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Overexpression of hepatocyte nuclear factor 4a in human mesenchymal stem cells
suppresses hepatocellular carcinoma development through Wnt/b-catenin signaling
pathway downregulation

Ning Wua,b,*, Yu-Ling Zhangc,*, Hai-Tian Wangb,*, Da-Wei Lia, Hui-Juan Daia, Qi-Qi Zhanga, Jiang Zhanga, Yong Mab,
Qiang Xiaa, Jian-Min Bianb, and Hua-Lian Hanga

aDepartment of Liver Surgery, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; bDepartment of General Surgery,
Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China; cZunYi Medical university, ZunYi, China

ARTICLE HISTORY
Received 21 May 2015
Revised 9 March 2016
Accepted 8 April 2016

ABSTRACT
Mesenchymal stem cells (MSCs) hold promise as cellular vehicles for the delivery of therapeutic gene
products because they can be isolated, expanded, and genetically modified in vitro and possess tumor-
oriented homing capacity in vivo.1 Hepatocyte nuclear factor 4a (HNF4a) is a dominant transcriptional
regulator of hepatocyte differentiation and hepatocellular carcinogenesis (HCC).2,3 We have previously
demonstrated that overexpression of HNF4a activates various hepatic-specific genes and enhances MSC
differentiation.4 However, the extent that overexpression of HNF4a in MSCs influences HCC progression
has yet to be examined. Here we sought to investigate what effect MSCs overexpressing HNF4a (MSC-
HNF4a) have on human hepatoma cells in vitro and in vivo. Conditioned medium collected from in vitro
MSC-HNF4a cultures significantly inhibited hepatoma cell growth and metastasis compared with controls.
Additionally, nude mice administered MSC-HNF4a exhibited significantly smaller tumors compared with
controls in vivo. Immunoblot analysis of HCC cells treated with MSC-HNF4a displayed downregulated
b-catenin, cyclinD1, c-Myc, MMP2 and MMP9. Taken together, our results demonstrate that MSC-HNF4a
inhibits HCC progression by reducing hepatoma cell growth and metastasis through downregulation of
the Wnt/b-catenin signaling pathway.

Abbreviations:MSCs, mesenchymal strem cells; HNF4a, hepatocyte nuclear factor 4a; HCC, hepatocellular carcino-
genesis; MSC-HNF4a, MSCs overexpressing HNF4a; UC-MSCs, umbilical cord-derived mesenchymal stem cells; FZD,
frizzled; PBS, phosphate-buffered saline; FBS, fetal bovine serum; OD, optical density; FITC, v-fluorescein isothiocya-
nate; PI, propidiumiodide; PVDF, polyvinylidene difluoride; NS, normal saline; SD, standard deviation; ANOVA, analy-
sis of variance

KEYWORDS
Gene therapy; hepatocyte
nuclear factor 4a; hepa-
toma; mesenchymal stem
cells; Wnt/b-catenin
signaling

Introduction

With 660,000 new cases per year, liver cancer is the fifth most
common form of cancer and one of the most devastating
malignancies, as it is the third highest cause of cancer-related
death.5 Curative treatments are not possible and the prognosis
is dismal for the majority of advanced HCC cases because of
underlying cirrhosis or resistance of tumors to standard chemo-
therapy. Therefore, surgical intervention is the only available
treatment for the majority of patients diagnosed at an interme-
diate or advanced tumor stage. Additionally, liver transplanta-
tion is problematic due to the low availability of donor organs
and inherently long transplant waiting times, while the high
rate of tumor recurrence also threatens successful treatment
outcomes.6 Thus, developing effective therapeutic strategies that
specifically target malignant tissue is essential.

Mesenchymal stem cells (MSCs) were initially identified as a
heterogeneous population of stromal cells in the bone marrow.
They have now been isolated from a wide variety of additional
tissues, such as adipose tissue, cartilage, umbilical cord, and

even some solid tumors. MSCs are easier to obtain and propa-
gate while fewer ethical concerns are associated with their use.
Importantly, MSCs can differentiate into a variety of cell types
that have unique immunological characteristics and persist in a
xenogeneic environment.

Furthermore, MSCs have the ability to efficiently target sites
of tissue injury including tumor environments. This phenome-
non is expected because tumors are considered unresolved
wounds7 and their microenvironment is characterized by an
increased local production of inflammatory mediators and
chemo-attractants.8 Each of these characteristics contributes to
the potential application of MSCs as cell-based vehicles for
tumor-targeted gene therapy. In humans, the umbilical cord is
a richer source of MSCs than the bone marrow and allows for
easy isolation with less risk of contamination. Furthermore,
umbilical cord-derived mesenchymal stem cells (UC-MSCs)
demonstrate low immunogenicity which allows them to better
tolerate HLA mismatch.9,10
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Hepatocyte nuclear factor 4a (HNF4a) is a transcription factor
which plays a key role in hepatocyte differentiation and themainte-
nance of hepatic function.3 HNF4a is expressed in hepatocytes,
colon, small intestine, epididymis, and kidney while also having
links to a variety of human diseases, including diabetes, colitis, and
cancers. Recent evidence supports an oncogenic role for HNF4a in
intestinal cancer.11 However, decreased expression of HNF4a in
hepatocellular carcinomas has been demonstrated while its up-reg-
ulation dramatically blocked the development of hepatocellular
carcinoma through various routes.12-14 Previously, we have shown
that the overexpression ofHNF4a activates various hepatic-specific
genes and enhances the differentiation ofMSCs.4

In this study, we show that overexpression of HNF4a in UC-
MSCs confers antitumor activity to these UC-MSCs and therefore
establishes the feasibility of using gene-enhanced MSCs in a cell-
based neo-organoid therapeutic approach for cancer treatment.

Results

Isolation and characterization of human umbilical cord-
derived mesenchymal stem cells

As we have shown previously, single fibroblast-like cells
derived from umbilical cord and rapidly growing colonies

exhibit a homogeneous morphology. When induced with
conditioned medium for 2»3 weeks, MSCs differentiate
into chondrogenic, osteogenic, and adipogenic lineages as
indicated by positive type II collagen, Alizarin red, and Oil
Red O staining respectively (Fig. 1A). Analysis of cultured
MSCs was performed using flow cytometry to assess expres-
sion patterns of CD44, CD73, CD90, CD105, CD31, CD34,
CD45, and HLA-DR (Fig. 1B).

Stable transfection of HNF4a in MSCs

MSCs were transduced with either the pWIPIGFP (named
MSC) or pWIPI-HNF4a-GFP (named MSC-HNF4a) lentiviral
vector. After infection, approximately 95% of cultured cells
were GFP-positive (Fig. 2A). Real-time PCR and western blot-
ting indicated that HNF4a expression was elevated in the
MSC-HNF4a samples (Fig. 2B, C).

MSC-HNF4a inhibited HCC cell proliferation and invasion

To examine the effect of MSC-HNF4a on HCC, cells were
incubated with culture medium and proliferation was measured
using a CCK-8 assay. Compared with control groups (L02 and

Figure 1. Characteristics and differentiation potential of MSCs derived from umbilicalcord tissues. (A) Morphology of UC-MSCs Magnification:£100. After chondrogenic
differentiation conditions, MSCs differentiate into chondrogenic-like cells and immunohistochemically stained positive for type II Collagen;£100. After osteogenic-specific
induction, the MSCs were stained with Alizarin red; £100. After inducing adipogenic differentiation, the cells showed many small lipid vacuoles, as assessed by Oil Red O
staining;£100. (B) Flow cytometric analysis showing the MSC cells surface antigens: positive for mesenchymal lineage markers (CD44, CD73, CD90 and CD105), negative
for haematopoietic and endothelial markers (CD31, CD34 and CD45), and negative for HLA-DR.
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MSC), MSC-HNF4a conditioned medium significantly inhib-
ited the proliferation of SK-Hep-1 and HepG2 cells (P<0.05).
Conversely, when analyzing effects of the same conditioned
mediums on the proliferation of control LO2 cells, we found no
significant difference (Fig. 3A). These results were confirmed
using a colony formation assay. We obtained similar results for
SK-Hep-1 and HepG2 (Fig. 3B).

In order to investigate the efficacy of MSC-HNF4a in vivo,
we subcutaneously injected SK-Hep-1 cells into nude mice to
generate HCC with MSC-HNF4a and administered these cells
intravenously 24 hours later as well as once every 7 days thereaf-
ter. Forty-two days later, tumor volume and mass were signifi-
cantly lower in MSC-HNF4a-treated mice versus controls
(Fig. 3C). The results of the proliferation analysis demonstrated
that MSC-HNF4a inhibited HCC growth. Using Matrigel inva-
sion assays, we found MSC-HNF4a significantly reduced the
migration and invasion potential of HepG2 and SK-Hep-1 cells
compared to controls (Fig. 3D). When examining the expression
of matrix metalloproteinases in vivo, we found lower levels of
MMP2 and MMP9 in MSC-HNF4a-treated subjects (Fig. 3E).
To determine if MSC-HNF4a could induce HCC cell apoptosis,
we analyzed Annexin V staining using flow cytometry and found
no significant difference between groups (Fig. 3F).

MSC-HNF4a down-regulates Wnt/b-catenin signaling
pathway in HCC cells

When investigating whether MSC-HNF4a affects signal pathways
commonly altered in malignancies like HCC, we found b-catenin
signaling was markedly down-regulated in SK-Hep-1 and HepG2
cells treated with conditioned media from MSC-HNF4a cultures
(Fig. 4A).We next examined gene expression resulting from activa-
tion of theWnt/b-catenin signaling pathway and found downregu-
lation of b-catenin, cyclinD1,MMP2,MMP9 and c-myc in HepG2

cells treated with MSC-HNF4a conditioned media(Fig. 4B). How-
ever, there was no significant difference in Bcl-2 expression
observed in MSC-HNF4a vs. control treatment. Additionally, in
vivo expression of b-catenin, c-myc,MMP2, andMMP9was inves-
tigated in tumors using immunohistochemistry (Fig. 4C). The
results show that b-catenin, c-myc, MMP2, and MMP9 were
noticeably decreased in the MSC-HNF4a-treated group. Taken
together, these data are consistent with our hypothesis that soluble
factors in conditioned media released from MSC-HNF4a cultures
inhibit tumor cell proliferation and invasion via theWnt/b-catenin
signaling pathway.

Discussion

HCC can be cured by radical therapies if early diagnosis occurs
when the tumor is still small in size. Unfortunately, diagnosis
often comes late after the tumor has grown and spread. Thus,
palliative approaches are usually applied instead, such as trans-
arterial intrahepatic chemoembolization (TACE) or sorafenib,
an anti-angiogenic agent and MAP kinase inhibitor. The latter
is the only targeted therapy that has shown significant,
although moderate, efficacy in some individuals with advanced
HCC. This highlights the need to develop other targeted thera-
pies and to achieve this goal we have to identify additional cell
signaling pathways as potential targets.

Recently, researchers have made use of MSC as vehicles for
tumor-targeted gene therapy due to their accessibility for genetic
modification as well as their ability to be cultured and expanded
in vitro.15 MSCs are successfully engrafted into tissues under
conditions of increased cell turnover triggered by tissue damage
or neoplastic growth. They have the ability to efficiently target
sites of tissue injury including tumor environments. The exact
mechanisms governing this recruitment remain poorly under-
stood. MSCs are thought to show a strong tropism for tumors

Figure 2. HNF4a stably expressed in MSCs. (A) The transduction efficiency of MSCs infected with lentiviral vectors was assessed based on the GFP expression in MSCs by
immunofluorescence staining, and more than 90% of MSCs stably expressed GFP; (B) Real-time PCR showed that the HNF4a mRNA expression was significantly up-regula-
tion in MSC-HNF4a compare with MSC (p < 0.01); (C)Western blotting indicated that the HNF4a protein expression was elevated.
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because the body sees the tumor environment as the equivalent
of a chronic wound, or for example “the wound that never
heals.”16,17 In this study, we intended to utilize human MSCs as
a vehicle for gene delivery to cure HCC.

HNF4a is a key factor in determining the differentiation of
hepatocyte-like cells derived from human MSCs. We previously
reported that overexpression of HNF4a activates various hepatic-
specific genes and enhances the differentiation status UC-MSC.4

Moreover, findings from one recent study suggest that the upregu-
lation of HNF4a in HCC effectively suppresses its progression.18

With this concept in mind, we utilized gene transfection technol-
ogy during this study to overexpress HNF4a in humanMSCs in an
attempt to inhibit the progression of HCC.

The Wnt signaling pathway plays an important role in cell
metabolism, morphogenesis, differentiation, cell survival, and pro-
liferation as well as in the migration/invasion capacity of cancer
cells.19-21 Activation of this pathway occurs when a Wnt ligand
binds to a Frizzled (FZD) receptor at the cell membrane. Two dif-
ferent Wnt signaling cascades have been identified based on previ-
ous data, being the non-canonical and canonical pathways, with

the latter involving the b-catenin protein. Downregulation of the
Wnt pathway is an early event in hepatocarcinogenesis and has
been associated with an aggressive HCC phenotype due to its role
supporting in cell survival, proliferation, migration, and invasion.
Thus, component proteins identified in this pathway are potential
candidates for pharmacological intervention. Wnt/b-catenin sig-
naling is often aberrantly activated in malignant tumors, especially
HCC, and the c-Myc, cyclin-D, and MMP gene families are all tar-
gets ofWnt signaling.22-24

There is evidence linking Wnt pathway activation with a
malignant HCC cell phenotype, such as enhanced cell prolifera-
tion, migration, and invasion which suggests the possibility of
targeting members of this signaling cascade as an attractive
therapeutic approach for treatment of HCC.25-27 One plausible
therapeutic strategy would be to trap the endogenous Wnt
ligands with the exogenous soluble form of FZD receptors. This
approach was reported for FZD7 by Tanaka and colleagues in
esophageal carcinoma cells and later confirmed in HCC cells.28

This peptide decreased the viability of HCC cell lines with high
specificity since normal hepatocytes were not sensitive to

Figure 3. MSC-HNF4a inhibited HCC proliferation, migration and invasion. (A) Upper panel: CCK-8 assay showed that the OD value of SK-Hep-1 and HepG2 cells cultured
with 50% MSC-HNF4a conditioned media was significantly decreased as compared to LO2 or MSC-conditioned media. Lower panel: Effect of conditioned-media on LO2
proliferation, no statistically significant difference was observed among 3 groups; (B) The colony formation assay showed that the proliferation of SK-Hep-1 and HepG2
cells treated with MSC-HNF4a conditioned media was significantly lower than that of the control group(L02) and MSC group; (C) The subcutaneous tumorigenicity assay
showed that the weight and volume of SK-Hep-1 tumors treated with MSC-HNF4a were significantly decreased compared with those of the control group(NS) and MSC
group; (D) The Matrigel invasion assay showed that MSC-HNF4a-conditioned medium significantly inhibits SK-Hep-1 and HepG2 cells invasion in vitro; (E) Immunofluores-
cence staining showed lower expression of MMP2 and MMP9 in HCC tissues (SK-Hep-1) following MSC-HNF4a treatment compared with the controls.£400; (F)Cell apo-
ptosis assay showed that the different in each group was notstatistically significant. (�P < 0.05).
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sFZD7. Additionally, sFZD7 cooperates with doxorubicin to
reduce HCC cell proliferation in vitro and in a murine xeno-
graft model as well. Interestingly, it has been shown to be highly
efficient and independent of the b-catenin mutational status.
More recently, IWP2, Wnt-C59, sFRP1, sFRP2, sFRP5, Wif1,
and DKKs have been reported to inhibit tumors by interfering
with the activation of Wnt signaling.29-34

In summary, our data demonstrate the potential of using
MSCs as targeted tumor therapy vehicles to enhance the deliv-
ery of therapeutically relevant levels of gene products that exert
anti-neoplastic effects. We have shown here that the overex-
pression of HNF4a in human MSCs suppresses cancer cell pro-
liferation and metastasis. Furthermore, when taken together
our data suggest that MSC-HNF4a inhibits tumor cell prolifer-
ation and invasion via the Wnt/b-catenin signaling pathway.
These findings provide a novel, efficacious, and clinically safe
therapeutic approach to control HCC progression.

Materials and methods

Cell culture

With the informed consent of the tissue donor and following all
ethical and institutional guidelines, fresh human umbilical
cords were obtained from male or female neonates after birth,

and 20 cords were collected in our experiment. The study was
approved by the Institutional Review Board and Human Ethics
Committee of Ren Ji Hospital, School of Medicine, Shanghai
Jiao Tong University, Shanghai, China. Written consent for the
use of the samples for research purposes was obtained from all
patients. The samples were then maintained in phosphate-buff-
ered saline (PBS) (Invitrogen) containing 100 U / mL penicillin
/ streptomycin (Gibco) at 4�C. Following disinfection in 75%
ethanol for 1 min, the umbilical cord vessels were removed in
PBS. The UC-MSCs were prepared as previously described.
The mesenchymal tissue was diced into cubes of approximately
1 cm3. Following the removal of the supernatant fraction, the
precipitate was washed with DMEM/F12 (Gibco) and centri-
fuged at 250£g for 5 min. The mesenchymal tissue was treated
with collagenase II (Invitrogen) at 37�C for 1 h and further
digested with 0.25% trypsin (Invitrogen) at 37�C for 30 min.
Fetal bovine serum (FBS; Gibco) was added to the mesenchy-
mal tissue to neutralize the excess trypsin. The dissociated mes-
enchymal cells were further dispersed by treatment with 10%
FBS-DMEM/F12 and counted. The mesenchymal cells were
then used directly for the cultures, and the media was changed
twice per week. The fifth to eighth passages of UC-MSC were
used in the following experiments.

The liver cancer cell lines HepG2 and SK-Hep-1 were
obtained from the Institute of Cell Biology, Chinese Academy

Figure 4. MSC-HNF4a inhibited HCC proliferation and invasion by inhibiting the Wnt/b-catenin signaling pathway. HCC cells were cultured with culture medium for 48 h,
(A) protein gel blotting assay for b-catenin in SK-Hep-1 and HepG2 was downregulated when cells were treated with MSC-HNF4a conditioned media. (B) Target genes of
the Wnt/b-catenin pathways, b-catenin, cyclin D1, MMP2, MMP9 and c-Myc were also down-regulated in MSC-HNF4a group but Blc-2 did not demonstrate any significant
changes between each group. (C) Expression of b-catenin and c-Myc in tumor were clearly decreased in MSC-HNF4a group by immunohistochemical assay.
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of Sciences (Shanghai, China). All cells were cultured in high-
glucose minimum essential medium (DMEM, Gibco) supple-
mented with 10% FBS maintained at 37�C and 5% CO2.

Flow cytometry analysis

Antibodies against the human antigens CD31, CD34, CD44,
CD45, CD73, CD90, CD105, and HLA-DR were purchased
from BD Sciences. A total of 1 £ 106 cells were re-suspended in
200 mL of PBS and incubated with FITC- or PE- or APC- con-
jugated antibodies for 30 min at room temperature. The fluo-
rescence intensity of the cells was evaluated by flow cytometry
using a flow cytometer (BD Sciences), and the data were ana-
lyzed using the CELLQUEST Pro software (BD Sciences).

Chondrogenic osteogenic and adipogenic differentiation
in vitro

To induce chondrogenic and osteogenic differentiation, 4th
passage cells were treated with chondrogenic medium (STEM-
PRO CHONDRO DIFF KIT, Gibco) or osteogenic medium
(STEMPRO OSTEO DIFF KIT, Gibco) for 21 days. To induce
adipogenic differentiation, 4th passage cells were treated with
adipogenic medium (STEMPRO ADIPO DIFF KIT, Gibco) for
14 days. The medium was changed twice per week. Chondro-
genesis was assessed by immunohistochemical staining for type
II collagen, osteogenesis was evaluated by Alizarin red staining,
and adipogenesis was assessed by staining with Oil Red O.

Stable overexpression of HNF4a in UC-MSCs

HNF4a cDNA was generated via PCR amplification and con-
firmed by sequencing. The cDNA was inserted into lentivirus
particles (LV-HNF4a) with green fluorescent protein to monitor
that the transduction was stable. UC-MSCs were infected with
lentiviral particles for 10 h; the supernatant contained 5 mg/mL
polybrene to stably overexpress HNF4a (MSC-HNF4a), and
cells transfected with a lentiviral vector containing only green
fluorescent protein (MSC) were used as controls. The lentiviral
transduction efficiency was monitored using a confocal laser
scanning microscope and blotprotein gel blot analysis.

Treatment with conditioned medium

L02 cells, MSC, and MSC-HNF4a were cultured in FBS-
DMEM/F12 until they reached 60»80% confluence. The
adherent cells were washed and further incubated in FBS-free
DMEM/F12 for 48 h, and the medium was then collected and
filtered through a 0.22 mm filter. The conditioned medium
from the cells was harvested and stored at ¡80�C until use.
(For all in vitro experiments, we used conditioned medium
from L02 cells as control)

Colony formation assay and CCK-8 assay

The conditioned media were added to the culture medium of
HCC cells to a final concentration of 50%. For the colony for-
mation assay, 200 cells were cultured in 6-well plates. The
experiment was performed in triplicate for each cell clone. The

medium was changed twice per week. After 2–3 weeks, the cells
were fixed in 4% paraformaldehyde and stained with 1% Crys-
tal Violet, and colonies with a diameter exceeding 2 mm were
counted.

The culture medium for the CCK-8 assay as the same as that
used in the colony formation assay: a 96-well plate was inocu-
lated with 100 mL of a cell suspension containing 8£103 to
1.5£104 cells. After incubation for 24 h to 72 h, 10 ml of the
Cell Counting Kit solution (CCK-8) (Dojindo, Kumamoto,
Japan) was added to the wells and incubated for a further 2.5 h
with stirring before measuring the optical density (OD) of each
well at 450 nm on a microplate reader.

Matrigel invasion assay

Prior to the start of the experiment, all cells were cultured in
culture medium for 2 days before being collected. A Matrigel
invasion assay was performed in triplicate to analyze cell inva-
sion: 80 ml of serum-free DMEM/F12-diluted Matrigel (dilu-
tion 1:6, BD) was added to the Transwell filters of a Boyden
chamber (Coning Costar, MA, USA) and incubated at 37�C for
2 h to form a gel matrix. The HCC cells were cultured in
serum-free DMEM/F12 or conditioned medium 24 h, and
5£104 cells (200 ml) were then suspended in DMEM/F12 and
seeded in the upper well of the transwell chamber. Eight hun-
dred microliters of DMEM containing 10% FBS were then
added to the lower chamber as the chemo-attractant. After
incubation at 37�C for 24 h, the cells that had invaded across
the Matrigel and passed through the transwell filter were
stained with 1% Crystal Violet, and cells in 10 randomly
selected fields (£200) in each well were counted.

Cell apoptosis assay

Cell apoptosis was detected by using an Annexin V-fluorescein
isothiocyanate (FITC)/propidium iodide (PI) apoptosis detec-
tion kit according to the supplier’s protocols. 48 hours post-
transfection, cells were collected, centrifuged, and re-suspended
in 500 ml of 1X binding buffer. Annexin V-FITC (5 ml) and
10 ml PtdIns were then added to each tube. The tubes were
incubated in the dark at room temperature for 15 min. Cell
apoptosis assay was performed immediately using flow cytome-
try. Each experiment was performed at least 3 times.

Reverse transcriptase-PCR (RT-PCR)

The total RNA was isolated using TRIzol reagent (Invitrogen)
according to the manufacturer’s instructions. Reverse transcrip-
tion was performed using a PrimeScript RT reagent kit with the
gDNA Eraser kit (Takara). Real-time RT-PCR analyses were
performed by using the SYBR Green Real-time PCR Master
Mix (Takara, Japan) to determine the mRNA levels.

Western blots

All cells were lysed in RIPA buffer and a protease inhibitor
cocktail at 4�C for 1 h. The cell lysates were centrifuged at
13,000 xg and 4�C for 20 minutes, and the protein concentra-
tion was determined using a BCA Protein Assay kit. Equal
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amounts of protein were heated to 100�C for 5 min, separated
by 10% or 12% SDS-PAGE, and transferred to polyvinylidene
difluoride membranes (PVDF, BioRad, Hercules, CA). The
membranes were blocked with TBST containing 5% nonfat
dried milk for 1 h and incubated with primary antibodies over-
night at 4�C. The membranes were washed 3 times with TBST
and then incubated with horseradish peroxidase-conjugated
secondary antibodies for 1 h at room temperature. After three
additional washes with TBST, the signal intensity was quanti-
fied with the Quantity One software (Odyssey). The following
mouse antibodies were used for western blots: GAPDH,
HNF4a, c-Myc (Santa Cruz), Blc-2, b-catenin, cyclin-D1,
MMP2, and MMP9 (Abcam).

Animals

Male nude mice aged 4–6 weeks were purchased from the
Shanghai Experimental Center of Chinese Science Academy
and housed under standard animal laboratory conditions in the
experimental animal center of the RenJi Hospital Shanghai Jiao
Tong University Medical School. SK-Hep-1 cells (5£106) were
subcutaneously implanted into nude mice. Twenty-four hours
after implantation, 6 mice in each group were intravenously
injected with 1£106 MSC or MSC-HNF4a once per week,
while the other 6 mice were injected with 0.9% Normal saline
(NS) as controls. After approximately 35 days, the animals
were sacrificed and the subcutaneous tumors were removed
and weighed and subsequently subjected to histology, immuno-
blotting, and immunofluorescence analyses.

Immunofluorescence analysis

The tissue pieces were fixed in 4 % paraformaldehyde, embed-
ded in paraffin, and cut into transverse sections. A standard
histological hematoxylin-eosin staining procedure was per-
formed. The expression levels of MMP2 and MMP9 were
examined in HCC cells by immunofluorescence analysis.

Statistical analysis

The data in this study are expressed as the means § standard
deviation (SD). The differences between groups were analyzed
by using Student’s t-test or ANOVA and compared by using
analysis of variance (ANOVA) as well as Tukey’s post hoc test.
All statistical analyses were conducted by using SPSS 13.0
(SPSS Inc., Chicago, IL, USA). All tests were 2-sided, and the
statistical significance level was defined as p < 0.05.
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