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Abstract

In the RV144 vaccine trial, two antibody responses were found to correlate with HIV-1 

acquisition. Because human leukocyte antigen (HLA) class II–restricted CD4+ T cells are involved 

in antibody production, we tested whether HLA class II genotypes affected HIV-1–specific 
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antibody levels and HIV-1 acquisition in 760 individuals. Indeed, antibody responses correlated 

with acquisition only in the presence of single host HLA alleles. Envelope (Env)–specific 

immunoglobulin A (IgA) antibodies were associated with increased risk of acquisition specifically 

in individuals with DQB1*06. IgG antibody responses to Env amino acid positions 120 to 204 

were higher and were associated with decreased risk of acquisition and increased vaccine efficacy 

only in the presence of DPB1*13. Screening IgG responses to overlapping peptides spanning Env 

120–204 and viral sequence analysis of infected individuals defined differences in vaccine 

response that were associated with the presence of DPB1*13 and could be responsible for the 

protection observed. Overall, the underlying genetic findings indicate that HLA class II modulated 

the quantity, quality, and efficacy of antibody responses in the RV144 trial.

INTRODUCTION

The RV144 phase 3 vaccine trial conducted in Thailand resulted in an estimated 31.2% 

vaccine efficacy in the prevention of HIV-1 infection at 42 months after the initiation of 

vaccination (1, 2). A follow-up study identified two vaccine-induced immune responses that 

were associated with HIV-1 acquisition: high levels of immunoglobulin A (IgA) antibodies 

to HIV-1 envelope (Env) were associated with increased risk of infection, and high levels of 

IgG antibodies to Env amino acids 120 to 204 (reference sequence HXB2) were associated 

with decreased risk of infection (3). The IgA antibody response was a composite score of 

purified IgA binding to 14 Env gp120 and gp140 proteins from multiple subtypes, while the 

IgG response was binding to scaffolded Env comprising the variable 1 and 2 (V1 and V2) 

domains flanked by partial regions of the first and second conserved (C1 and C2) domains 

(4).

Several additional studies have investigated the mechanism of these two correlates of risk 

(5). IgA antibodies to the C1 region have been implicated in blocking antibody-dependent 

cellular cytotoxicity (ADCC) in RV144 vaccine recipients (6). Env (120–204)–specific IgG 

responses were mainly attributed to the V2 region; molecular sieve analysis identified amino 

acid residues in V2 under vaccine-induced immune pressure, and several monoclonal 

antibodies were isolated from vaccinees that bind to this region of Env (7, 8). Moreover, V2-

specific IgG3 antibodies and associated nonneutralizing effector functions supported the role 

of V2 in the RV144 protective immune response (9, 10), and Env-specific CD4+ T cells 

directed against V2 were identified as the most common T cell response after vaccination 

(11).

Human leukocyte antigen (HLA) class II molecules (DR, DQ, and DP) found on the surface 

of antigen-presenting cells present foreign extracellular peptides to CD4+ T cells, which then 

induce B cells to produce antibodies. Several HLA class II genes encode these molecules, 

but polymorphisms in the DRB1, DQB1, and DPB1 genes are primarily responsible for 

enabling variable binding to different antigenic epitopes within the peptide-binding groove 

of the HLA class II molecule. These genes are highly polymorphic, and this variation can 

influence humoral immune responses. For example, several HLA alleles and haplotypes 

have been shown to be associated with humoral responses induced by vaccination: 

DRB1*03 has been implicated in nonresponse to vaccination with hepatitis B surface 

Prentice et al. Page 2

Sci Transl Med. Author manuscript; available in PMC 2016 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



antigen (12, 13), the presence of DPB1*05 has been associated with increased magnitude of 

IgG responses to a malaria sporozoite vaccine (14), and individuals with DRB1*07-

DQB1*03-DPB1*04 and DRB1*04-DQB1*03-DPB1*03 haplotypes had lower levels of 

measles and rubella virus–specific IgG antibody titers, respectively (15). Furthermore, lack 

of neutralizing antibody responses to the combined prime-boost HIV-1 vaccine used in 

RV144 has been attributed to certain HLA class II alleles in a phase 2 trial in Thailand that 

preceded RV144 (16). It is thus likely that the differences in vaccine-induced immune 

responses observed in the RV144 study could be due to the variation in HLA class II genes 

between individuals. The present study sought to identify whether specific DRB1, DQB1, or 

DPB1 alleles enhanced or reduced the effect of Env-specific IgA and Env (120–204)–

specific IgG antibodies on HIV-1 acquisition.

RESULTS

Interaction of Env-specific IgA and DQB1*06 increases risk of acquisition

Thirty-one HLA class II alleles observed in the cohort with an allele frequency greater than 

5% were investigated. High Env-specific IgA levels correlated with increased risk of HIV-1 

acquisition only in the presence of DQB1*06 (P = 0.002, q = 0.11) (Fig. 1 and table S1). 

The impact of DQB1*06 on the association of vaccine-induced Env-specific IgA levels with 

HIV-1 acquisition was apparent when antibody responses of vaccinated individuals were 

stratified by HLA-DQB1 type (Fig. 1A). Anti-Env IgA levels were higher in HIV-1–infected 

compared to uninfected individuals only in the presence of DQB1*06. Higher levels of Env-

specific IgA correlated with increased risk of HIV-1 infection only in the presence of 

DQB1*06 [odds ratio (OR), 14.51 per 1-SD increase; P = 0.002]. No effect of anti-Env IgA 

level was observed in the absence of DQB1*06 (OR, 1.07 per 1-SD increase; P = 0.74). 

Vaccinated individuals were further stratified into subgroups according to their IgA 

responses (low or medium versus high) corresponding to the lower two-thirds and upper 

one-third of responses at week 26 (3) and the presence or absence of DQB1*06. Cumulative 

incidence of HIV-1 infection over time showed that individuals with high levels of anti-Env 

IgA and DQB1*06 had accelerated time to HIV-1 infection compared to any other group 

(Fig. 1B).

Env (120–204)–specific IgG responses are higher in individuals with DPB1*13

We also tested whether HLA class II alleles correlated with levels of HIV-1– specific 

antibody by linear regression. No class II allele was associated with Env-specific IgA levels, 

but the presence of DPB1*13 directly correlated with higher levels of anti–Env (120–204) 

IgG (P = 0.002, q = 0.09) (Fig. 2A and table S2). HLA-DPB1*13 was the only class II allele 

to show any interaction with vaccine-induced anti–Env (120–204) IgG levels and affect 

HIV-1 acquisition (P = 0.01, q = 0.26) (table S1). The protective effect of host DPB1*13 

allele on HIV-1 acquisition conferred by vaccine-induced Env (120–204)–specific IgG 

responses was apparent when the vaccinated individuals’ antibody responses were plotted, 

stratified by HLA-DPB1 type (Fig. 2B). Higher levels of Env (120–204)–specific IgG 

correlated with decreased risk of HIV-1 infection only in the presence of DPB1*13 (OR, 

0.29 per 1-SD increase; P = 0.006). Individuals with both higher levels of Env (120–204)–

specific IgG and at least one DPB1*13 allele had the lowest HIV-1 incidence compared to 
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other groups (Fig. 2C). Vaccine efficacy was estimated to be 71% for the group consisting of 

individuals with higher Env (120–204)–specific IgG levels and the DPB1*13 allele relative 

to the placebos (Fig. 2D).

Env (120–204)–specific IgG responses with DPB1*13 are not HIV subtype–specific

As a secondary analysis, we further investigated the gp120-specific IgG response associated 

with protection against HIV-1 acquisition in the presence of DPB1*13. The scaffolded Env 

antigen (positions 120 to 204) used to identify this antibody response as a correlate of risk in 

the Haynes et al. study (3) was derived from a subtype B–infected individual (4). We tested 

IgG responses for reactivity with several other Env (120–204) antigens from different HIV-1 

group subtypes (A, B, C, or CRF01_AE) and a smaller region comprising only the V2 

domain positions 160 to 183. For all the Env (120–204) and most of the V2 (160–183) 

antigens from varying subtypes, a higher level of IgG responses associated significantly with 

the presence of DPB1*13 (table S3). However, these antibody responses were not equally 

effective. Anti–Env (120–204) IgG responses to all subtypes were associated with decreased 

risk of HIV-1 acquisition in the presence of DPB1*13 (OR, 0.07 to 0.31; P = 0.006 to 0.02). 

In contrast, no anti-V2 IgG responses were associated with decreased risk of HIV-1 

acquisition (P > 0.7).

IgG responses with DPB1*13 to the N terminus of Env (120–204) are protective

To further define the region responsible for conferring protection, Env-specific plasma IgG 

responses were assessed by overlapping peptides (15-mers overlapping by 12 amino acids) 

spanning the Env (120–204) region. Responses to 181 peptides from multiple HIV-1 

subtypes were tested in all vaccinated individuals. For five of these epitopes, an IgG 

response was observed to be significantly associated with the presence of DPB1*13: 116–

130 (P = 0.04), 119–133 (P = 0.01), 163–177 (P = 0.02), 166–180 (P = 0.04), and 169–183 

(P = 0.01) (table S4). Of these epitopes, only peptide 119–133 demonstrated a significantly 

greater frequency of response in uninfected compared to infected individuals with DPB1*13 

allele (Fig. 3A). The magnitude of IgG responses was also interrogated as a continuous 

variable. In a comparison between infected and uninfected DPB1*13 positive individuals, a 

greater magnitude of IgG response to peptide 119–133 was associated with protection from 

HIV-1 acquisition (Fig. 3B). Peptide 119–133 represents the N terminus of the Env (120–

204) sequence, with 11 and 3 residues located in the C1 and V1 regions, respectively. 

Sequence alignments from different Env (120–204) antigens confirm that region 120–133 is 

fairly conserved between different viral subtypes (fig. S1).

Viral sequences differ in DPB1*13 positive vaccine recipients

That the host HLA type interacts with vaccine response to affect acquisition implies a 

functionally different immune response to vaccination in the presence versus absence of 

DPB1*13. This is supported by a sieve analysis of breakthrough Env-gp70 sequences from 

RV144-infected participants. Amino acid distributions in the vaccine and placebo groups 

were compared separately for subjects with or without the DPB1*13 allele. The following 

15 sites were tested for their known function as contact residues and antibody epitopes (7): 

HXB2 amino acids 120, 124, 160, 165, 166, 168–173, 178, 179, 181, and 197 (table S5). Of 

these, position 173 differed significantly between vaccinees with or without DPB1*13. 
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Histidine at position 173 was conserved in all eight DPB1*13 positive vaccinees but was 

found only in 15 of the 36 DPB1*13 negative vaccinees (P = 0.004) (Table 1). In contrast, 

histidine at 173 was present at a lower frequency in placebo recipients both with and without 

DPB1*13. Among subjects carrying DPB1*13, site 173 also distinguished vaccine and 

placebo recipients (P = 0.02), but there was no difference between vaccine and placebo 

recipients among subjects without DPB1*13.

Interactions between HLA class II and vaccine-induced responses independently affect 
acquisition

Four immune variables that were part of the primary analysis in the immune correlate study, 

including IgG avidity, ADCC, neutralizing antibodies, and CD4+ T cell responses to Env, 

did not show associations with HIV-1 acquisition previously (3). We show that the two 

significant HLA interactions with Env-specific IgA (DQB1*06) and Env (120–204)–specific 

IgG (DPB1*13) remained significant and had independent effects on HIV-1 acquisition in a 

multivariable analysis, including all the other immune variables (Table 2). Our findings thus 

indicate an effect of the humoral immune response on HIV-1 acquisition in the presence of 

specific HLA class II alleles.

DISCUSSION

The RV144 vaccine produced two Env-specific antibody responses that correlated with 

HIV-1 acquisition (3). Because HLA class II molecules are important in the initiation of 

antibody responses, we hypothesized that variation in HLA class II genes might influence 

response to the vaccine. DRB1, DQB1, and DPB1 loci were typed in the RV144 vaccine 

recipients, and the alleles found were tested for an effect on magnitude of vaccine-induced 

responses and for interactions with the two vaccine-elicited immune responses that 

significantly affected HIV-1 acquisition. Both Env-specific antibody responses previously 

identified were found to correlate with HIV-1 acquisition only in the presence of specific 

HLA class II alleles.

Haynes et al. (3) observed that high levels of IgA antibody binding to Env correlated with 

reduced vaccine efficacy that was not distinguishable from the placebos in RV144. Here, we 

report that it is only in the presence of a single allele, DQB1*06, that high levels of Env-

specific IgA antibodies are associated with HIV-1 infection. This finding remained even 

after normalization for total plasma IgA levels (OR, 4.06; P < 0.001). The effect of high 

anti-Env IgA levels in the presence of DQB1*06 on HIV-1 acquisition was stronger than that 

of high levels of anti-Env IgA antibodies alone. Env-specific IgA antibody levels did not 

differ between individuals with or without DQB1*06, suggesting that the presence of 

DQB1*06 influences the quality, not quantity, of anti-Env IgA antibody response to confer 

susceptibility to infection. The most parsimonious explanation for this finding is that 

differences in IgA isotypes or epitope specificity could be influenced by CD4+ T cell 

responses and may contribute to these qualitative changes. This is consistent with previous 

reports of class II alleles associating with both CD4+ T cell and specific antibody epitopes 

targeted by an immune response (16–18). Most of the 14 recombinant Env variables 

comprising the composite anti-Env IgA variable (3) interacted significantly with DQB1*06, 
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showing that this finding was not restricted to the common Thai CRF01_AE viral subtype 

(table S6). The simplest interpretation of our data is that, in the presence of DQB1*06, anti-

Env IgA antibodies are associated with increased risk of HIV-1 acquisition. This finding is 

of concern given the higher allele frequency of DQB1*06 in South Africa (32.4%) (19) than 

in Thailand (10.3%) (20), where an RV144-like regimen will be tested in a phase 2b HIV-1 

efficacy trial (5).

Haynes et al. (3) also found that high IgG binding to the Env (120–204) B-subtype antigen 

correlated with decreased risk of HIV-1 acquisition in RV144 vaccinees compared with 

placebo recipients. We found that this association occurred only in the presence of a single 

host allele, DPB1*13, and identified a significant direct correlation between the presence of 

DPB1*13 and Env (120–204) IgG antibody levels. This association was replicated with Env 

antigens across multiple HIV-1 subtypes. IgG antibody responses to all these varying Env 

(120–204) sequences were also associated with decreased risk of HIV-1 acquisition. In 

addition to an increased quantity of IgG response to Env (120–204) in the presence of 

DPB1*13, we also determined differences in the specific Env antigens targeted. Analysis of 

IgG responses in 242 vaccinated individuals to overlapping peptides spanning the Env 120–

204 region identified five linear epitopes to which a response was associated with the 

presence of DPB1*13. Of these, both the frequency and magnitude of IgG response to one 

epitope, Env positions 119 to 133, were associated with decreased risk of HIV-1 acquisition 

among the DPB1*13-vaccinated individuals. This antibody epitope overlaps with the C 

terminus of the C1 region and contains three residues from the V1 region. It contains the 

PLCV motif with side-chain and main-chain CD4 contact residues. Therefore, IgG binding 

to this epitope is likely to block Env interaction with CD4 (fig. S2) (21). This is further 

supported by the well-characterized monoclonal antibody (mAb) 17b that binds this epitope. 

Antibody 17b binds lysine at position 121, blocks chemokine co-receptor CCR5 binding 

(22, 23), and modifies the gp120 V1V2 loop structure to partially block the CD4 binding site 

(fig. S2) (22–24). Thus, only in the presence of DPB1*13 is high IgG response to Env (120–

204) associated with reduced risk of HIV-1 acquisition. This could be due to the greater 

magnitude of IgG response observed in DPB1*13 positive vaccine recipients. It may also 

result from response to particular regions of the Env antigen in the presence of DPB1*13. 

Here, we defined a candidate in a linear epitope screen, but others such as conformational 

epitopes may also exist.

Further evidence that immune responses induced by vaccination in individuals carrying 

DPB1*13 are different from those without DPB1*13 was apparent in significant HIV-1 

sequence differences between vaccine and placebo recipients when specifically subjects with 

DPB1*13 were considered (or when comparing vaccinees with or without DPB1*13). Only 

in the presence of both vaccine and DPB1*13 was a high frequency of H173 observed, 

suggesting that the vaccine responses in DPB1*13 positive individuals can select specific 

HIV-1 variants. That both the DQB1*06 and DPB1*13 alleles implicated in this study can 

mediate functional differences in immune response is also shown by their well-established 

associations with antibody response and autoimmune diseases (25, 26). Both DQB1*06 and 

DPB1*13 are associated with selective IgA deficiency (27–29). DQB1*06 is associated with 

several autoimmune diseases such as type 1 diabetes and narcolepsy (25, 30).
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Growing awareness that host diversity may have contributed to the differences observed in 

vaccine-induced immune responses and efficacy in the RV144 study has generated increased 

interest in host genetic studies (20, 31–35). Data presented herein show clear differences in 

vaccine-induced immune responses among individuals having DQB1*06 and DPB1*13 

alleles. These findings are significant because both of these alleles were identified as 

common with allele frequencies greater than 10% in 450 uninfected healthy controls from 

RV144 (20). Furthermore, the associations with HIV-1–specific antibodies are most likely 

vaccine-induced because there was no observed effect in the absence of vaccine (table S7) 

and none of the class II alleles had a direct association with HIV-1 acquisition (table S8).

The main limitation of this study is the relatively small sample size, with no possibility of 

replicating the genetic associations. This is due to the absence of other efficacious HIV-1 

vaccine trials. Moreover, the secondary analyses were exploratory in nature, and the 

mechanisms postulated require confirmation in independent studies. Vaccine trials using the 

RV144 vaccine–based regimen, such as the one planned in southern Africa and Thailand, 

could address these limitations (5).

The RV144 vaccine trial has advanced understanding of HIV-1 vaccine–induced protective 

immune responses. The prime-boost vaccine showed an efficacy of 31.2% at 42 months after 

the beginning of the primary vaccination series (1). Vaccine efficacy was 58% among 

individuals with high levels of Env (120–204)–specific IgG antibodies and absent among 

individuals with high levels of anti-Env IgA antibodies (3). We further show that vaccine 

efficacy among individuals with high levels of Env (120–204)–specific IgG increased to 

71% in conjunction with a specific class II allele. Thus, interactions of certain HLA class II 

genes with antibody responses to the RV144 vaccine regimen affect HIV-1 acquisition in a 

vaccine efficacy trial. The primary implication of these findings is that differences in 

vaccine-induced responses elicited by individuals with HLA-DPB1*13 should be further 

examined to determine the mechanism of protection of the vaccine. Understanding how 

variation in the host relates to vaccine-induced responses can help in the interpretation of 

vaccine efficacy studies and could prospectively improve vaccine design.

MATERIALS AND METHODS

Study design

We examined HLA class II genotypes in the 41 vaccinated HIV-1–infected cases and 205 

matched vaccinated uninfected control subjects defined in the RV144 correlates of risk 

study. The study design, including selection of patients and immune response variables for 

this trial, has been previously described (1, 3). Briefly, the RV144 study was a community-

based, randomized, multicenter, double-blind, placebo-controlled efficacy trial of the prime-

boost combination of a vaccine containing ALVAC-HIV and AIDSVAX B/E 

(ClinicalTrials.gov number NCT00223080). For the correlates of risk study, vaccinated cases 

free of HIV-1 infection at week 24 of the vaccination period were selected for evaluation of 

immune responses at peak immunogenicity (week 26). Patients were stratified by sex, 

number of vaccinations received, and per-protocol status. For each HIV-1–infected case 

within a stratum, five vaccinated uninfected controls were randomly selected for comparison 

of immune responses. We also studied 517 placebo control samples that were administered 
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placebo in the RV144 study. Placebo uninfected controls (n = 450) were selected for 

comparison to placebo infected (n = 67) cases using the same selection criteria described 

above for the vaccinated case-control cohort. The RV144 study was approved by the Human 

Subjects Research Review Board of the U.S. Army Medical Research and Material 

Command, the Thai Ministry of Public Health Ethical Committee, and the Institutional 

Review Boards of the Mahidol University and the Royal Thai Army. All individuals gave 

informed consent for participation in this study.

HLA genotyping

Genomic DNA was extracted and purified from human peripheral blood mononuclear cells 

using the QIAamp DNA Blood Mini Kit (Qiagen). DRB1 and DQB1 genotyping was 

performed using sequence-based typing (SBT) according to the International 

Histocompatibility Workshop Group protocol and as described previously (20, 36). Because 

SBT generated ambiguous genotypes for the DPB1 locus, next-generation sequencing was 

used for HLA typing (20, 36). Four-digit HLA typing was generated for DRB1, DQB1, and 

DPB1 loci for all samples. For the purposes of this paper, HLA typing data for all alleles 

with a population frequency (2N) greater than 5% were assessed. There were 18 alleles that 

had a frequency greater than 5% at the four-digit designation. To enable testing of more 

HLA alleles, we also included 13 alleles that met this criterion when combined to a two-

digit designation. Four alleles at four-digit designations were identical at two-digit 

designations and thus were not included separately for analysis (DRB1*03:01/DRB1*03, 

DRB1*09:01/DRB1*09, DPB1*05:01/DPB1*05, and DPB1*13:01/DPB1*13). One 

individual was assigned as having a blank genotype for the DPB1 locus because DNA was 

unavailable for resolving ambiguity. A dominant genetic effect was assumed for HLA class 

II alleles.

Population stratification

A panel of 96 single nucleotide polymorphisms (SNPs) was selected to identify population 

stratification as described previously (35, 37). PLINK was used for data cleaning and quality 

control. No SNPs were excluded on the basis of missing data (call rate <0.985) or deviation 

from Hardy-Weinberg equilibrium. Two HIV-1–uninfected individuals with a high degree of 

missing data (call rate <0.95) were excluded from analysis. Two individuals, one HIV-1–

infected and one uninfected, were identified as twins. To avoid losing power in the infected 

group, only the uninfected twin was excluded from analysis. Because genetic admixture has 

previously been observed in the RV144 cohort (35), population stratification was assessed 

through principal components analysis (PCA) using EIGENSTRAT (38). One significant 

axis of variation was identified through PCA analysis.

Statistical analysis

Primary objectives—For our primary analysis, to test whether the effect of Env-specific 

IgA or Env (120–204)–specific IgG on HIV-1 acquisition differed depending on the presence 

of an individual HLA class II allele, a two-way interaction term was included in univariate 

logistic regression models that accounted for the sampling design (39, 40). Sex, baseline 

self-reported behavioral risk category, and the one significant EIGENSTRAT axis identified 
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through PCA were all included as covariates in the regression models. Taking into 

consideration the sample size, a minimal false discovery rate (q value) was used to correct 

for multiplicity testing of all individual alleles in two-way interaction analysis of both Env-

specific IgA and Env (120–204)–specific IgG (41). A minimal false discovery rate is a 

conservative approach to multiplicity testing because it is presumed that all of the null 

hypotheses are true. A Holm-Bonferroni–adjusted P value (42) of less than 0.05 and a q 
value of less than 0.20 were considered statistically significant. To interpret a statistically 

significant two-way interaction identified through two-phase logistic regression models, the 

effect of the immune correlate of interest on HIV-1 acquisition was presented as a function 

of the given HLA class II allele (presence or absence) using linear regression models. 

Significant univariate interactions were also evaluated in a multivariable model including all 

original immune variables such as IgG avidity, ADCC, neutralizing antibodies, and CD4+ T 

cell responses to Env to identify independent associations (3). As an additional primary 

analysis, direct associations of HLA on Env-specific IgA or Env (120–204)–specific IgG 

were also compared using univariate linear regression models. A two-sided P value of less 

than 0.05 and a q value of less than 0.20 were used for considering statistical significance as 

described above.

Descriptive methods have been described previously (3). Briefly, immune correlate variables 

were modeled quantitatively and categorically based on the thirds of response (low, medium, 

and high subgroups). Quantitative variables were mean-centered and scaled to have an SD of 

1. In the present descriptive analyses, the low and medium subgroups were collapsed 

together for Env-specific IgA-related analyses, and the high and medium subgroups were 

collapsed together for Env (120–204)–specific IgG-related analyses to increase statistical 

power in categorical subgroups stratified by presence or absence of a given allele. Box plots 

describe the distribution of each immune correlate for infection status (infected versus not 

infected) stratified by allele status. Analysis of variance was used to assess immune correlate 

distribution across subsets with differences further interrogated using Bonferroni-adjusted t 
tests. Cumulative HIV-1 incidence curves following peak immunogenicity (week 26) were 

plotted for different response subgroups in the presence or absence of an allele, as well as 

for the entire placebo group who were HIV-1 negative at the week 24 visit (n = 6267 

subjects) for reference. Curves were estimated via the Kaplan-Meier method with inverse 

probability weighting accounting for the sampling design. Vaccine efficacy for response 

strata in the presence or absence of an allele in vaccine recipient subgroups versus the entire 

HIV-1–negative placebo group at the week 24 visit was estimated using logistic regression 

models that accounted for the sampling design.

Secondary analyses—As secondary analyses, alleles were also checked for any direct 

association on HIV-1 acquisition using the same logistic regression models as in the primary 

analysis. In further secondary analyses, binding antibody multiplex assays for IgG antibody 

response to seven Env (120–204) or Env-V2 (160–183) peptides were performed as 

described previously (43). All variables were tested for (i) the presence of antibody response 

associated with the allele of interest using the same univariate linear regression models as 

Env (120–204)–specific IgG, and (ii) the effect of this antibody response on HIV-1 
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acquisition using the same logistic regression models in two-way interaction analysis as the 

Env (120–204)–specific IgG variable.

Linear B cell epitopes from all vaccinated individuals in the study were identified using 

overlapping peptides of Env sequences from six HIV-1 group M subtypes as described 

previously (3). Env-specific plasma IgG was assessed with 181 overlapping peptides (15-

mers overlapping by 12 amino acids) spanning the Env (120–204) region. Epitopes were 

identified using Fisher’s exact test by comparing the frequency of responses to each peptide 

in the presence and absence of an allele of interest. Significant epitopes were then tested 

using Fisher’s exact test for an effect on HIV-1 acquisition by comparing the frequency of 

antibody response between vaccinated infected and uninfected individuals with DPB1*13. 

Antibody responses to epitopes were also examined as a continuous variable, and the 

distribution of responses between infected and uninfected vaccinees with DPB1*13 allele 

were compared using the two-sample Kolmogorov-Smirnov test.

HIV-1 breakthrough infections in the RV144 trial were previously sequenced (7). An 

alignment of Env-gp70 sequences from subjects infected with HIV-1 CRF01_AE (n = 110) 

was created, and potential antibody contact sites that showed sufficient but tolerable 

variation to detect a signal were identified. The amino acid distribution between vaccine and 

placebo recipients with or without the DPB1*13 allele was compared at selected sites using 

Fisher’s exact tests.

All P values for secondary analysis were uncorrected for the number of tests performed 

because they were exploratory in nature. Statistical analysis was completed using the R 

Statistical Computing Environment with the R package tpsDesign and SAS. Descriptive box 

plots, scatter plots, cumulative incidence curves, and vaccine efficacy curves were created 

using R or GraphPad Prism 6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. High Env-specific IgA (IgA) levels are associated with increased risk of HIV-1 acquisition 
only in the presence of HLA-DQB1*06
(A) Box plots of vaccinated individuals stratified according to HIV-1 infection status and the 

absence or presence of DQB1*06. Individual data points are indicated by colored circles 

within the box plots showing the 25th (bottom edge of the box), 50th (horizontal line in the 

box), and 75th percentiles (top edge of the box). Analysis of variance tested IgA 

distributions across subsets with differences further interrogated using Bonferroni-adjusted t 
tests. MFI, mean fluorescence intensity. (B) Estimated cumulative HIV-1 incidence curves 

for individuals stratified by IgA and DQB1*06 for the entire vaccinated RV144 cohort. 

Vaccinated individuals in the case-control study are stratified into subgroups according to 

their IgA responses (low/medium and high, corresponding to the lower two-thirds and upper 

one-third of responses) at week 26 and the absence or presence of DQB1*06. Individual 

curves represent the estimated cumulative incidence of HIV-1 infection over time since the 

measurement of IgA at week 26. Curves were estimated using the Kaplan-Meier method 

with inverse probability weighting accounting for the sampling design.
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Fig. 2. Env (120–204)–specific IgG is associated with the presence of HLA-DPB1*13 and is 
protective
(A) Distribution of IgG stratified by absence or presence of DPB1*13. Red lines represent 

the mean and SD for the change in the measurement of IgG from absence to presence of 

DPB1*13. Means were compared using t tests. Individual data points are indicated by black 

circles. (B) Box plots of vaccinated individuals stratified according to HIV-1 infection status 

and the absence or presence of DPB1*13. Individual data points are indicated by colored 

circles within the box plots showing the 25th (bottom edge of the box), 50th (horizontal line 

in the box), and 75th percentiles (top edge of the box). Analysis of variance tested IgG 

distributions across subsets with differences further interrogated using Bonferroni-adjusted t 
tests. (C) Estimated cumulative HIV-1 incidence curves for individuals stratified by IgG and 

DPB1*13 for the entire vaccinated RV144 cohort. Vaccinated individuals in the case-control 

study are stratified into subgroups according to their IgG responses (low and high/medium 

corresponding to the lower one-third and upper two-thirds of responses) at week 26 and the 

absence or presence of DPB1*13. Individual curves represent the estimated cumulative 

incidence of HIV-1 infection over time. Curves were estimated using the Kaplan-Meier 

method with inverse probability weighting accounting for the sampling design. (D) 

Estimated vaccine efficacy (VE) for IgG and DPB1*13. Individuals were stratified into 

subgroups according to IgG response (low and high/medium, corresponding to the lower 

one-third and upper two-thirds of responses) and the absence or presence of DPB1*13 and 

were compared to the entire placebo-infected group. Points show the estimated VE values, 
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and lines represent 95% confidence intervals (CI) that were estimated using logistic 

regression models that accounted for the sampling design.
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Fig. 3. Frequency and magnitude of IgG responses to Env epitope (119–133) are associated with 
HIV-1 acquisition among DPB1*13 vaccinated individuals
(A) Frequency of DPB1*13 restricted peptide responses comparing vaccinated infected (VI) 

and vaccinated uninfected (VU) individuals that have at least one DPB1*13 allele. Fisher’s 

exact test compared the frequency of antibody response between VU DPB1*13 and VI 

DPB1*13 individuals. (B) Red lines represent the mean and SD for the change in the 

magnitude in responses from absence to presence of DPB1*13. Means were compared using 

t tests.
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Table 2
Interactions of HLA class II alleles and vaccine-induced responses have an independent 
effect on HIV-1 acquisition

ORs for HIV-1 acquisition in a multivariable analysis of all primary immune response variables from the 

immune correlate study (3) and the two significant HLA interactions observed in this study.

Variable
Multivariable model*

OR (95% CI) P value

Avidity of IgG antibodies for Env 0.94 (0.56–1.57) 0.80

ADCC 0.97 (0.62–1.51) 0.89

Neutralizing antibodies 1.08 (0.63–1.85) 0.78

Env-specific CD4+ T cells 1.07 (0.77–1.50) 0.68

Env-specific IgA-DQB1*06 interaction† 8.24 (2.07–32.75) 0.003

Env (120–204)–specific IgG-DPB1*13 interaction† 0.27 (0.09–0.80) 0.02

*
For each primary immune variable (3), the OR is reported per 1-SD increase; sex, baseline behavioral risk score, and one significant principal 

component axis were included as covariates in the model. Env-specific IgA, DQB1*06, Env (120–204)–specific IgG, and DPB1*13 were also 
included as main effects.

†
Reported ORs and 95% CIs reflect the results from logistic regression analysis including a two-way interaction term for Env-specific IgA or Env 

(120–204)–specific IgG and the absence or presence of the given allele.
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