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Abstract

Discriminating the gene target of a distal regulatory element from other nearby transcribed genes 

is a challenging problem with the potential to illuminate the causal underpinnings of complex 

diseases. We present TargetFinder, a computational method that reconstructs regulatory landscapes 

from genomic features along the genome. The resulting models accurately predict individual 

enhancer-promoter interactions across diverse cell lines with a false discovery rate up to fifteen 

times smaller than using the closest gene. By evaluating the genomic features driving this 

accuracy, we uncover interactions between structural proteins, transcription factors, epigenetic 

modifications, and transcription that together distinguish interacting from non-interacting 

enhancer-promoter pairs. Most of this signature is not proximal to the enhancers and promoters, 

but instead decorates the looping DNA. We conclude that complex but consistent combinations of 

marks on the one-dimensional genome encode the three-dimensional structure of fine-scale 

regulatory interactions.

Introduction

Genotyping, exome sequencing, and whole-genome sequencing have linked thousands of 

non-coding variants to traits in humans and other eukaryotes1–6. Non-coding variants are 

more likely to cause common disease than are non-synonymous coding variants7, and they 

can account for the vast majority of heritability8. Yet few non-coding mutations have been 

functionally characterized or mechanistically linked to human phenotypes7,9. Comparative10 

and functional11–13 genomics, coupled with bioinformatics, are generating annotations of 

regulatory elements in many organisms and cell types14, as well as tools for exploring or 

predicting the impact of mutations in regulatory DNA15–18. However, this new information 

will only improve our understanding of disease and other phenotypes if we can accurately 

link functional non-coding elements to the genes, pathways, and cellular processes they 
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regulate. This is a difficult problem because vertebrate promoters and their regulatory 

elements can be separated by thousands or millions of base pairs (bp)19. The closest 

promoter is usually not the true target in humans20, though this varies by species21, but 

remains a common heuristic for mapping target genes. Incorrectly mapping regulatory 

variants to genes prevents meaningful downstream studies.

Until recently, very few validated distal regulatory interactions were known. Hence, previous 

studies defined interactions indirectly via genomic proximity coupled with genetic 

associations (e.g., eQTLs22), gene expression14,23–25, or promoter chromatin state26,27. 

High-throughput methods for assaying chromatin interactions now exist, including paired-

end tag sequencing (ChIA-PET)28 and extensions of the chromosome conformation capture 

(3C) assay29 (5C, Hi-C)30,31. When resolution is high enough to measure individual 

enhancer-promoter interactions32–35, Hi-C provides an opportunity to examine the genomic 

features that distinguish the true target of an enhancer from other nearby expressed genes. 

We hypothesized that modeling relationships between DNA sequences, structural proteins, 

transcription factors and epigenetic modifications that together predict looping chromatin 

might reveal novel protein functions and molecular mechanisms of distal gene regulation 

that are not immediately obvious from the Hi-C data itself.

We implemented an algorithm called TargetFinder that integrates hundreds of genomics 

datasets to identify the minimal subset necessary for accurately predicting individual 

enhancer-promoter interactions across the genome. We focused on enhancers due to their 

large impact on gene regulation36 and our ability to predict their locations genome-wide, 

though our approach works with other classes of regulatory elements. Our goal was to build 

a fine scale model capable of distinguishing individual enhancer-promoter pairs from 

amongst the many possible interactions within a topologically associating domain (TAD) or 

contact domain. Applying TargetFinder to six human ENCODE cell lines11 with high 

resolution Hi-C data32, we discovered that interacting enhancer-promoter pairs can be 

distinguished from noninteracting pairs within the same locus with extremely high accuracy. 

These analyses also showed that functional genomics data marking the window between the 

enhancer and promoter are more useful for identifying true interactions than are proximal 

marks at the enhancer and promoter. Exploration of this phenomenon revealed specific 

proteins and chemical modifications on the chromatin loop that bring an enhancer in contact 

with its target promoter and not with nearby active but non-targeted promoters. Thus, 

TargetFinder provides a framework for accurately assaying three-dimensional genomic 

interactions, as well as techniques for mining massive collections of experimental data to 

shed new light on the mechanisms of distal gene regulation.

Results

Distal enhancers physically interact with promoters of their target genes over long genomic 

distances while avoiding other nearby active and inactive promoters via precise chromatin 

looping. We hypothesized that transcription factors, histones, and architectural proteins 

might combine to distinguish these distal regulatory interactions from other regions of the 

genome. If so, it should be possible to computationally model known interactions from 
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independent functional genomics data, and the most important genomic features in the 

model might shed light on the mechanisms of gene regulation in three dimensions.

Annotating the genomic features of regulatory interactions

We annotated enhancer-promoter interactions in six human ENCODE cell lines that have 

rich functional genomics data as well as high resolution interaction data produced by Rao et 

al32: K562 (mesoderm lineage cells from a leukemia patient), GM12878 (lymphoblastoid 

cells), HeLa-S3 (ectoderm lineage cells from a cervical cancer patient), HUVEC (umbilical 

vein endothelial cells), IMR90 (fetal lung fibroblasts), and NHEK (epidermal keratinocytes). 

We identified active promoters and enhancers in each cell line using segmentation-based 

annotations from ENCODE and Roadmap Epigenomics, as well as gene expression data 

from ENCODE (Supplementary Table S1). Enhancers are typically a few hundred base paris 

(bp) long, while promoters are mostly between 1–2 kilobases (Kb) (Supplementary Figures 

S1 to S3). Alternative enhancer and promoter definitions produce qualitatively similar 

results (Supplementary Text).

We annotated all enhancer-promoter pairs as interacting or non-interacting using high 

resolution genome-wide measurements of chromatin contacts in each line32, the majority of 

which were also detected by capture Hi-C35. Non-interacting pairs were sampled (20 per 

interacting pair) to have enhancer-promoter distances similar to interacting pairs, all of 

which were less than 2 megabases (Mb). To focus on distal regulatory enhancers, any pair 

separated by less than 10 Kb was dropped. We did not remove interactions crossing TAD 

boundaries, but most enhancer-promoter pairs occur within the same TAD (88% in 

GM12878, 77% in K56237). It is important to emphasize that by design all enhancers and 

promoters in our study, including those in non-interacting pairs, have marks of activation 

and open chromatin. The challenging question we address is whether interacting pairs have 

any distinguishing characteristics.

We generated features for all enhancer-promoter pairs in each line using functional 

genomics data such as measures of open chromatin, DNA methylation, gene expression, and 

chromatin immunoprecipitation followed by sequencing (ChIP-seq) for transcription factors 

(TFs), architectural proteins, and modified histones (Supplemental Table S2). We quantified 

signal at the promoter, at the enhancer, and in the genomic window between them. We also 

computed features for conserved synteny of the enhancer and promoter, as well as the 

similarity of TF and target gene annotations, which are associated with experimentally 

validated interactions25.

Finally, we created a “combined” dataset by pooling the enhancer-promoter pairs and 

features from 4 cell lines (K562, GM12878, HeLa-S3 and IMR90), which we used to 

discover features of looping chromatin that generalize across lines. Only features measured 

in all four lines were retained to avoid problems with missing data. NHEK and HUVEC had 

only ~ 20 datasets (versus > 50; Supplemental Table S2) and were hence excluded from the 

combined dataset.
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No single feature distinguishes the true targets of active enhancers

Signal profiles at enhancers and promoters show many expected differences between 

interacting and non-interacting pairs. These include higher Pol II signal at the transcription 

start site (TSS) of interacting promoters (Figure 1a) and enrichment of H3K27ac and 

H3K4me3 with depletion of H3K4me1 in regions flanking the TSS of interacting promoters 

(Figure 1b–d). Across cell types, CTCF and RAD21 are enriched near interacting promoters 

(Figure 1e–f). Structural proteins and their cofactors are also enriched nearby interacting 

enhancers (Figure 2).

However, any given interaction has a complex combination of genomic features, some of 

which also occur at non-interacting pairs in the same locus. For example, LPIN3 has an 

enhancer that loops over approximately 400 Kb of intervening DNA containing the active 

promoters of TOP1, PLCG1, and ZHX3 in K562 (Figure 3). No single mark distinguishes 

LPIN3 from these alternate targets, though their gene bodies are covered by broad repressive 

marks (heterochromatin-associated H4K20me1) and by broad activating marks (elongation-

associated H3K36me3). Notably, alternate promoters lack a RAD21, while ZHX3 and 

PLCG1 are lacking CUX1 which has been linked to both activation and repression. In 

GM12878, an intronic enhancer targeting CUTC loops over the promoter of ENTPD7, 

which has many activation marks but lacks RAD21 (Supplementary Figure S5). This 

complexity motivated us to model enhancer-promoter interactions as a function of diverse 

genomic signatures.

Ensemble learning predicts enhancer-promoter pairs with high accuracy

To quantitatively model the interaction status of enhancer-promoter pairs as a function of 

their genomic features, we built a machine learning pipeline called TargetFinder (Figure 4). 

The inputs are pairs of enhancers and promoters, annotated as interacting or not, and 

genomic features associated with each pair. The algorithm finds an optimal combination of 

features for distinguishing interacting from noninteracting pairs. Multiple machine learning 

techniques are implemented in the pipeline in a modular way so that performance can be 

optimized and conclusions can be tested for robustness to the prediction method. The 

outputs are a model for predicting if new enhancer-promoter pairs interact, assessments of 

model performance on held-out data, and estimates of each feature’s individual importance 

to the model as well as in combination with other features. The predictive contribution of 

different genomic regions and data types is explored by varying the feature set and 

quantifying predictive performance. By building models for many cell types, their shared 

and unique characteristics of looping chromatin can be discovered. The method is easily 

extended to other types of regulatory elements or interactions, such as promoter-promoter or 

enhancer-enhancer interactions.

We hypothesized that ensemble learning algorithms would have the highest precision and 

recall on held-out data, because they are robust to over-fitting and account for non-linear 

feature interactions that could encode complex patterns of histone modifications and TF 

binding. Indeed, ensembles of boosted decision trees performed better than other methods 

and a random guessing null model on all cell lines and the combined data set (Figure 5a, 

Supplementary Table S3). Accuracy is high by all measures, especially given the noise in 
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functional genomics data and the fact that some non-interacting pairs may be weakly 

interacting but below the significance cutoff (10% FDR32). TargetFinder with boosted trees 

achieves F1 between 77–90% (mean = 83%) and FDR between 8–15% (mean = 12%). By 

comparison, all commonly used bioinformatics methods have much higher FDR and lower 

recall. For example, using the closest active gene has an FDR of 53–77%20,38,39. The gain in 

predictive accuracy provided by ensemble learning is consistent across cell lines and in the 

combined data set (Supplementary Figure S6). This predictive accuracy demonstrates that 

there is rich information about chromatin looping in one-dimensional genomic datasets that 

are easier and less costly to collect than high-resolution Hi-C.

Variable importance highlights key datasets for predicting interactions

We next asked if the ability of TargetFinder to predict enhancer-promoter interactions 

depends on a particular subset of the features. By omitting different categories of features 

and evaluating performance with cross-validation, we learned that synteny and gene 

annotations contribute little to predictive accuracy. We therefore proceeded to evaluate 

models using only functional genomics features.

To derive mechanistic insights from the model, TargetFinder estimates feature importance 

for each genomics dataset within enhancer, promoter, and window regions (Methods). 

Decision trees inherently estimate predictive importance when deciding which features to 

split; importance is estimated per feature per tree, then averaged across all trees in the 

ensemble (Methods). This enabled us to deeply explore the genomic data associated with 

chromatin loops and revealed several interesting patterns.

The most predictive features that were robust across cell lines were DNA methylation, 

activation- and elongation-associated histone marks, binding of structural proteins, open 

chromatin, proteins related to repression (MXI1/MAZ/MAFK), and Cap Analysis of Gene 

Expression (CAGE) (Figure 6). Other trends emerged across many but not all cell lines, 

including the importance of the activator protein 1 (AP-1) complex40. Features differ in 

importance across cell lines for many reasons, including real functional differences (e.g., 

different co-factors), lack of expression (e.g., tissue-specific TFs), and differences in lab 

protocols and antibody qualities (Supplementary Figure S7). Interestingly, though there is 

some overlap with known looping factors such as CTCF and cohesin, features predictive of 

individual enhancer-promoter interactions are largely different than those used to identify 

TAD boundaries and large-scale chromatin organization37. This points to different molecular 

mechanisms operating across these scales.

Proteins bound between enhancers and promoters predict if they interact

TargetFinder mines a diverse collection of hundreds of genomic features to build its models. 

To determine if such a large feature set is needed, we applied recursive feature elimination 

(Methods). Nearly optimal performance requires only ~16 features (Figure 5c), with 

performance varying by cell line due to differences in the number of enhancer-promoter 

pairs as well as the quality and quantity of functional genomics data (Supplementary Text).

Many of the top features for each line and the combined model are from the genomic 

window between the enhancer and the promoter, rather than proximal signals at the 
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regulatory elements (Figure 7a). This is true despite the fact that average signal (e.g., ChIP-

seq peak density) is higher at enhancers and promoters for most features (Figure 7b). To 

further validate the importance of features marking the looping chromatin, we retrained 

TargetFinder with two alternative sets of features per cell line. The first included features for 

the enhancer and promoter only (EP), and the second included features for an extended 

enhancer (utilizing 3 Kb of flanking sequence) and a non-extended promoter (EEP) to test 

the hypothesis that only the enhancer-proximal part of the window is important for 

predicting looping. We found a large performance gap when using only the enhancer and 

promoter, without marks flanking the enhancer or in the window (Figure 5b). This indicates 

there is significant information relevant to looping interactions outside the enhancers and 

promoters themselves, which we observe consistently across cell lines (Figure S6). 

Performance was better for EPW than EEP, especially after accounting for the lower 

dimensionality of EEP (2 regions versus 3 per genomics dataset), which generally improves 

the performance of machine learning models. Using smaller windows around the enhancers 

for EEP resulted in lower performance, showing that the signal is not immediately next to 

the enhancer. Thus, signals relevant to looping are located throughout the genomic window 

between an enhancer and promoter, but especially within 3 Kb of the enhancer.

The surprising discovery that the interaction status of an enhancer-promoter pair can be 

predicted with high accuracy using protein binding and epigenetic marks on DNA between 

them, plus a few proximal marks, made sense when we examined the specific window 

features and combinations thereof that the model ranked most important. Some window 

features are directly involved in chromatin looping including CTCF, the cohesin complex 

(SMC3/RAD21), and zinc finger proteins such as ZNF384 and ZNF143. The latter interacts 

with CTCF to provide sequence specificity for chromatin interactions41 by binding lineage-

specific TFs at interacting promoters (e.g., HCFC1 in HeLa-S342). Other window features 

impact the likelihood that additional promoters in the locus are the true targets of an 

enhancer. For example, RNA polymerase II (Pol II) at a promoter is not predictive by itself 

because it can indicate either active transcription or a gene that is poised for rapid activation. 

Such non-targets are distinguished by a lack of activators or co-activators43 as well as 

elongation-associated histone marks H3K36me3 and H3K79me2. When these features occur 

in the window between an enhancer and a promoter, they increase the likelihood that an 

intervening promoter may be the true target. On the other hand, the presence of 

heterochromatin, PRC2 silencing44, and various insulators in the window suggest that 

intervening genes are unavailable for binding and are therefore associated with non-

interacting pairs in our analyses (Supplementary Figures S11 and S12). However, note that 

many interacting pairs have different architectures and are exceptions to this trend, including 

the distal enhancer of LPIN3 in Figure 3. This emphasizes that TargetFinder accurately 

predicts interactions by learning complex genomic signatures across loci.

Window features do not directly encode distance between the enhancer and promoter, 

though they may serve as a kind of proxy for active chromatin or domain boundaries. To 

offset this possibility, we matched the distance distributions for interacting and non-

interacting pairs and normalized features by the length of the region. TargetFinder has high 

precision and recall largely independent of enhancer-promoter interaction distances in the 

range of 10 Kb to 2 Mb (Supplementary Figure S8). In fact, performance often increases 
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with interaction distance, which is consistent with window features encoding information 

about contact domain boundaries. Indeed, domain boundaries are significantly enriched in 

non-interacting pairs compared to interacting pairs separated by similar distances 

(Supplementary Figure S4). Window-associated marks may also be proxies for relevant but 

unassayed histone modifications marking alternate targets45.

TargetFinder identifies complex interactions between DNA-binding proteins and epigenetic 
marks

The complex patterns of co-occurrence between DNA-binding proteins and known looping 

factors reveal mechanistic insights into the looping process itself. For example, we found 

that CUX1 and HCFC1 interact with CTCF and RAD21 within enhancers to increase the 

likelihood of looping interactions in K562 (Figure 2). Interestingly, CUX1 is also 

significantly enriched at interacting promoters (Figure 1g), while HCFC1 is not (Figure 1h). 

The importance of co-factors extends beyond this example. TargetFinder identified 

numerous cell type-specific TFs with high feature importance that increase the probability of 

an enhancer being involved in an interaction when they co-occur nearby the enhancer with 

CTCF and/or RAD21. This emerged only because we quantified features separately at 

enhancer, promoter, and window regions.

We also learned that proteins performing multiple functions are rarely predictive on their 

own. Instead, TargetFinder learns to utilize co-factors that determine their function. For 

example, histone acetyltransferase EP300 is rarely a top ranked feature, despite its strong 

association with active enhancers due to its ability to acetylate H3K2746. However, EP300 is 

correlated with highly predictive cofactors such as C/EBPβ that phosphorylates and 

modulates the activity of EP300, as well as translocates it to specific gene regions47. The 

high predictive importance of C/EBPβ may thus be due to its ability to determine the 

localized activity of EP300.

To further explore such context dependence, we plotted the predictive rank of an individual 

feature against its predictive rank when combined with other features (Figure 8). We observe 

many off-diagonal features that are not useful on their own (larger rank) but are extremely 

predictive (lower rank) in combination with additional features. In K562, for example, these 

include WHSC1, SUMO2, CUX1, and H2AZ. The latter two were assayed in other cell lines 

and show a similar pattern. Across cell lines, large rank changes commonly include 

activating histone marks such as H3K9ac and H2AZ that may help distinguish active from 

poised enhancers and promoters within window regions that cannot be discriminated by 

single activation marks. The elevated importance of H2AZ might also be explained by the 

link between H2A ubiquitination and polycomb silencing48. Chromatin modifiers such as 

methyl- and acetyltransferases also appear to disambiguate the state of enhancers and 

alternate promoter targets.

TargetFinder efficiently screens new datasets for relevance to chromatin looping

Motivated by results showing histone modifications can be predicted by TF binding45, we 

sought to determine if predictive TFs were proxies for important but unassayed post-

translational modifications such as ubiquitination or sumoylation. We utilized genome-wide 
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Small Ubiquitin-like Modifier (SUMO) ChIP-seq data for heat shocked and non-shocked 

K562 cells49 to evaluate the utility of sumoylation for predicting enhancer-promoter 

interactions. SUMO proteins are involved in protein stability and transcriptional 

regulation50, and CTCF post-translationally modified by SUMO proteins 1–3 organizes 

repressive chromatin domains51. When added to the TargetFinder K562 model, sumoylation 

in the window between an enhancer and promoter is a top predictor of interactions—nearly 

as important as CTCF. Thus, increased accuracy and insight into mechanisms of looping 

chromatin will be gained as additional genomic features are measured across many cell 

lines.

Discussion

This study demonstrates that complex genomic signatures strongly distinguish the true 

targets of active enhancers from other active but non-interacting promoters in the same loci. 

These signatures are primarily based on patterns of protein binding and epigenetic 

modifications on the looping chromatin. A unique feature of our approach is the 

combination of high resolution genome-wide Hi-C interaction data32 with the vast functional 

genomics datasets provided by the ENCODE and Roadmap Epigenomics projects 

partitioned by enhancer, promoter, and window regions. By integrating these diverse datasets 

and examining their relevance to enhancer-promoter interactions, we computed the most 

predictive datasets and highlighted the complex interplay between regulatory proteins and 

DNA in the three-dimensional genome.

Our ability to accurately predict interactions up to 2 Mb apart at high resolution, the 

identification of minimal sets of predictive features quantified by genomic region, as well as 

a focus on high resolution intra- rather than inter-TAD interactions, distinguishes 

TargetFinder from previous work. Machine learning has been shown to accurately identify 

TADs and other larger chromatin structures (e.g., A and B compartments) from two-

dimensional genomic data37, but it has not yet been applied to such fine scale interactions 

within TADs.

How does TargetFinder distinguish targets from non-target promoters in the same locus?

Our careful examination of many enhancer-promoter pairs across cell lines suggests several 

broad rules influence TargetFinder’s score of an enhancer-promoter interaction: 1) do the 

enhancer and other nearby enhancers look particularly active? 2) does the target look like it 

is actively elongating? 3) is the target promoter cell type-specific? 4) do other promoters 

near the target have repressive marks or marks of paused polymerase? 5) is another pair 

interacting within the window? 6) does the interaction appear to cross a contact domain? and 

7) are there marks of chromatin remodelers or architectural proteins in the window, or 

cohesion complex adjacent to the promoter and enhancer, that might facilitate looping 

interactions?

While some of the predictive accuracy of TargetFinder derives from genomic features that 

are limited to one or a few cell types, many of the top ranked features are similar across cell 

types and in the combined model. For example, members of the cohesin complex (SMC3/

RAD21) and CTCF are highly predictive, as is CAGE when it is assayed. DNA methylation 
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and Pol II have elevated importance in the combined cell line where the model was trained 

on fewer datasets that excluded some TFs and other features measured in only a subset of 

cell lines. Marks of heterochromatin and elongation are also consistently important. These 

robust, general features of looping chromatin promise to be useful assays for predicting 

regulatory interactions in new cell types, perhaps in combination with cell type specific 

regulators. They also suggest that as these predictive features are assayed in more cell types, 

we may be able to develop a generic TargetFinder model that could perform accurate in 

silico Hi-C on independent cell types that do not have genome-wide high-resolution 

chromatin interaction data. To do so will require rigorous normalization, because 

TargetFinder relies on numeric values of genomic data being comparable across datasets.

Many functional genomics experiments are unexpectedly informative about chromatin 
interactions

We identified numerous features whose role in distal enhancer-promoter interactions may be 

under-appreciated. These include the DNA binding proteins CUX1, ZNF384, SUPT20H, 

RUNX3, SPI1, SP1, EBF1, RCOR1, MAX, TFAP2C, HCFC1, C/EBPβ, JUND, TBP, SRF, 

ZMIZ1, and WHSC1 (Figure 8). Most of these are predictive only in combination with other 

features, some of which have roles in chromatin structure. For instance, several interact with 

the cohesin complex and ZNF143, which was recently shown to provide sequence 

specificity to cohesin-associated chromatin looping41. Predictive TFs often belong to 

activating or repressive complexes such as AP-1, AP-2γ, or PRC2, or are chromatin 

modifiers such as methyl- and acetyltransferases that help determine if enhancers or 

promoters are in an active or poised state. These general trends are consistent across cell 

types, but the particular TFs that provide a predictive boost are often specific to a small 

number of cell lines. In addition, we identified several more general predictors of looping 

chromatin. Sumoylation is a combinatorially predictive post-translational modification not 

assayed by ENCODE or Roadmap Epigenomics. The activating marks H2AZ/H3K9ac and 

elongation marks H3K36me3/H3K79me2 were also especially useful for chromatin loop 

prediction, more so than many of the well-known histone marks necessary for ChromHMM/

Segway annotations of promoters and enhancers. CAGE is also a consistently top-ranked 

feature, providing information on the activation state of annotated enhancers and alternate 

targets in the window that is complementary to ChIP-seq assays.

Many of the top features utilized by TargetFinder are not predictive on their own. The 

association of these combinatorially predictive features with chromatin looping has been 

established to varying degrees, though our discovery that they provide specificity to 

interaction predictions is novel. Examples include SRF which regulates FOS52 and interacts 

with C/EBPβ53, TFAP2C (AP-2γ) which is a pioneer factor associated with estrogen 

receptor binding events and FOXA1 expression54, ZMIZ1 (hZimp10) which promotes 

expression and sumoylation of the androgen receptor55, and KDM1A which interacts with 

RCOR1 to demethylate H3K456. We identified several other proteins with poor univariate 

importance that nonetheless have known roles in chromatin looping and were highly ranked 

by TargetFinder. These include SP157,58, SPI1 (PU.1)59,60, HCFC1 which co-localizes with 

looping factor ZNF14342, and TBP whose TAF3 subunit is recruited by CTCF to distal 

promoters61 and which is linked with long range interactions62. Finally, WHSC1 (NSD2) is 
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a histone methyltransferase of H3K36me3 and therefore is associated with predictive marks 

of elongation63. Thus, changes in univariate versus multivariate predictive rank recapitulate 

known protein interactions as well as identify under-appreciated or potentially novel 

biological interactions, often involving cell line-specific TFs.

DNA between interacting enhancers and promoters carries a distinct genomic signature

Our predictive accuracy and biological insights depended critically on the decision to 

include genomic data from the window between each enhancer and promoter in the analyses. 

We discovered these window features dominated those encoding chromatin states at the 

promoter and enhancer themselves. Because all enhancers and promoters we studied, 

including non-interacting pairs, had sufficient activation marks to be called by ChromHMM/

Segway, our analysis revealed more subtle and complex genomic signatures that distinguish 

regulatory targets from poised, paused, or insulated promoters. The genomic signature of 

looping DNA has several components. First, interacting pairs are depleted for insulator and 

contact domain crossings in the window (Supplementary Figures S4 and S12), particularly 

for more distal interactions. Second, interacting pairs are depleted for cohesin complex 

bound to the window (Supplementary Figure S9), although it is prevalent near the enhancer 

and promoter. Third, DNA between interacting enhancers and promoters tends to lack 

activating TFs and epigenetic marks of elongation (Supplementary Figure S10) which could 

indicate the presence of an alternative promoter target, and indeed is depleted for active 

promoters (Supplementary Figure S14). On the other hand, windows do contain epigenetic 

marks associated with heterochromatin (Supplementary Figure S11), polycomb-associated 

proteins, and co-factors of CTCF associated with its insulator function. Looping interactions 

in the window are highly enriched (Supplementary Figure S13), strongly supporting existing 

evidence for TADs or contact domains and suggesting window features may be a proxy for 

domain membership.

These results are more relevant to looping models of interaction than alternatives such as 

facilitated tracking64. Polycomb complexes appear to play several roles in distinguishing 

nearby targets. For example, PRC2-targeted CpG islands are enriched for REST and CUX1 

binding motifs, both transcriptional repressors65 with high predictive importance. In 

Drosophila, cohesin co-localizes with PRC1 at promoters and interacts to control gene 

silencing66. Given the conservation of PRC between flies and humans67, this has 

implications for the interaction of cohesin and PRC for mammalian gene silencing and thus 

discrimination of target promoters. Also, distal enhancers may sometimes serve to clear PRC 

from CpG islands68. Elongation has recently been shown to spatially segregate genes in the 

Hoxd locus present in separate TADs69, suggesting its role in inter-TAD gene clusters could 

contribute to its predictive importance. Finally, recent work shows that cohesin spatially 

clusters enhancers70 and is consistent with our observation that the presence of active marks 

at nearby enhancers often increase the likelihood of interaction. These are several of many 

possible explanations for the ability of window-based features to predict distal enhancer-

promoter interactions with high precision and recall—explanations that may be refined by 

analysis of new functional genomics datasets.
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Materials and Methods

All code and data is accessible via https://github.com/shwhalen/targetfinder.

Identification of regulatory elements

TSS-containing promoter regions and strong and weak enhancer regions were identified 

using combined ENCODE Segway71 and ChromHMM72 annotations for K562, GM12878, 

HeLa-S3, and HUVEC and Roadmap Epigenomics ChromHMM annotations for NHEK and 

IMR90. Enhancers closer than 10 Kb to the nearest promoter were discarded to focus the 

model on distal interactions. Promoters were retained if actively transcribed (mean FPKM > 

0.373 with irreproducible discovery rate < 0.174) in each cell line using GENCODE75 

version 19 annotations and RNA-seq data from the ENCODE portal (http://

encodeproject.org/data/annotations). Promoter and enhancer counts per line are in 

Supplemental Table S1.

Chromatin interactions

Interacting enhancer-promoter pairs were annotated using high-resolution genome-wide Hi-

C data (10% FDR, GEO accession GSE63525)32. These were assigned to one of 5 bins 

based on the distance between enhancer and promoter, such that each bin had the same 

number of interactions. Noninteracting enhancer-promoter pairs were assigned to their 

corresponding distance bin, then subsampled within each bin using 20 negatives per positive 

(Supplemental Table S1). Performance was similar without distance matching, losing 

approximately 1% F1 per 250,000 additional samples (a total loss of 6% F1 for K562).

Genomic features

Functional genomics data for each cell line were downloaded from ENCODE, Roadmap 

Epigenomics, or GEO; details and accessions are given in Supplemental Table S2. Peak calls 

for ENCODE data were obtained from GEO; raw reads for Roadmap Epigenomics and GEO 

datasets were obtained, quality trimmed using fastq-mcf, aligned to hg19 using bowtie276, 

and peak called using macs277 with default parameters. Peaks were intersected with 

promoter, enhancer, extended enhancer, and window regions. The strength of all peaks in a 

region, or counts of methylated bases in a region, were summed and divided by the length of 

the region in bp to generate features.

Software implementation

TargetFinder was implemented in Python using the scikit-learn machine learning library78, 

the pandas analytics library79, and bedtools80. We used DummyClassifier to measure 

baseline performance, LinearSVC for a linear Support Vector Machine81, 

DecisionTreeClassifier for a single decision tree82, and GradientBoostingClassifier for a 

decision tree ensemble83. The linear SVM was fit with parameter class weight = “balanced” 

as part of a Pipeline with a StandardScaler pre-processing step. The boosting classifier was 

fit with parameters n_estimators = 4000, learning_rate = 0.1, max_depth = 5, and 

max_features = “log2”. Models were fit with sample weights inversely proportional to class 

balance in order to prevent over-fitting the negative class. Identical parameters were used per 
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cell line. Results were consistent with an alternative implementation in R (Supplemental 

Text).

All models were evaluated using 10-fold cross-validation where data is divided into 10 non-

overlapping training and test sets. Performance was measured using multiple metrics, and 

the average over all test sets is reported. Feature importances were computed by scikit-learn 

using the method of Hastie et al.84 accessible via the feature_importances_ attribute of 

eligible models. The following pseudocode summarizes their implementation:

ensemble_importances = zeros(total_features)

for each tree in ensemble:

  tree_importances = zeros(total_features)

  for each node in tree:

    if node is not a leaf:

      tree_importances[node.feature_index] +=

        node.sample_count * node.impurity -

        node.left_child.sample_count * node.left_child.impurity -

        node.right_child.sample_count * node.right_child.impurity

  ensemble_importances += tree_importances / total_samples

ensemble_importances /= total_trees

where zeros(n) initializes an array of n zeros, total features is the total number of features in 

the dataset, node.feature index is the index of the feature used to split samples at a node, 

node.sample count is the number of samples present at a node before splitting, 

node.impurity is a measure of error (here, gini impurity), and node.left child and node.right 

child point to the children of a node. Overall, this method sums the weighted reduction in 

impurity when splitting on each feature across all trees in the ensemble, normalized by the 

number of samples per tree and total number of trees. Models were fit 10 times, each with a 

different random number seed, in order to better estimate the mean and variance of feature 

importances.

Recursive Feature Elimination (RFE)85 was used to estimate the optimal number of features 

via nested cross-validation86). Within each training set during “outer” cross-validation, 

feature importances are initially estimated using all features. The performance of the top n 

features is then estimated from “inner” cross-validation on the training set, with n increasing 

from 1 to the number of features by powers of 2. Finally, the best performing subset 

identified via inner cross-validation is evaluated against the outer test set to obtain an 

unbiased performance estimate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Predictive power of promoter proximal genomic features. Ratio of various ChIP-seq signals 

anchored at the transcription start sites (TSS) of interacting vs non-interacting promoters in 

K562, along with the log base 2 fold change (L2FC) and p-value corrected for multiple 

testing (q). All promoters have activating chromatin marks and show transcription. The top 

row shows expected patterns for promoter-associated marks at the TSS, such as a high ratio 

of H3K4me3 to H3K4me1. Some of these marks are enriched in interacting promoters, 

while others such as K4 methylation patterns are not. The second row shows TSS proximal 

patterns for several proteins associated with chromatin looping. CTCF and RAD21 are 

enriched at interacting promoters, while transcription factors CUX1 and HCFC1 are 

enriched and depleted, respectively.
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Figure 2. 
Binding co-occurrence at enhancers enriches looping interactions. Ratio of CTCF and 

RAD21 ChIP-seq signals occurring within interacting enhancers vs non-interacting 

enhancers, anchored at peaks for CTCF, RAD21, and the transcription factors CUX1 and 

HCFC1 for the K562 cell line. CUX1 and HCFC1 are highly enriched at loop-associated 

enhancers when co-occurring with CTCF and RAD21. The context-dependence of protein 

binding is demonstrated by RAD21, which is not enriched at interacting promoters (Figure 

1). Note that CTCF and RAD21 are already enriched at their respective peaks within 

interacting enhancers, but are further enriched when anchored at CUX1 or HCFC1. This 

visualizes how the co-occurrence of certain transcription factors increases the likelihood of 

looping interactions beyond CTCF or RAD21 peaks alone, helps interpret the predictive 

importance estimated by TargetFinder, and can identify novel looping factors.
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Figure 3. 
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Figure 4. 
The TargetFinder pipeline. Features are generated from hundreds of diverse datasets for 

pairs of enhancers and promoters of expressed genes found to have significant Hi-C 

interactions (positives), as well as random pairs of enhancers and promoters without 

significant interactions (negatives). These labeled samples are used to train an ensemble 

classifier that predicts whether enhancer-promoter pairs from new or held-out samples 

interact, as well as estimate the importance of each feature for accurate prediction. Classifier 

predictions are probabilities, and a decision threshold (commonly 0.5 but may be adjusted) 

converts these to positive or negative prediction labels. This figure excludes selection of 

minimal predictor sets and evaluation of the accuracy of output predictions using held-out 

Hi-C interaction data.
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Figure 5. 
TargetFinder performance by cell line, model type, and number of features. (a) Cross-

validated performance of TargetFinder predictions for a baseline (random guessing null) 

model, a linear Support Vector Machine, a single decision tree, and a boosted ensemble of 

decision trees. Performance is given as a balance of precision and recall (F1), averaging 83% 

across cell lines and corresponding to a mean FDR of 12%. Ensemble methods utilize 

complex interactions between features to greatly increase the accuracy of predicted 

interactions. Performance is also high on a combined cell line comprised of K562, 

GM12878, HeLa-S3, and IMR90 datasets, with features restricted to datasets shared by all 

cell lines. (b) Performance of boosted trees using features for enhancers and promoters only 

(E/P), promoters and extended enhancers (EE/P), and enhancers/promoters plus the window 

between (E/P/W). (c) Recursive feature elimination (Methods) evaluates predictor subsets of 

size 1 up to the maximum per cell line and increasing by powers of 2 for computational 

efficiency. Near optimal performance was achieved using ~16 predictors for lineage-specific 

models as well as the combined model, while lower but acceptable performance required 8 

predictors. The maximum feature subset size shown is 32 to enhance visibility of smaller 

feature subsets. NHEK lacks a measurement at subset size 32 since it has fewer than 32 total 

features. (Error bars = s.e.m.)
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Figure 6. 
Predictive importance of genomic features by region. Predictive importance (Methods) 

across cell lines and regions. Importance is discretized by quartiles, and grid entries are 

colored black when a dataset is unavailable in a cell line. The highest average importance is 

assigned to features in the window region, followed by promoters. Promoter methylation and 

POLR2A are more important in the the combined “4 Lines” classifier (K562/GM12878/

HeLa-S3/IMR90) than individual cell lines. Highly predictive features such as CAGE are 

available in most but not all cell lines needed for inclusion in the combined model. Certain 

TFs are available in multiple cell lines but are not universally predictive, such as FOS in the 

window region. Other TFs are only available in a single cell line but are highly predictive, 

such as WHSC1 and ZMIZ1 in the window region of K562 and RUNX3 in the window 

region of GM12878.
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Figure 7. 
Feature values and predictive importance for enhancer, promoter, and window regions. 

Despite having the lowest feature values, the predictive importance of the window dominates 

that of enhancer and promoter regions. (Error bars = 1.5 * interquartile range)
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Figure 8. 
Identification of complex interactions between DNA-binding proteins and epigenetic marks. 

Scatterplot of univariate feature significance (two-sample Kolmogorov-Smirnov test) versus 

multivariate feature importance (estimated via a boosted trees classifier) for three cell lines. 

In order to highlight datasets that are predictive in combination with other features 

(multivariate) but not predictive alone (univariate), only features with a multivariate rank less 

than 25 and univariate rank greater than 25 are shown. For example, the lower right corner of 

K562 shows H2AZ, WHSC1, CUX1, and SUMO2 are among the top 10 predictive features 

when the co-localization of other proteins is known. H2AZ has similar context-dependent 

importance in GM12878 and HeLa-S3. Many features predictive in one or more cell lines 

are not assayed uniformly and thus cannot be included in the combined model (ex: HCFC1, 

CUX1, SUMO2).
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