dietary intake.68-70

Models for Testing Safety and Toxicity of PEs

Transwell� filter models of cultured human intesti-
nal epithelial cell lines are often used as an initial in
vitro screening of PEs, and typically involves culture
of a Caco-2 cell monolayer on a porous semi-per-
meable membranes.51 The monolayer integrity can
monitored by quantifying TEER. However, cell
based assays are well-known to overestimate the
damage that occurs upon exposure to PEs, as the
repair mechanism may not be fully intact due to a
lack of mucus, co-factors, and supporting cell
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types.45 As the filter model lacks a blood supply, sig-
naling events and cytokines may not be present at
the level of in vivo, resulting in a reduced capacity
for cell division and repair. This can also be seen
with in vitro toxicity testing of PEs using Caco-2
cells with the (3-(4,5-dimethylthiazol-2-yl)-5-(3-car-
boxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazo-
lium) MTS and lactate dehydrogenase (LDH) assays,
which show high levels of damage compared to in
vivo studies for the same agents.13

Mucus can buffer the effects of a PE, however the
Caco-2 model fails to account for this unless an alter-
native mucus-producing epithelial co-culture or a
sub-clone is used (e.g., HT29-MTX-E12).71 Similarly,
3-dimensional (3D) dynamic in vitro Caco-2 and
human microvascular endothelial cells (hMECs)
showed morphology similar to microvilli in vivo.72

Attempts are being made to create more physiologi-
cally relevant cell models such as human gut-on-a-
chip constructs (Fig 5), in which Caco-2 can be cul-
tured to mimic the biomechanical, structural and
pathophysiological properties of the human gut,
including spontaneous villi formation.73

Isolated ex vivo intestinal tissue from rat and
human has been tested with PEs in Ussing cham-
bers,74-76 as well as in everted rat gut sacs.77 Although
these systems account for villi, increased transporter
expression and mucus secretion, they lack blood sup-
ply which assists complete mechanistic repair of dam-
aged tissue. Barthe et al., recommend that the
intestinal sac model cannot be relied upon for accurate

flux data beyond 60 min, even when maintained in
culture medium.78 Isolated intestinal tissue mucosae
mounted in Ussing chambers is also sensitive to oxy-
gen tension and nutrient supply, while edge damage
can occur during chamber mounting. The most rele-
vant systems therefore to test intestinal damage are
oral gavage and intact intra-intestinal loop instilla-
tions/perfusions as these use intact tissue with a
mesenteric blood supply.43 Instillations/perfusions
reveal local damage to the intestinal segment, but
repair occurs more readily than in in vitro. These stud-
ies cannot however, examine repeat-dosing regimens
in which damage may be accumulated and not have
sufficient time to fully recover before the next chal-
lenge. Such models provide information on mucosal
inflammatory responses and on serum biomarkers of
normally excluded molecules present in the GI tract.
Finally, instillation/perfusion models can permit a his-
tological scoring system to be established, such as the
one used by Swenson et al.45 For example, changes in
villi height could be a useful tool in assessing damage
induced in such models by PE-containing formula-
tions and may allow for rank ordering the toxicity
potential of families of PEs.49,79

Conclusion

It has well known that small intestinal epithelial
damage is caused by many of the PEs in current
oral peptide clinical trials and the extent of the
damage seems to vary between them. For the

Figure 4. Confocal images showing the intestinal absorption of FITC-LPS (green) after its oral administration in the absence/presence of
a mucolytic agent (N-acetylcysteine). In the presence of the mucolytic agent, the mucus layer (red) became thinner, and FITC-LPS was
observed underneath the epithelium (indicated in the superimposed image by the white arrows), an indication of the intestinal absorp-
tion of LPS. Reproduced with permission.62
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majority, histological damage is temporary and
repairable and it is not unlike the stress the intes-
tine undergoes on a day-to-day basis from food,
alcohol, and a range of therapeutics including aspi-
rin. It is still unknown however if chronic repeat
dosing of such PEs in man could overcome the
body’s natural ability to repair or create conditions
for allergies or autoimmune conditions. Since some
of these PEs including SNAC, C8, C10 and acyl car-
nitines are currently in advanced clinical trials, it is
conceivable that several enhancer-based formula-
tions will soon be on pharmacy shelves for selected
highly potent oral peptides with a high therapeutic
index. Post-marketing surveillance will decipher
the true toxicological effects of repeat dosing of
selected PEs in such high doses. A conservative
approach would suggest that PE-containing formu-
lations should not be prescribed for patients with
inflammatory bowel disease, irritable bowel syn-
drome or celiac disease.
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