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Extracellular mRNA Detected by Tethered
Lipoplex Nanoparticle Biochip for Lung
Adenocarcinoma Detection

To the Editor:

Lung cancer remains the leading cause of cancer-related deaths
(1, 2). Low-dosage computerized tomography scanning can reduce
lung cancer mortality in high-risk smokers (3); however, this type
of scan is also accompanied by high false-positive rates. In addition,
cost, concerns regarding overdiagnosis, and cumulative radiation
exposure remain points of concern. Affordable and complementary
noninvasive testing such as blood-based biomarkers could
potentially increase the accuracy of early diagnosis of lung cancer.
Several detection assays are currently being evaluated, including
early CDT-lung (4), microRNA test (5), and a plasma protein
classifier (6). Here, we describe a newly developed tethered lipoplex
nanoparticle (TLN) biochip (7) that can both capture circulating
extracellular vesicles (EVs) and detect RNA contents. Because
many microRNAs in circulating EVs have been investigated as lung
cancer biomarkers, with mixed performance and inconsistent
results (8–11), here we chose to explore mRNA targets in blood
EVs, which have not been well investigated for biomarker
application. We first conducted next-generation sequencing to
profile circulating RNA in plasma from surgically proven early-
stage adenocarcinoma of the lung (n = 7) and benign granulomas
of the lung (n = 10). We designed a molecular beacon for
transketolase 1 (TKTL1), a glucose regulation gene identified from
the next-generation sequencing study, as the most up-regulated
mRNA for testing in our TLN biochip. We also designed a
molecular beacon for thyroid transcription factor 1 (TTF1), a well-
known up-regulated mRNA in lung cancer tissue (7–9). We tested
these two mRNAs, using our TLN biochip to assess their feasibility
as an assay for lung nodule assessment. Figure 1A shows the TLN
concept and a 24-well TLN biochip on a glass slide. Individual
molecular beacons (MBs) for the two mRNA targets were designed
and encapsulated in cationic liposomal nanoparticles. These
cationic lipoplex nanoparticles were tethered on the biochip, which
can capture negatively charged EVs by electrical static interactions
to form a larger nanoscale complex. This lipoplex–EV fusion leads
to mixing of RNAs and MBs within the nanoscale confinement
near the biochip interface. Total internal reflective fluorescence
(TIRF) microscopy is capable of detecting a single biomolecule and
measures signals smaller than 300 nm near the interface, which

is where the tethered liposomal nanoparticles locate. The high
sensitivity and near-interface detection makes TIRF microscopy a
perfect combination with our TLN biochip for detecting the genetic
materials in EVs as biomarkers. The well-to-well technical
repeatability on the same chip revealed variation of 1–5%, as shown
in Figure 1D, whereas the chip-to-chip technical repeatability
revealed variation of 5–20% for most samples, as shown in Figure 1E.

Ethylenediaminetetraacetic acid plasma samples stored at
2808C from 38 individuals with benign lung nodules, 38 early
stage I adenocarcinomas, 40 late-stage adenocarcinomas, and
40 patients without lung nodules were provided by the New York
University Langone Medical Center. Figures 1B and 1C show
representative TLN-TIRF images and bar charts, respectively, of
EV TTF1 and TKTL1 expression for all four cohorts (N = 156).
TTF1 showed an upward trend between cohorts with and without
cancer and between patients with stage IA/B and advanced
adenocarcinoma, whereas TKTL1 showed concentration
differences between cohorts with and without cancer, with little
difference between individuals with or without benign nodules.
Because both TTF1 and TKTL1 were up-regulated in malignant
nodules, overlap between the two mRNA expressions was observed.
There was a distinction between patients with advanced cancer
and nonpatients; however, there was overlap between patients with
stage IA/B lung cancer and individuals with benign nodules.

The major TLN assay variation was attributable to the EV
isolation from plasma samples. We found that sample volume
had an effect on assay repeatability. The chip-to-chip variation could
be greater than 20% when we used 20 ml plasma for EV isolation.
When the volume was increased from 20 to 80 ml plasma, this
variation was reduced, as shown in Figure 1E. We also found
that the selection of a proper EV isolation kit and its operation
protocol could affect the assay repeatability. A higher kit to sample
ratio (1:3, instead of the manufacturer-suggested 1:4) can greatly
reduce the sample preparation–induced assay variation.

The quantitative reverse transcriptase–polymerase chain
reaction (qRT-PCR) analysis of cohorts with benign lung lesions
and stage IA/B adenocarcinomas failed to show differences in
TTF1 and TKTL1 concentrations as a result of very low target
mRNA contents for PCR-based detection (high cycle threshold
values), even when the volume of plasma used was increased from
20 to 200 ml. Although mRNAs have been routinely detected in
tissue and cells by qRT-PCR, their detection in circulating EVs has
been more challenging because mRNAs present in EVs are a
mixture of intact and fragmented transcripts (12, 13). Because the
qRT-PCR assay is designed to amplify and detect a larger portion
of the transcripts (usually 100–150 nucleotides) and requires at
least two sites for PCR primer recognition, the presence of smaller
fragmented transcripts would interfere with the amplification
process and require more template. MBs, in contrast, hybridize to
20–30 nucleotides of a specific mRNA, so it may detect intact and
larger and smaller fragments of mRNA targets in EVs with only 20 ml
plasma (7, 14). Figure 1F shows that both qRT-PCR (1 ml plasma)
and the TLN (20 ml plasma) assay could provide similar information
on TKTL1 levels in plasma EVs for blood samples from patients
with late-stage lung cancer. However, TTF1 was still not detectable by
qRT-PCR because of its much lower concentration in EVs.

The results from our TLN assay demonstrated concentration
differences of TTF1 and TKTL1 targets between cohorts,
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Figure 1. (A) Schematic demonstration of the procedure for cationic tethered lipoplex nanoparticle (TLN) assay. Extracellular vesicles (EVs) in plasma/serum were
condensed by an exosome isolation kit and loaded onto the 24-well TLN biochip. EV transketolase 1 (TKTL1) and thyroid transcription factor 1 (TTF1) mRNAs
in plasma from patients with lung cancer were detected using total internal reflective fluorescence (TIRF) microscopy. (B) Representative TIRF images of TTF1
and TKTL1 EV mRNA expression in the four patient cohorts. Images of the same size (303 30 mm) were cropped from original TIRF images and enlarged to the
same size (803 80 mm), as shown. (C) Fluorescence intensities of EV TTF1 (top) and TKTL1 (bottom) mRNA expression calculated by Metlab software in different
cohorts. (D) Well-to-well technical repeatability of TTF1 expression on the same chip (three wells each for five New York University Langone Medical Center
plasma samples from patients with lung cancer). (E) Chip-to-chip technical repeatability of TTF1 expression on four chips for five The Ohio State University plasma
samples from patients with lung cancer. (F) Comparison of TKTL1 mRNA expression by TLN and quantitative reverse transcriptase–polymerase chain reaction
(qRT-PCR). (Left) TKTL1 fluorescence intensities obtained by TLN biochip for one normal donor and three patients with stage IIIA lung cancer (20 ml plasma
sample volume). (Middle) Cycle threshold (CT) values of TKTL1mRNA detected by qRT-PCR for the same normal donor and patients with lung cancer (1 ml plasma
was used for total EV RNA extraction). (Right) Comparison of TKTL1 mRNA fold changes by qRT-PCR and TLN assay. Data were normalized to the normal
donor sample and presented as mean 6 SD. Student’s t test was performed between different cohorts, and P,0.05 was considered statistically significant.
Error bars on all TLN data in D–F were averaged over 100 TLN-TIRF images; qRT-PCR data in F were from three independent experiments. IPN= indeterminate
pulmonary nodule; PBS=phosphate-buffered saline; RBCs= red blood cells; WBCs=white blood cells.

1432 American Journal of Respiratory and Critical Care Medicine Volume 193 Number 12 | June 15 2016

CORRESPONDENCE



particularly patients with or without lung cancer. We show that
using the TLN biochip to detect EVs containing mRNA targets
may be a feasible approach for the detection of RNA transcripts
in circulation. To use the new TLN biochip as a viable tool to
further develop EV-based blood biomarkers for cancer diagnosis,
additional mRNA, microRNA, and long noncoding RNA targets will
need to be identified and added to the TTF1/TKTL1 panel
to enhance the performance. Because the TLN biochip is a multiwell
device, multiplexing of many RNA targets can be easily achieved by
placing different MBs in different wells. Larger-scale validation studies
with larger patient cohorts at multiple sites also must be performed to
further support a conclusion that EVs containing RNA targets in
blood can serve as a viable biomarker in lung cancer. This new
technology may potentially complement existing clinical assays and
decrease the use of expensive and invasive testing. n
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Skyrocketing Drug Costs: Beyond the News and into
Your Intensive Care Unit

To the Editor:

Martin Shkreli, the controversial former CEO of Turing
Pharmaceuticals, enjoyed widespread derision on social media after
his company bought the rights to pyrimethamine (Daraprim) and
subsequently increased the price from $13 to $750 a tablet (1).
Although there have been vast amounts of attention given to this
specific case, this issue has been frequently encountered in our
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