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NAD(P)H:quinone oxidoreductase (NQO1), an obligatory 
two-electron reductase, is a ubiquitous cytosolic enzyme that 
catalyzes the reduction of quinone substrates. The NQO1- 
mediated two-electron reduction of quinones can be either 
chemoprotection/detoxification or a chemotherapeutic re-
sponse, depending on the target quinones. When toxic qui-
nones are reduced by NQO1, they are conjugated with gluta-
thione or glucuronic acid and excreted from the cells. Based 
on this protective effect of NQO1, the use of dietary com-
pounds to induce the expression of NQO1 has emerged as a 
promising strategy for cancer prevention. On the other hand, 
NQO1-mediated two-electron reduction converts certain qui-
none compounds (such as mitomycin C, E09, RH1 and -la-
pachone) to cytotoxic agents, leading to cell death. It has been 
known that NQO1 is expressed at high levels in numerous hu-
man cancers, including breast, colon, cervix, lung, and pan-
creas, as compared with normal tissues. This implies that tu-
mors can be preferentially damaged relative to normal tissue by 
cytotoxic quinone drugs. Importantly, NQO1 has been shown 
to stabilize many proteins, including p53 and p33ING1b, by 
inhibiting their proteasomal degradation. This review will sum-
marize the biological roles of NQO1 in cancer, with emphasis 
on recent findings and the potential of NQO1 as a therapeutic 
target for the cancer therapy. [BMB Reports 2015; 48(11): 
609-617]

INTRODUCTION

NQO1 (NAD(P)H:quinone oxidoreductase 1) is a cytosolic fla-
voenzyme, which is also known as DT-diaphorase (EC 1.6.99.2) 
(1). NQO1 is expressed in various tissues, and its gene ex-
pression is regulated by the ARE (antioxidant response ele-
ment), both in normal condition and during oxidative stress 
conditions (2). The NQO1 gene contains ARE in its promoter 
region and is regulated by the nuclear factor (erythroid- der-

eved)-like 2 (Nrf2) (3). The NQO1 gene has been shown to be 
activated together with other Nrf2-induced detoxifying enzyme 
genes, such as GST (glutathione S-transferase) and HO-1 (heme 
oxygenase), in response to antioxidants, ionizing radiation, 
xenobiotics, heat shock, electrophiles, hypoxia, and heavy met-
als (1, 4). 

The catalytic enzyme properties of NQO1 were first re-
ported by Ernster and Navazio in 1958 (5). NQO1 is consid-
ered as an anticancer enzyme since it protects cells from oxi-
dative stresses through inhibition of quinones from entering 
the one electron reduction to semiquinone free radicals and 
ROS (reactive oxygen species) (6, 7). Thus, the use of dietary 
compounds to induce the expression of NQO1 has emerged 
as a promising strategy for cancer prevention (8, 9). Recent 
studies have revealed that NQO1 activity is related to the risks 
of lung cancer (6, 7, 10, 11) or cancer of other organs (12, 13). 
Development of several types of human cancers has been 
shown to be due to NQO1 polymorphisms (14-18). Recent 
meta-analysis studies have shown that, in the human repre-
sentative catalytic mutated NOQ1 gene (C609T) located on 
chromosome region 16q22, replacement of cytosine with thy-
midine (609C ＞ T) express substitution of serine for proline, 
thereby reducing the NQO1 enzyme activity, leading to devel-
opment of several types of human cancers (11, 16-21). 

Although a lowered or absent NQO1 activity has been cor-
related with increased susceptibility for development of hu-
man cancers (11, 21), numerous studies found that NQO1 is 
upregulated in a number of cancers such as breast cancer, pan-
creatic cancer, colorectal cancer, cholangiocarcinoma, uterine 
cervical cancer, melanoma, and lung cancer (22, 23). In 
breast, colorectal and cervical cancers, the high-level ex-
pression of NQO1 was found to be associated with the late 
clinical stage of the disease, poor differentiation and lymph 
node metastasis (22, 23). Consistently, breast and cervical can-
cer patients with high NQO1 expression levels show lower 
DFS (Disease-free Survival) and 5-year OS (Overall Survival) 
rates, as compared to patients having lower NQO1 expression 
(22, 23). In addition, NQO1 activity in many cancers is sig-
nificantly higher than that in adjacent normal tissues (1, 
24-26). 

With its unique property of transferring two-electron by us-
ing either NADH or NADPH as reducing cofactor, NQO1 cat-
alyzes the natural and exogenous quinones and quinine- 
imines into hydroquinones, which are toxic (27-29). Accordingly, 
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Fig. 1. The biochemical multiple and general roles of NQO1 in 
protection against the development of cancer.

there has been considerable effort to develop bioreductive an-
ticancer drugs, such as mitomycin C, E09, RH1, -lapachone, 
and 17AAG, which are activated specifically by NQO1 and, 
thus are preferentially toxic to cancer cells (30-38). 
Importantly, it has been reported that ionizing radiation (2-4 
Gy) (1, 38-40), cisplatin (1), or hyperthermia (41-42oC) (41, 42) 
increased the NQO1 expression levels in various human and 
animal cancer cells, and sensitized the cells to -lapachone, 
both in vitro and in vivo. 

Recent emerging studies have revealed the protective roles 
for NQO1 regardless of its enzymatic activities (43). NQO1 
structurally binds to the important tumor suppressor p53 and 
increases its protein stability by inhibiting proteasomal degra-
dation (43). Furthermore, NQO1 appears to regulate the pro-
tein stability of other proteins such as p33, p73, p33ING1b, 
and C/EBP (44-48). 

These studies suggested that NQO1 is a multifunctional anti-
oxidant enzyme and an exceptionally versatile cytoprotector, 
which contributes to a dual function in tumorigenic pro-
gression. This review will describe the biological significances 
of NQO1 in cancer, with emphasis on recent findings, and the 
potential of NQO1 as a therapeutic target for cancer therapy. 

BIOCHEMICAL PROPERTIES OF NQO1 AND CANCER 
PREVENTION

One way to prevent cancer development is suppression of the 
carcinogenic metabolic activation and preventing the pro-
duction of ultimate carcinogens (49). Recent studies showed 
that induction of phase II enzymes, such as GST, HO-1, and 
NQO1, correlates with inhibition against chemical-mediated 
tumorigenesis in animal models, during the promotion as well 
as initiation stages (8, 49). Among phase II enzymes, NQO1 
has been most extensively studied for its effect in preventing 
carcinogenesis (8, 50). The multiple and general biochemical 
roles of NQO1 in the protection against the promotion and ini-
tiation of cancer, can be summarized into the following four 

categories (Fig. 1): (i) detoxification of quinone substrates by 
two-electron reduction; (ii) scavenging of SOD (superoxide 
anion radicals); (iii) maintenance of the endogenous anti-
oxidants such as ubiquinone and -tocopherol; and (iv) stabili-
zation of the suppressors p53/p73/p33 proteins.

Detoxification of quinones by NQO1
In various species including rat, zebrafish, mouse, and human, 
NQO1 is well known as a homodimeric flavoprotein (2, 51, 
52). The best-described and widely accepted function of 
NQO1 is, as its name suggests, the reduction of quinones (2). 
Endogenous and environmental quinones are highly reactive 
molecules that can induce cancers and neurodegenerative dis-
eases (53). NQO1 catalyzes the obligatory single-step two- 
electron reduction of the quinones to hydroquinones. Then the 
hydroquinones can undergo conjugation reactions (e.g., glu-
curonidation). Consequently, they are readily excreted from 
the body (2, 50). The two-electron reduction activity catalyzed 
by NQO1 is of benefit to the cell as it prevents generation of 
free radicals by redox cycle (54). Thus, the detoxification of re-
dox-cycling quinones by NQO1 protects the cells from oxida-
tive stresses and prevents carcinogenesis (55, 49). For exam-
ple, NQO1-mediated reduction of menadione produces its for-
mation of stable hydroquinone to be readily conjugated and 
excreted from the body (53). This NQO1-mediated two-elec-
tron reduction of quinones inhibits the production of un-
wanted one-electron reduction of them by other enzymes such 
as cytochrome P450 (50, 56, 57). The oxidoreductase func-
tions have been proposed to involve a hydride transfect be-
tween the NADH and FAD cofactors and from FADH2 to the 
quinone substrate (50, 53). NQO1 can reduce a very broad 
range of substrates, including quinones, dichlorophenolin-
dolphenol, quinone-imines, methylene blue, glutathionyl-sub-
stituted naphthoquinones, and also azo and nitro compounds 
(53, 56). In addition to the two-electron reduction, NQO1 is 
also capable of performing four-electron reduction of nitro 
compounds and azo dyes (58). The ability of NQO1 to reduce 
the toxicity and carcinogenicity of various quinones has been 
reviewed comprehensively elsewhere (59, 60). 

NQO1 as a scavenger of superoxide anion radicals
Recent studies demonstrated that NQO1 directly scavenges su-
peroxides in an NAD(P)H-dependent manner (27, 50). This 
protective effect may be significant for certain tissues, such as 
vasculature and myocardium, in which NQO1 is highly ex-
pressed (27, 61, 62). In cardiovascular tissues, the high NQO1 
enzyme activity compensates for the lows of cardiovascular su-
peroxide dismutase expression in the detoxification reaction of 
superoxide anion radicals, which are produced by various 
sources, including xanthine oxidase, NAD(P)H oxidases, mi-
tochondria, and uncoupled NOSs (nitric oxide synthases) in 
cardiovascular tissues (61). 
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NQO1 as an antioxidant enzyme
There has been known that NQO1 maintains certain endoge-
nous antioxidants in their reduced and active forms (50). 
Oxidation of -tocopherolquinone, which is produced by vita-
min E (-tocopherol), has antioxidant properties following re-
duction to -tocopherolhydroquinone (53). NQO1 catalyzes 
the two-electron reduction of -tocopherolquinone to its hy-
droquinone form, which then protects against lipid perox-
idation of the membranes (61). Furthermore, NQO1 catalyzes 
the reduction of ubiquinone analogs (coenzyme Q) to their 
ubiquinol forms in liposomes (53). However, the in vivo role 
of the above two-electron reduction reactions remains to be 
elucidated. 

NQO1 as a protein stabilizer
The tumor suppressor p53, which is one of critical tran-
scription factors related to suppression of tumourigenesis, in-
duces either growth arrest or apoptosis, in response to stresses 
such as DNA damage (43). The p53 protein is regulated via 
modification and interactions that affect its half-life (44). Under 
normal conditions, p53 protein is rapidly degraded due to its 
interaction with Mdm-2 that induces ubiquitination and pro-
teasomal degradation (44). Pro-apoptotic stresses disrupt this 
interaction between the p53 and Mdm-2 proteins, allowing the 
p53 to accumulate (63). NQO1 has been shown to stabilize 
the tumor suppressor p53 protein (43). When NQO1 ex-
pression is upregulated in cancer cells under conditions of 
stress, NQO1 stabilizes p53 by inhibiting its proteasomal 
degradation. This effect was reversed by the potent NQO1 in-
hibitor dicoumarol, as well as other inhibitors that compete 
with NAD(P)H (43). This effect of dicoumarol suggests that it 
affects a structural change in NQO1, which inhibits interaction 
between the NQO1 and p53 proteins (45, 46). Although the 
precise mechanism by which NQO1 activity stabilizes p53 is 
poorly understood, the NQO1-mediated stabilization of p53 
represents a unique additional mechanism by which NQO1 
may protect against carcinogenesis. In addition, it has been re-
ported that the degradation of tumor suppressor proteins p73 
and p33 is regulated by ubiquitination. Recently, it has been 
shown that NQO1 can also inhibit p73 and p33 degradation 
in the presence of NAD(P)H, and protects them from 20S pro-
teasomal degradation (44, 63). Furthermore, NQO1 appears to 
regulate the degradative fate of other proteins, such as 
p33ING1b and C/EBP (47, 48). These finding suggest that 
NQO1 plays an important role as a gatekeeper, in regulating 
the proteasomal degradation of specific proteins. 

REGULATION OF NQO1 GENE AND CANCER 
PREVENTION

The use of dietary compounds or synthetic chemicals to de-
crease the incidence of cancer has been established half a cen-
tury ago (8). Numerous studies demonstrated that chemo-
preventive agents are Nrf2 inducers (8). Thus, the use of che-

mopreventive agents to induce the Nrf2/KEAP1/ARE signaling 
pathway, leading to the elevation of the expression of NQO1 
gene, has emerged as a promising strategy for cancer pre-
vention (8, 9). As the name of the pathway suggests, three ma-
jor components are important to the transcription of the 
NQO1 gene: (i) ARE, DNA consensus sequences that are lo-
cated in the promoter regions of the genes (53, 64); (ii) Nrf2, 
one of leucine zipper transcription factor, binds to the ARE, 
thereby signaling transcription of target genes (43); (iii) 
Kelch-like ECH-associated protein 1 (KEAP1) binds Nrf2 and 
promotes its ubiquitination and proteasomal degradation by 
Cul3-based ligase (8, 9). 

Regulation of NQO1 gene expression
Analysis of the human, mouse and rat genes for NQO1 
showed that NQO1 is located at 16q22.1 on the human chro-
mosome, and mouse chromosome 8 (52, 53, 65, 66). The 
NQO1 gene consists of five introns and six exons for an ap-
proximate length of 20 kb (53). There is considerable homol-
ogy between the human and rat NQO1 coding sequences 
(85%) (65). The first two amino acids and the first nucleotide 
of the third amino acid are encoded by Exon 1, while the re-
maining 272 amino acids are encoded by exons 2-6 (53). 
NQO1 is regulated by two distinct regulatory elements in the 
5’ flanking region of the NQO1 gene that are the ARE, called 
the EpRE (electrophile response element), and the XRE 
(xenobiotic response element), called the AhRE, both under 
basal and during oxidative stress conditions (2, 53). A variety 
of antioxidants, H2O2, and tumor promoters increase ARE- 
mediated NQO1 expression (53, 64). Many transcription fac-
tors can recognize ARE, TMAnnRTGAYnnnGCRwww, in vitro, 
indicating that this is a composite regulatory DNA sequences 
(53). Because the AP-1 binding sequences, TGASTMAG, are 
similar to the ARE sequences, GTGACnnnGC, AP-1 and leu-
cine zipper proteins (bZIP) including Nrf1, Nrf2 and Maf, par-
ticipate in the induction of NQO1 gene (53, 67). A model of 
ARE-mediated regulation of hNQO1 is proposed by Wasserman 
and Fah1 (68). The ARE core sequence (RTGAYnnn) interacts 
with the bZIP transcription factors (Jun, Fos, Fra, Nrf, Maf, Raf 
and NF-E2) (53). It has been known that the Nrf2-KEAP1/ARE 
signaling pathway is the major regulator of cytoprotective re-
sponses to oxidative and electrophilic stresses (69). XRE-medi-
ated gene expression involves the liganded aromatic hydro-
carbon receptor (AHR). The XRE-mediated gene expression is 
increased by PAS (Per, Arnt, Sim) family of proteins (68). The 
AHR/Arnt dimer interacts with the DNA sequences, XRE (70). 
TCDD and polycyclic aromatic hydrocarbons induce NQO1 
gene expression (71). However, one study 8 reported that, in 
mouse hepatoma cells, TCDD-induced human NQO1 was 
ARE- mediated and not dependent on XRE (72). 

Chemoprevention by upregulating NQO1
Environmental carcinogens, including quinones, are first meta-
bolically activated via the phase I enzymes such as cyto-



Implications of NQO1 in cancer therapy
Eun-Taex Oh and Heon Joo Park

612 BMB Reports http://bmbreports.org

Fig. 2. Representative chemopreventive agents-induced activation of 
Nrf2/KEAP1/ARE signaling pathway and regulation of NQO1 gene.

chrome P450 into reactive intermediates (8). At the cellular 
level, there exist competing phase II enzymes (e.g. NQO1) 
which eliminate the reactive forms of carcinogens through bio-
transformation reactions, including quinone reduction, acetyla-
tion, sulfation and glutathione conjugation (8). Therefore, the 
use of dietary compounds or synthetic chemicals to shift the 
balance between phase I and II enzymes, is a promising strat-
egy for cancer chemoprevention (73-75). The concept of che-
moprevention strategy is closely correlated with Nrf2/KEAP1/ 
ARE signaling pathway-induced expression of NQO1 (8). 
Many studies reported that potent Nrf2 inducers can be ob-
tained from plants including cruciferous vegetables (sulfora-
phane), a wide used spice (curcumin), green tea (epigalloca-
techin- 3-glaate), grapes (resveratrol), conifer trees (caffeic acid 
phenethyl ester) and Japanese horseradish (wasabi) (8). This 
chemopreventive natural compounds inducing Nrf2/NQO1 
signaling pathway are continuously growing, and these have 
been reviewed comprehensively elsewhere (9). The signaling 
pathway is summarized in Fig. 2. 

NQO1 gene polymorphisms
It has been known that NQO1 polymorphisms increase the 
susceptibility for developing cancer (6, 7, 10-18). Two types of 
polymorphisms of the NQO1 gene have been reported in hu-
mans (43). The prominent one is a single nucleotide mutation, 
which is replacement of cytosine with thymidine (609C ＞ T), 

of the NQO1 gene (13, 43). This mutation produces a proline 
to serine substitutions at position 187 of the amino acid se-
quence of the NQO1 (6, 7, 10-18). Another mutation 
NQO1*2 protein is rapidly degraded by the proteasome (76). 
In addition, it has been reported that the null phenotype or de-
ficiency for NQO1 increases the susceptibility to the neo-
plastic and toxic effects by benzene (43, 77). A large number 
of studies reported that the NQO1 polymorphisms correlate 
with the susceptibility for developing several types of cancer. 
However, the results showed inconsistency because of the 
small sample size in the majority of studies (16). In order to 
overcome the problem of low statistics, a few number of 
meta-analyses were performed in individual studies. However, 
these meta-analyses considered individual cancer sites sepa-
rately (16). Therefore, a global meta-analysis to investigate the 
role of NQO1 polymorphisms should be conducted. 

THE POTENTIAL OF NQO1 FOR CANCER THERAPY

Although absent or lowered NQO1 activity has been asso-
ciated with the susceptibility for developing several types of 
human cancers as presented above (6, 7, 10-18), the clinical 
significance of expression levels of NQO1 in human cancers 
has not been fully elucidated. In humans, NQO1 is overex-
pressed in a variety of solid tumors, including those of the 
adrenal gland, breast, colon, bladder, liver, ovary, cervix, pan-
creas lung, and thyroid (6, 22, 23, 78-80). In cancers, this fea-
ture has been exploited to activate anticancer drugs that are bi-
oreductively activated by NQO1. In addition, there has been 
growing interest in the development of strategies to induce 
NQO1 activity in cancer cells for increasing the efficacy of bi-
oreductive anticancer drugs. 

Bioreductive quinone substrates for NQO1
Bioreductive anticancer drugs such as mitomycin C (MMC), 
-lapachone and benzoquinone ansamycins, are activated by 
NQO1. MMC is a quinone containing antibiotic isolated from 
Streptomyces caespitosus. For more than 30 years, MMC has 
been used for the treatment of solid human tumors including 
breast, lung, pancreas and stomach (81). The mechanism of 
action of MMC is intracellular bioreductive activation which 
lead to DNA interstrand crosslinking (81). Since MMC is bio-
activated by NQO1, the level of NQO1 is a good predictor of 
MMC sensitivity. In specifically hypoxic and acidic tumor mi-
croenvironments, other bioreductive enzyme can effectively 
activate MMC (82). Therefore, NQO1 expression level and 
NQO1 polymorphsim may not be important to determine the 
clinical response to MMC therapy (81). Another representative 
quinone, -lapachone, is a naturally occurring ortho naptho-
quinone isolated from the bark of the lapachon tree (Tabeduia 
avellanedae) (1, 38, 83, 84). NQO1-induced activation of -la-
pachone showed anti-trypanosomal, anti-fungal and anti- bac-
terial properties by production of hydrogen peroxide and su-
peroxide with the simultaneous oxidation of reduced pyridine 
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Fig. 3. Schematic model of how ionizing radiation or hyperthermia potentiates NQO1-dependent -lapachone-induced cancer cell death.

nucleotides (85). Early studies reported that -lapachone could 
inhibit topoisomerase I, thereby inhibiting the repair of DNA 
in mammalian cells (81). -lapachone (ARQ 501) is processed 
in the Phase I and II clinical trials for the cancer therapy (81). 
Finally, the benzoquinone ansamycins including geldanamy-
cin (GA) and 17-AAG are a group of quinone. GA, which is 
isolated from Streptomyces hygroscopicus, has anticancer 
properties by inhibiting RNA and DNA replication (86). It has 
also been reported that GA could inhibit the activity of vSrc 
and inhibit the expression of the cMyc (81). In addition, GA 
targets the heat shock protein 90 (Hsp90) by inhibiting its 
ATPase activity (81). GA effectively inhibits Hsp90-mediated 
maturation of many oncogenic proteins such as HER2, Raf-1, 
KIT, BCR-ABL as well as steroid hormone receptors (81). 
Therefore, GA and its analogs such as 17-AAG and 17-DMAG 
have shown anticancer effect in various human cancers. 
NQO1 can convert 17-AAG to the hydroquinone of 17-AAG. 
The hydroquinone of 17-AAG, IPI504 (Retaspimycin), was de-
veloped as a more water-soluble alternative to 17-AAG. The 
IPI504 actively inhibits Hsp90 and shows markedly more po-
tency than the parent quinone (87). In recent years, several 
new NQO1-dependent anticancer compounds have been de-
veloped, such as 2,5-diaziridinyl-3-3[hydroxymethyl]-6-methyl- 
1,4-benzoquinone (RHI); 3-hydroxy-5-aziridinyl-1-methyl-2 [indol- 
4,7- dione ]-prop-b-en-a- ol (EO9); and 3,4-dihydro-2, 2-di-
methyl-2H-naphthol[1,2-b]pyran-5,6-dione (-lapachone) (83). 

Upregulation of NQO1 in cancer therapy with bioreductive 
anticancer drugs
Cytotoxic quinone anticancer drugs may have the advantage 

of preferentially damaging the cancer cells when the cancer 
cells when the NQO1 enzyme is upregulated or overex-
pressed, relative to their action on cancer cells in normal con-
ditions (1, 38, 83, 84). Recently, it has been shown that ioniz-
ing radiation at clinically relevant doses (e.g., 2 Gy) sig-
nificantly upregulates the NQO1 level in cancer cells, and sen-
sitizes the cells to -lapachone (38, 39). When cells expressing 
NQO1 are treated with a combination of ionizing radiation 
and -lapachone, positive feedback regulation between ROS 
and ERK leads to ER stress, inducing mitochondrial trans-
location of cleaved Bax and JNK activation. Subsequently, the 
decrease of mitochondrial membrane potential leads to trans-
location of AIF and apoptosis (84). We have also recently re-
ported that hyperthermia (e.g. 41-42oC) increases the enzy-
matic activity of NQO1 and Hsp70-mediated stabilization of 
NQO1, and sensitizes the cells to -lapachone in vitro (41, 52, 
83). Heat shock elevates NQO1 expression by cis-acting ele-
ments such as ARE and XRE. The degradation of NQO1 pro-
tein in heat-treated cancer cells was slower than in untreated 
cells. After heating, the Hsp70 co-localized and co-pre-
cipitated with NQO1 in cancer cells, indicating the associa-
tion of these two proteins in cancer cells (83). In addition, ex-
perimental mouse tumors or human tumor xenografts could be 
markedly sensitized to -lapachone treatment by heating the 
tumors 24 h prior to -lapachone treatment (41, 42). Further-
more, cisplatin significantly upregulates NQO1 in cancer cells, 
thereby markedly increasing the sensitivity of the cancer cells 
to -lapachone in vitro as well as in vivo. These data suggested 
that local treatment of tumors with established cancer thera-
pies such as hyperthermia or radiotherapy, which is summar-
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ized in Fig. 3, may upregulate NQO1 in the tumors and se-
lectively sensitize the cancer cells to -lapachone. Phase I and 
II clinical trials are conducted in progress to determine the fea-
sibility of using -lapachone alone or in combination with oth-
er anticancer drugs against human solid tumors (88). In order 
to improve the delivery and clinical efficacy of -lapachone to 
tumors are being investigated (89-91).

CONCLUSION

There has been accumulating evidence exhibiting the versatile 
cytoprotective role of NQO1, in particular for cancer pre-
vention and protection from oxidative stress-related diseases. A 
large number of studies reported the role of NQO1 poly-
morphisms in susceptibility for generation of several types of 
cancer. Importantly, certain compounds become cytotoxic due 
to reduction mediated by NQO1. Interestingly, NQO1 is over-
expressed in providing an opportunity to preferentially damage 
cancers relative to normal tissues, using bioreductive anti-
cancer drugs. Furthermore, there has been growing interest in 
the development of strategies to induce NQO1 activity in can-
cer cells for increasing efficacy of bioreductive anticancer 
drugs. 
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