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Abstract 
AIM: To study the effect of a new anti-CD163-dexame
thasone conjugate targeting activated macrophages on 
the hepatic acute phase response in rats. 

METHODS: Wistar rats were injected intravenous with 
either the CD163 targeted dexamethasone-conjugate 
(0.02 mg/kg) or free dexamethasone (0.02 or 1 mg/kg) 
24 h prior to lipopolysaccharide (LPS) (2.5 mg/kg intra
peritoneal). We measured plasma concentrations of 
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tumour necrosis factor-a (TNF-a) and interleukin 6 
(IL-6) 2 h post-LPS and liver mRNAs and serum concen
trations of the rat acute phase protein a-2-macro
globulin (a-2-M) 24 h after LPS. Also, plasma concen
trations of alanine aminotransferase and bilirubin were 
measured at termination of the study. Spleen weight 
served as an indicator of systemic steroid effects.

RESULTS: The conjugate halved the a-2-M liver mRNA 
(3.3 ± 0.6 vs  6.8 ± 1.1, P  < 0.01) and serum protein 
(201 ± 48 μg/mL vs  389 ± 67 μg/mL, P  = 0.04) after 
LPS compared to low dose dexamethasone treated 
animals, while none of the free dexamethasone doses 
had an effect on liver mRNA or serum levels of a-2-M. 
Also, the conjugate reduced TNF-a (7208 ± 1977 pg/mL 
vs  21583 ± 7117 pg/mL, P  = 0.03) and IL-6 (15685 
± 3779 pg/mL vs  25715 ± 4036 pg/mL, P  = 0.03) 
compared to the low dose dexamethasone. The high 
dose dexamethasone dose decreased the spleen weight 
(421 ± 11 mg vs  465 ± 12 mg, P  < 0.05) compared to 
controls, an effect not seen in any other group.

CONCLUSION: Low-dose anti-CD163-dexamethasone 
conjugate effectively decreased the hepatic acute phase 
response to LPS. This indicates an anti-inflammatory 
potential of the conjugate in vivo . 

Key words: Acute phase response; Dexamethasone; 
Endotoxin; Hemoglobin scavenger receptor CD163; 
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Core tip: We aimed to study the effect of a new anti-
CD163-dexamethasone conjugate targeting activated 
macrophages on the hepatic acute phase response in 
rats. The central finding of the study was a reduction in 
liver mRNA and plasma levels of the acute phase protein 
a-2-macroglobulin, and plasma tumour necrosis factor-a 
and interleukin 6 by administration of the conjugate 
prior to a lipopolysaccharide-induced inflammatory res
ponse. This anti-acute phase effect exceeded that of 
the therapeutic dexamethasone dose and did not cause 
systemic adverse effects. Thus, the antibody conjugate 
may be a potential candidate in future anti-inflammatory 
macrophage-directed therapy, e.g. , in liver diseases with 
Kupffer cells activation.
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INTRODUCTION 
In conditions with macrophage proliferation and acti­
vation, CD163, a haemoglobin-haptoglobin scavenger 

receptor expressed exclusively on monocytes and 
macrophages[1,2], is up-regulated[3,4]. Following toll-like 
receptor activation by inflammatory stimuli like lipopoly­
saccharide (LPS), receptor shedding to circulation as 
soluble CD163 (sCD163) is increased, and within hours 
upregulated on the cell surface[5]. As an example, 
hepatic macrophages (Kupffer cells) are activated and 
sCD163 is increased in patients with liver cirrhosis who 
chronically experience some degree of endotoxemia and 
acute phase response[6,7] and this may be involved in the 
development of the serious cirrhosis complications[6,8]. 

We have recently constructed a conjugate of CD163
antibody and the potent corticosteroid dexamethasone 
(anti-CD163mAb-dexa) specifically targeting dexa­
methasone to activated macrophages[9]. The conjugate 
reduces the LPS-stimulated cytokine release from 
activated macrophages in vitro and in vivo in rats 
and pigs[9,10]. The effect is obtained with very low con­
centration of dexamethasone, thereby minimizing 
steroid-induced systemic effects. A fifty-fold higher con­
centration of non-conjugated dexamethasone is needed 
to obtain the same anti-inflammatory response[9].

Exposure to LPS is a standard method to induce 
an acute phase response with a large increase in pro-
inflammatory cytokines and hepatic synthesis and 
release of acute phase proteins[11,12]. While the conjugate 
reduces the LPS-mediated cytokine response in rats it 
remains unknown whether it also inhibits the hepatic 
acute phase protein synthesis response. 

To approach this issue we measured the gene 
expression in liver tissue and serum concentrations of 
the prevailing acute phase protein a-2-macroglobulin 
(a-2-M) 24 h post-LPS exposure in rats. a-2-M is a 
hepatocyte-derived inhibitor of a wide range of pro­
teinases that can be activated during inflammation[13]. 
Further, we compared plasma concentrations of tumour 
necrosis factor-a (TNF-a) and interleukin 6 (IL-6) 2 h 
post-LPS exposure. Spleen weight served as an indicator 
of systemic steroid effects.

MATERIALS AND METHODS
Animals 
The animal protocol was designed to minimize pain or 
discomfort to the animals. Female Wistar rats (body 
weight 190-210 g; Taconic M and B, Ejby, Denmark) 
were housed at 21 ℃ ± 2 ℃ with a 12-h artificial 
light cycle. Two or three animals were housed in each 
cage, with free access to tap water and standard food 
(Altromin, Lage, Germany) and acclimatized for one 
week. Food intake and body weight were registered 
at the beginning and at the end of the experimental 
procedures. The study was performed in accordance 
with local and national guidelines for animal welfare 
and approved by the national Animal Ethics Committee, 
protocol No. 2010/561-1918.

Design 
Forty animals were allocated in 5 groups of 8: One 
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control group receiving only vehicle (PBS pH 7.4) intra­
venously and four groups injected intravenously with 
either vehicle, anti-CD163mAb-dexa (0.02 mg/kg 
dexamethasone), high dose free dexamethasone (1 
mg/kg) (Sigma-Aldrich, Brøndby, Denmark), or low 
dose free dexamethasone (0.02 mg/kg). The high 
(“therapeutic”) dose gives maximal steroid efficacy in 
other rat studies[14,15] and the low dose was the same as 
in the anti-CD163mAb-dexa. After 24 h, 0.5 mL of saline 
(controls) or LPS dissolved in 0.5 mL saline (2.5 mg/kg) 
(from Ecsherichia coli 0111:B4 obtained from Sigma-
Aldrich, Brøndby, Denmark; product No. L2630) was 
injected intraperitoneally. Two hours later and following 
anaesthesia with inhalation of isofluran 2%-3% (Forene®,
Abbott Laboratories, Gentofte, Denmark), a blood 
sample for determination of plasma TNF-a and IL-6 
was drawn from a retrobulbary venous plexus using 
heparinised micropipettes. After an overnight 12-h fast 
the animals were anaesthetised with a subcutaneous 
injection of fentanyl/fluanisone (Hypnorm®, Jansen 
Pharma, Birkerød, Denmark) 0.5 mL/kg and midazolam 
(Dormicum®, La Roche, Basel, Schwitzerland) 2.5 
mg/kg. All blood was collected for blood analyses and 
approximately 200 mg of liver tissue was snap-frozen 
in liquid N2, and stored at -80 ℃. Finally, the spleen 
was weighed. In all animals we measured liver mRNA 
levels and serum concentrations of a-2-M and plasma 
concentrations of alanine aminotransferase and bilirubin 
at termination of the study. 

Liver tissue
mRNA levels of a-2-M were determined by slot blot 
hybridization as previously described[16].

Blood analyses
The concentrations of a-2-M in serum were evaluated 
by rat ELISA (Immunology Consultants Laboratory, 
Newberg, OR, United States). The plasma concentrations 
of TNF-a and IL-6 were determined by immunoassay (R 
and D Systems, Minneapolis, MN, United States, both). 
Samples were analysed in duplicate and all assays had 

intra- and inter-assay coefficients of variance below 5% 
and 10%, respectively. Plasma concentrations of alanine 
aminotransferase and bilirubin were determined by 
standard clinical biochemical analytical methods.
 
Statistical analysis
Data were analysed using the Kruskal-Wallis One Way 
Analysis of Variance on Ranks; when significant, post-
hoc tests were performed among groups by the Mann-
Whitney rank sum test. Data are presented as the 
mean ± SEM. Differences were considered significant 
with P-values < 0.05. A statistical review of the study 
was performed by a biomedical statistician.

RESULTS
Body and spleen weight
LPS induced a body weight loss in all the intervention 
groups (P < 0.05) (Table 1) and there was no difference 
among these groups. The high dose dexamethasone 
dose decreased the spleen weight (P < 0.05), an effect 
not seen in any other group (Table 1). 

Acute phase protein liver mRNA and serum levels 
LPS increased the liver mRNA and serum levels of 
a-2-M several fold in all groups (P < 0.01) (Figure 1). 
Anti-CD163mAb-dexa approximately halved the a-2-M 
liver mRNA (P < 0.01) and serum response (P = 0.04) 
compared to low dose dexamethasone treated animals, 
while no free dexamethasone dose had any effect 
on liver mRNA or serum levels of a-2-M compared to 
vehicle (Figure 1). 

TNF-a and IL-6
LPS markedly increased plasma TNF-a and IL-6 in all 
groups (P < 0.001). There was a trend for reduced 
TNF-a (P = 0.08) after anti-CD163mAb-dexa compared 
to vehicle and significantly so vs the low dose dexame­
thasone (P = 0.03). Also, the anti-CD163mAb-dexa 
decreased IL-6 compared to both dexamethasone doses 
(P < 0.05). None of the free dexamethasone doses had 
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Table 1  Weights, liver function tests, and cytokines.

Controls LPS Anti-CD163-dexa plus LPS High dexa plus LPS Low dexa plus LPS

Body weight 199 ± 1 196 ± 2 207 ± 2g 204 ± 3 206 ± 3g

Weight loss   11 ± 1   14 ± 3   22 ± 2a    23 ± 2a   21 ± 1a 
Spleen weight   465 ± 12   512 ± 31  492 ± 23    421 ± 11a  483 ± 23
ALT   42 ± 3     61 ± 16    57 ± 20   48 ± 9    77 ± 31
Bilirubin     3.0 ± 0.0     3.3 ± 0.3    3.1 ± 0.1     3.6 ± 0.4    4.0 ± 0.4
TNF-a     0 ± 0    26817 ± 9780a       7208 ± 1977a,c    16891 ± 4210a   21583 ± 7117a 
IL-6     0 ± 0    23075 ± 6758a       15685 ± 3779a,c,e    32964 ± 8294a   25715 ± 4036a 

Body weight (g), body weight loss (g), spleen weight (mg), plasma alanine aminotransferase (U/L), and bilirubin (µmol/L) in 
controls (n = 8) and in animals injected with LPS 24 h after vehicle (n = 8), anti-CD163mAb-dexa (n = 8), high dose (n = 8) and 
low dose (n = 8) dexamethasone at termination of study. Plasma TNF-a (pg/mL) and IL-6 (pg/mL) are measured 2 h after saline 
(controls) or LPS injection. aP < 0.05 vs controls; cP < 0.05 vs low dose free dexamethasone group; eP < 0.05 vs high dose free 
dexamethasone group; gP < 0.05 vs vehicle. ALT: Alanine aminotransferase; TNF-a: Tumor necrosis factor-a; IL-6: Interleukin-6; 
LPS: Lipopolysaccharide.
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phages[19]. However, as glucocorticoids bind to the 
ubiquitous intracellular glucocorticoid steroid receptor 
present in most cell types they also exert serious 
systemic metabolic side effects. Thus dexamethasone 
causes the spleen to undergo a corticosteroid-induced 
weight reduction due to lymphocyte depletion[20]. 
Accordingly, the high dose dexamethasone in our study 
decreased the spleen weight as compared with the other 
groups reflecting systemic non-macrophages effects. 
In contrast, the conjugate did not affect spleen weight 
and was still found to exert a potent anti-inflammatory 
effect. 

In our animal model, the conjugate was given as 
a pre-emptive dose prior to the induction of the acute 
phase response as we aimed at establishing a proof-of-
concept position of the conjugate’s effects. We believe 
our findings support further studies on interference with 
on-going inflammation in relevant experimental models. 
Such studies are also essential for monitoring of long 
term effects of the conjugate.

In conclusion, the anti-CD163-dexa conjugate de­
monstrated potent effects in reducing the acute phase 
proteins without evident systemic side effects during 
an endotoxin-induced acute phase response in rats. 
The effect much exceeded that of a therapeutic dose 
of dexamethasone. Thus, the antibody conjugate may 
be a potential candidate in future anti-inflammatory 
macrophage-directed therapy, e.g., in liver diseases 
with Kupffer cells activation[7]. 
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COMMENTS
Background
In conditions with macrophage proliferation and activation, CD163, a scavenger 

an effect on TNF-a or IL-6 (Table 1). 

Plasma-alanine transferase and bilirubin 
LPS had no effect on these measures at termination of 
the study (Table 1). 

DISCUSSION
The central finding of this study was the reduction 
in liver mRNA and plasma a-2-M, and plasma TNF-a 
and IL-6 by the administration of the anti-CD163-
dexa conjugate prior to the LPS-induced inflammatory 
response. This anti-acute phase effect much exceeded 
that of the therapeutic dexamethasone dose and did 
not cause systemic adverse effects, as evidenced by 
reduced spleen weight in the group treated with high 
dose free dexamethasone. This study completes the 
chain of evidence that the conjugate not only suppresses 
the LPS elicited IL signaling but also the ultimate effect 
on synthesis and release of hepatic acute phase proteins 
that effectuate the acute phase response.

The increase in plasma a-2-M after LPS reflects 
de novo synthesis as almost no such protein is pre­
sent under non-induced conditions[17] in contrast to 
conditions with ongoing low grade inflammation such as 
cirrhosis[18]. LPS as assumed caused a marked systemic 
acute phase response reflected in increased liver mRNA 
and plasma a-2-M, TNF-a, and IL-6. In contrast to 
the equal amount of free dexamethasone, the anti-
CD163mAb-dexa efficiently suppressed this response. 
Still, however, the acute phase response to some extent 
serves to restore homeostasis and one needs to be 
aware that suppression of the response might not be 
entirely beneficial entailing a potential risk using the 
conjugate long term.

The anti-inflammatory effects of glucocorticoids 
are related to a decrease in lymphocyte expansion and 
cell survival and also a reduction in the expression of 
pro-inflammatory cytokines originating from macro­
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Figure 1  Relative levels of serum levels (A) and liver mRNA (B) of a-2-macroglobulin. Changes in serum levels (µg/mL) (A) and liver mRNA (% of controls) (B) 
of a-2-macroglobulin (a-2-M) in controls (n = 8) and in animals injected with LPS 24 h after vehicle (n = 8), anti-CD163mAb-dexa (n = 8), high dose (n = 8) and low 
dose (n = 8) dexamethasone. mRNA results from LPS-injected animals are presented as relative levels compared to control animals. Bars represent the mean and 
SEM. aP < 0.05 vs controls. LPS: Lipopolysaccharide; SEM: Standard error of mean.
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receptor expressed exclusively on monocytes and macrophages, is up-
regulated. As an example, hepatic macrophages (Kupffer cells) are activated 
and CD163 is increased in patients with liver cirrhosis who chronically 
experience some degree of endotoxemia and acute phase response. 

Research frontiers
The authors have recently constructed a conjugate of CD163 antibody and 
the potent corticosteroid dexamethasone (anti-CD163mAb-dexa) specifically 
targeting dexamethasone to activated macrophages. 

Innovations and breakthroughs
The anti-CD163-dexa conjugate exerts an anti-inflammatory effect, which is 
obtained with very low concentration of dexamethasone, thereby minimizing 
steroid-induced systemic effects.

Applications
The antibody conjugate may be a potential candidate in future anti-inflammatory 
macrophage-directed therapy, e.g., in liver diseases with Kupffer cells 
activation.

Peer-review
This is an experimental report written by Thomsen et al, which indicates an 
efficacy of dexamethasone-conjugated anti-CD163 against lipopolysaccharide-
induced acute inflammatory reaction. The well-designed study was carried out 
using firm methods.
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