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Abstract
Unlike peripheral lymph nodes (PLN), the mesenteric lymph nodes (MLN) draining the

gastrointestinal (GI) tract are exposed to microbes and microbial products from the intes-

tines and as such, are immunologically distinct. GI draining (MLN) have also been shown

to be sites of early viral replication and likely impact early events that determine the course

of HIV infection. They also are important reservoir sites that harbor latently-infected cells

and from which the virus can emerge even after prolonged combination antiretroviral ther-

apy (cART). Changes in the microbial flora and increased permeability of the GI epithe-

lium associated with lentiviral infection can impact the gut associated lymphoid tissue

(GALT) and induce changes to secondary lymphoid organs limiting immune reconstitution

with cART. Nonhuman primate models for AIDS closely model HIV infection in humans

and serial sampling of the GALT and associated secondary lymphoid organs in this model

is crucial to gain a better understanding of the critical early events in infection, pathogene-

sis, and the role of immune responses or drugs in controlling virus at these sites. However,

current techniques to sample GI draining (MLN) involve major surgery and/or necropsy,

which have, to date, limited the ability to investigate mechanisms mediating the initiation,

persistence and control of infection in this compartment. Here, we describe a minimally

invasive laparoscopic technique for serial sampling of these sites that can be used with

increased sampling frequency, yields greater cell numbers and immune cell subsets than

current non-invasive techniques of the GALT and reduces the potential for surgical com-

plications that could complicate interpretation of the results. This procedure has potential

to facilitate studies of pathogenesis and evaluation of preventive and treatment
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interventions, reducing sampling variables that can influence experimental results, and

improving animal welfare.

Introduction
The lymph nodes (LN) draining the gastrointestinal (GI) tract are often generically called the
mesenteric lymph nodes (MLN). These include a number of distinct nodes at varying proxim-
ity to the intestines, including the para-colonic, left colic, superior and inferior mesenteric
lymph nodes among others. Dendritic cells and macrophages from the intestines traffic to the
MLN and activated T and B cells from the MLN traffic to the lamina propria of the intestine
creating a compartmentalized immune response that can be distinct from systemic immune
responses [1]. In addition to playing major roles in conditions such as inflammatory bowel dis-
ease, Crohn’s disease, and food allergies [2], these immunologically unique sites play important
roles in HIV and AIDS.

Approximately 1.2 million people in the United States were living with HIV infection in
2012 [3], with gay, bisexual, and other men who have sex with men (MSM) disproportionately
affected. In 2013, MSM accounted for 81% of the estimated 37,887 HIV diagnoses among
males aged 13 years and older [4]. Even with early initiation of combined antiretroviral therapy
(cART) suppression, persistent viral reservoirs are still established [5–6] and often mediate the
rapid viral rebound that typically occurs after cessation of cART administration [7]. The MLN
have been identified as an important reservoir site for the virus [8–9] and have even been sug-
gested to be the primary reservoir site [10–12]. HIV infection causes mucosal epithelial damage
with translocation of microbial products from the GI tract contributing to local and systemic
immune activation. The resulting alterations of lymph node architecture, including fibrotic
changes with damage to the fibroblastic reticular cell network (FRCn) of LN lead to T cell
depletion and limit immune reconstitution after initiation of cART, findings that have been
recapitulated in studies of SIV infected macaques [13–15]. Typically the MLN remove enteric
microbes and microbial products before a significant systemic response occurs resulting in
compartmentalization of the response to the GI system and associated lymphoid organs. How-
ever HIV infection disrupts both the intestinal barrier and local immune responses. The GI
draining LN are the first to encounter translocated microbial products and thus are a critical
site for evaluation of these effects through the course of infection, including during cART sup-
pression [14–15].

Recently, we demonstrated in a macaque model of rectal HIV transmission that after intrar-
ectal inoculation, viral dissemination likely occurs via draining lymphatic pathways that
include the para-colonic, left colic, and inferior mesenteric LN [16]. As the first secondary lym-
phoid organ to encounter the virus, evaluation of the effects of HIV/SIV infection and inter-
ventions in the MLN are critical for studying the early events that shape the course of infection
and the impact of vaccines and antivirals.

Current techniques to evaluate the effect of SIV or SHIV infection on MLN or GALT in liv-
ing macaques involve noninvasive imaging [17], endoscopic colonic or duodenal/jejunal biop-
sies or intestinal resections and/or MLN collection that entail major abdominal surgery,
resulting in a very limited number of sampling time-points and increased risk of complications
to the animals and potential adverse impact on experimental results. Each of these approaches
have significant drawbacks, including insufficient sample size or number of time-points to
study the effects of infection, vaccines or therapies on immune cells or the viral reservoir. We
therefore sought to develop a minimally invasive laparoscopic technique that would allow for

Laparoscopic PCLN, LCLN and MLN Collection

PLOS ONE | DOI:10.1371/journal.pone.0157535 June 16, 2016 2 / 9

Competing Interests: The authors have declared
that no competing interests exist.



more frequent serial sampling with minimal impact to the animals to evaluate effects of vac-
cines or therapies on immune responses, early events post transmission, viral replication and
latency reversal in these critical sites.

Material and Methods

Nonhuman primates
In vivo primate studies were conducted at 2 sites; National Cancer Institute, National Institutes
of Health (Bethesda, MD) and at the Washington National Primate Research Center (Seattle,
WA). Animals were housed and cared for in Association for the Assessment and Accreditation
of Laboratory Animal Care standards (AAALAC) accredited facilities, and all animal proce-
dures were performed according to protocols approved by the Institutional Animal Care and
Use Committees of the University of Washington and the National Cancer Institute. All ani-
mals were pair housed in stainless steel cages meeting the USDA requirements for space based
on their body weights, were feed (Purina 5046 monkey chow) twice daily based on their indi-
vidual needs and water was available ad libitium. Temperatures were 75± 2°F, and humidity
was 30–70%. Environmental enrichment consisted of toys in and on the cage, foraging devices,
mirrors, radios, and televisions. All surgeries were survival procedures and no animals were
euthanized as part of the described procedures.

Laparoscopic procedures
Animals were anesthetized using 10–15 mg/kg Ketamine and 15-25ug/kg dexmedetomidine,
intubated and maintained on 0.5–2% isoflurane. The abdomen was clipped and asceptically
prepped using alternating chlorhexadine and alcohol following standard techniques. Surgeons
performed a surgical scrub and wore sterile gowns and gloves. All instruments were steam
autoclaved prior to use. Laparoscopy was performed using Dyonics 460P-3 Chip Camera, Dyo-
nics 300XL Xenon Light Source and Dyonics Access 40L Insufflator. The animal was placed at
an approximately 30–45 degree angle part way between right lateral and dorsal recumbency. A
20–30 degree Trendelenburg position was also used to improve visualization and positioning
of the descending colon. After insufflation with a Veress needle to 8–10 mmHg a ~5mm inci-
sion was made for port placement in the left cranial abdominal quadrant. A 2.7mm 0 degree
scope was inserted through this port to allow examination of the abdomen and determination
of the position for the placement of the second port. A second ~5mm incision was made just
left of the midline at about the level of the umbilicus for instrument placement. A 5mm blunt
probe was used to remove the omentum from around the intestines and to position the
descending colon along the left abdominal wall to allow visualization of the medial side of the
mesenteric attachment. Paracolonic, left colic and inferior mesenteric lymph nodes were visu-
alized and a Maryland ratchet forcep was used to grasp the mesentery near the node and exter-
nalize it. The node was then dissected and ligated with 4–0 PDS before removal (Fig 1). This
process was repeated up to two additional times at each time point for a total of up to 3 nodes
collected depending on study requirement. The abdomen was then visualized with the laparo-
scope to ensure that there were no complications from the procedure. The abdomen was
deflated and the abdominal wall and skin closed in a two layer closure using 4–0 PDS. The
entire process from incision to closure took 15–40 minutes depending on the size and body
condition of the animal.

Animals received a local block of the incisions with Marcaine (0.5%) and buprenorphine
(0.3mg/kg) and ketoprofen (3mg/kg) both given IM or sustained release buprenorphine (0.2
mg/kg) SQ and meloxicam (0.2 mg/kg) IM were given for postop pain relief. All animals were
assessed postoperatively by experienced primate veterinarians.
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Colonic biopsies (18) for comparison were collected from the descending colon with a flexi-
ble endoscope using 1.9mm cup biopsy forceps.

Cell Isolation and Quantification
After removal, lymph nodes were placed in RPMI. Supernatants were filtered through a 70 um
filter, pieces of tissue were then crushed on the filters, and were washed twice with R10 media
(RPMI supplemented with 10% heat-inactived fetal calf serum). Cells were mixed with trypan
blue at a 1:1 ratio and were counted on a Cellometer Auto T4 (Nexcelom Bioscience, Lawrence,
MA). Viability and cell yield means +/- the standard error of means (SEM) were calculated and
compared between colon and MLN samples by a Wilcoxon matched-pairs signed rank test
using GraphPad Prism software.

Flow Cytometry
Multicolor flow cytometric analysis was performed on cells isolated from the MLN and colon.
Cells were stained with the following Abs: anti-CD3 Alexa Fluor 700 (clone SP34-2, BD Phar-
mingen, San Jose, CA); anti-CD8 APC-Cy7 (clone RPA-T8, BD Pharmingen); anti-CD20
BV570 (clone 2H7, BioLegend, San Diego, CA); anti-CD4 BV605 (clone OKT4, BioLegend);
anti-CD45 PE-CF594 (clone D058-1283, eBioscience, San Diego, CA); anti-CD14 BV785
(clone M5E2, BioLegend); anti-IL-17 (clone eBio64CAP17, eBioscience), IFNγ (clone B27,
BD Pharmingen), TNFα (clone MAb11, BD Pharmingen), and CD107a (clone eBioH4A3,
eBioscience). All cells were stained with the Live/Dead Fixable Aqua Dead Cell Stain Kit
(Thermo Fisher Scientific, Grand Island, NY) to exclude dead cells from the analysis. Samples

Fig 1. A. Laparoscopic view of a paracolonic and two left-colic nodes draining a portion of the descending colon.B. Four left colic nodes draining a
different portion of the descending colon. C. Use of the Maryland forceps to grasp the mesentery adjacent to a left-colic node prior to externalization.D.
Externalized node held with a rat tooth forceps. E. Externalized node clamped with a mosquito hemostat prior to ligation. F. 4–0 PDS at ligature site in the
abdomen.

doi:10.1371/journal.pone.0157535.g001
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were permeabilized and fixed using CytoFix/Perm Kit (BD Pharmingen) and stained for intra-
cellular cytokines. For intracellular cytokine staining (ICS), cells were stimulated with PMA
(10ng/ml; Sigma Aldrich) and Ionomycin (1μg/ml, Thermo Fisher Scientific) for 10–14 hours
with brefeldin A (1μg/ml; Sigma Aldrich). Flow cytometric acquisition was performed on a BD
LSRII cytometer using FACs Diva software (BD Pharmingen) and analysis of the data was per-
formed using FlowJo software (Tree Star, Ashland, OR). Differences in cell subsets and
immune responses measured in the colon and MLN samples were compared by a paired t-test
(Mann-Whitney) using GraphPad Prism software.

Results
This procedure has been performed on 62 rhesus macaques with 86 total collections. For ani-
mals that were not obese the success rate in obtaining samples was 100% and there were no
complications including in animals that were infected with SIV or SHIV. The procedure has
been performed on thrombocytopenic animals as well and as all vessels are ligated there was no
significant hemorrhage. In obese macaques the success rate has been 50% (2/4) with visualiza-
tion of lymph nodes through excessive mesenteric fat being the main obstacle. These animals
often exhibit friability of the mesentery as a result of the adipose tissue as well, making exterior-
ization difficult. However, collection was successfully performed on animals where collection
was not possible initially due to obesity after they were returned to a normal body condition.
This procedure was successfully performed (13/14) in animals that had undergone prior major
abdominal surgery, such as intestinal resection and anastomosis, with the only issue being the
need to work around any adhesions that had formed to the abdominal wall. The one failure
was in an obese animal.

Up to three longitudinal laparoscopic collections have been performed on individual ani-
mals (n = 14) with up to 3 MLNs collected at each time point with no increase in complications
or changes in the success rate. As seen for peripheral lymph nodes, significant changes in size
of these nodes have been observed over the course of SIV/SHIV infection with larger MLN typ-
ically seen during acute infection. Fig 1 shows representative images of the procedure and isola-
tion of a MLN in a rhesus macaque that was infected 6 weeks prior with SIV. After insufflation
a blunt probe was used to remove the omentum and manipulate the intestines to permit visual-
ization of the medial aspect of the colonic mesentery and associated lymph nodes. Nodes to be
retrieved were selected based on the size, proximity to one another and the ability to exteriorize
the node. The mesentery near the node was grasped with a Maryland forceps, the abdomen
was deflated, and the node externalized. The node was then ligated with 4–0 PDS and after
checking the site for bleeding, the mesentery was returned to the abdomen.

Endoscopic biopsies are currently the primary non-surgical method used to collect tissues
and cells for analysis of the effects of infection, vaccination or therapies on the GALT. Similar
to the MLN laparoscopy procedure proposed here, this approach offers greater frequency in
sampling than surgical methods but often yields cell numbers (1–2 X 106) that are too low to
support a broad analysis of immune responses in the GALT including analysis of cell subset
frequency, T and B cell specificity and function. This is due, in part, to the small amount of tis-
sue that can be collected and a rigorous enzymatic processing procedure to separate the
immune cells from the tissue that reduces cell viability and requires significant personnel effort.
In contrast, LN mononuclear cells (LNMC) are typically isolated by a simpler, more rapid pro-
cedures that involves passing the tissue through a mesh screen. To determine relative cell yield
and viability obtained from typical procedures of each type, the number of immune cells iso-
lated from 2–3 MLNs collected via laparoscopy was compared to that from 18 colonic mucosa
samples taken via endoscope at the same time point (n = 14 animals). The results in Fig 2 show
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that both the total cell yields and viability of cells isolated from mesenteric lymph nodes
(MLN) were much greater than that of conventional colon endoscopic biopsies and that cellu-
lar yields fromMLN were over 10-fold greater than from colon biopsies (P<0.0001).

To compare immune cell subsets in the colon and MLN, cells isolated were isolated concur-
rently from the MLN and colon of SIV-infected macaques (at 8 weeks post-infection) that had
received ART therapy starting at 6 weeks post-infection and analyzed by flow cytometery. The
proportion of CD45+ lymphocytes was significantly higher in the MLN when compared to that
observed in the colon (Fig 3A). Similar frequencies of CD20+, CD14+, and CD8+ cells were
observed between the MLN and colon (Fig 3B) whereas frequencies of CD3+ T-cells and in par-
ticular, the CD4+ subset, were significantly higher in the MLN when compared to the colon
(Fig 3B). To determine if T cells in the MLN and colon exhibited functional differences, intra-
cellular cytokine staining (ICS) was performed on cells isolated from the MLN and colon. Pair-
wise comparisons were difficult due to low cell yield from the colon. However, results shown in
Fig 3C show similar frequencies of most cytokine expressing T-cells were observed in the colon
and MLN, with the exception that the MLN exhibited a higher frequency of TNFα producing
CD4+ T-cells following in vitro stimulation with PMA and Ionomycin (Fig 3C).

Discussion
We have developed a rapid, minimally invasive technique for sampling the paracolonic, left
colic, and inferior mesenteric LN in macaques and demonstrated high rates of success with no
adverse events, even with serial sampling. Paracolonic and left colic LN were easily retrievable
in all animals. Inferior mesenteric LNs were more challenging in larger animals given the lim-
ited mobility of these nodes in the mesentery and the greater distance necessary to achieve
externalization of the node. Complications were not observed even with serial collections, col-
lections after previous laparotomies, and collections on animals experiencing immunosuppres-
sion and/or thrombocytopenia. Obesity appeared to be the main contraindication as it results

Fig 2. Viability and cellular yield of lymph nodes (2–3) collected via laparoscopy and colonic samples
(18) collected via endoscopy at the same time points. *** p <0.0001

doi:10.1371/journal.pone.0157535.g002
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in poor visualization of lymph nodes and friability of the tissue, increased bleeding, and inter-
ference with externalization of the node.

Viability of cells isolated from mesenteric lymph nodes (MLN) was nearly double that of
conventional colon endoscopic biopsies (Fig 2). Additionally, cellular yields from MLN were
over 10-fold greater than colon biopsies and contained significantly higher frequencies of
CD45+ lymphocytes (Fig 3A). While endoscopic GI biopsies can provide valuable information,
the low yield of viable cell yields substantially limits the scope of analysis. In contrast, our
results show that a novel laparoscopic MLN biopsy procedure provides a minimally invasive
alternative for survival sampling of the compartmentalized GI immune system that yields suffi-
cient cell numbers to support a broader range of virological and immunological analyses.
Higher MLN cellular yields, for example would allow for detection of viral RNA/DNA,
immune-phenotyping and a broader characterization of mucosal immune responses including
more extensive characterization of the function, specificity and avidity of SIV specific B and T-
cellular responses by current state-of-art assays for analyzing these responses such as IFNγ and
B cell enzyme linked immunosorbent (ELISpot) assays and intracellular cytokine stain (ICS)
assays.

Previous studies have demonstrated that MLN represent GI cell lymphoid populations [18–
19]. Our results similarly show that the MLN has similar cell subsets and immune response

Fig 3. Cells were isolated concurrently from the colon andMLN of ART-treated, SIV-infected (8wpi) macaques and analyzed by flow cytometry.
A. Flow cytometry plots and frequency of CD45+ cells of live cells. B. Frequency of CD3, CD20, CD14, CD4, and CD8 cellular subsets of live/CD45
+ cells. C. Frequency of live/CD45+/CD3+ /(CD4+ or CD8+) cells with cytokine (IL-17, IFNγ, TNFα) or cytolytic (CD107a) effector function following in
vitro stimulation with PMA and Ionomycin.

doi:10.1371/journal.pone.0157535.g003
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profile as the GI tract but we also observed distinct differences. In particular, the MLN exhib-
ited an enriched frequency of CD4+ T cells when compared to the colon (Fig 3C) and a higher
frequency of TNFα responses that may explain, in part, why the MLN is a primary reservoir
for HIV/SIV. Although not measured in this study, follicular dendritic cells (FDC) and follicu-
lar T helper cells found in lymph nodes are unlikely to be found in many endoscopic pinch
samples. Follicular aggregates found in endoscopic mucosal biopsies are rudimentary struc-
tures that are quite distinct from lymph nodes. These aggregates are found in a variable but
often low percentage of arbitrary pinch biopsies and are always mixed with populations of cells
from the lamina propria making lymph node the preferred sample for analysis of lymphoid fol-
licles. Furthermore, longitudinal laparoscopic collection of MLN allows serial evaluation of
both a primary reservoir site and in many cases the first secondary lymphoid organ draining
translocated microbial products from the GI tract with associated immune activation and path-
ologic changes, such as inflammatory fibrosis.

In summary, we report a new technique that allows for serial sampling of the MLN with no
adverse effects. Furthermore, we show this approach provides several advantages when com-
pared to the more commonly employed endoscopic biopsy including higher cell yield and via-
bility and a more representative immune cell subset for evaluation of previously identified
pathologic changes, such as immune activation and inflammatory fibrosis associated with SIV
and HIV infection that is a significant factor in CD4+ T cell loss and incomplete immune
reconstitution with ART. Serial access to these samples will also permit evaluation of early viro-
logical and immunological events during the eclipse phase of infection in primary draining LN
and changes in immune responses including viral kinetics in response to infection, vaccination
or therapies and evaluation of a critical viral reservoir site that harbors latent virus that has pre-
viously been possible only via major surgery or necropsy. Taken together, this procedure could
lead to new insights into the effects of vaccines, therapeutics and latency reversal agents on
mucosal immune responses and the viral reservoir. These results have significant implications
for improving the study of HIV pathogenesis, vaccination and cure.
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