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Abstract

Background—Advances in white matter tractography enhance neurosurgical planning and 

glioma resection, but is limited by biological variables such as edema, mass effect, and tract 

infiltration, or selection biases related to regions of interest (ROIs) or fractional anisotropy (FA) 

values.

Objective—To provide an automated tract identification paradigm that corrects for artifacts 

created by tumor edema and infiltration, as well as providing a consistent, accurate method of fiber 

tractography.

Methods—An automated tract identification paradigm was developed and evaluated for glioma 

surgery. A fiber bundle atlas was generated from six healthy participants. Fibers of a test set 

(including three healthy participants and ten patients with brain tumors) were clustered adaptively 

using this atlas. Reliability of identified tracts in both groups was assessed by comparison with 

two experts, using Cohen's kappa to quantify concurrence. We evaluated six major fiber bundles: 

cingulum bundle (CB), fornix (FR), uncinate fasciculus (UF), arcuate fasciculus (AF), inferior 

fronto-occipital fasciculus (IFOF), and inferior longitudinal fasciculus (ILF) – the latter three 

tracts mediating language function.

Results—The automated paradigm demonstrated a reliable and practical method to identify 

white mater tracts, despite mass effect, edema, and tract infiltration. When the tumor demonstrated 

significant mass effect or shift, the automated approach was useful to provide an initialization to 

guide the expert with identification of the specific tract of interest.
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Conclusion—We report a reliable paradigm for automated identification of white matter 

pathways in patients with gliomas. This approach should enhance the neurosurgical objective of 

maximal safe resections.
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arcuate fasciculus; diffusion tensor imaging; fractional anisotropy; glioma; surgical planning; 
tractography

Surgical resection of gliomas continues to be a challenge due to their diffuse, infiltrative 

nature.1 Because of the survival benefits of maximal resection,2–5 an objective of 

neurosurgical oncology is to determine the optimal resection margin while preserving 

language, visual, and motor function. Consequently, the localization of eloquent cortical 

regions as well as white matter pathways in the tumor margin is essential to decrease patient 

morbidity.

Current surgical planning relies heavily on MRI to visualize anatomic structures.6,7 

Diffusion tensor imaging (DTI)8 and fiber tractography9–11 are used to visualize the 

anatomic relationship between white matter fibers and the surgical target in order to guide 

the surgical approach and maximize the extent of resection while preserving 

function.1,6,12,13 In current clinical practice, pre-operative DTI-based tract identification is 

typically achieved by segmentation of the whole brain tractography with regions of interest 

(ROIs) selected by a surgeon or radiologist. The selection of these ROIs, however, becomes 

problematic when the fibers in the white matter are altered by edema, infiltration, mass 

effect, or shift. These challenges render the manual placement of ROIs time-consuming and 

introduce significant inter- and intra-expert variability. Moreover, the variability is 

compounded when isolating a tract across multiple time points, e.g. pre- and post-

operatively.

Automated tract identification methods, based on fiber clustering, groups individual fibers 

into bundles depending on their shape and diffusion characteristics. Software-based 

automation has emerged as a promising alternative to the manual drawing of ROIs.14–19 

Existing methods have been mostly applied to identifying healthy tracts, with only a few 

studies including patients with brain tumors.20,21 Furthermore, most methods utilize fiber 

shape and location and thus are inapplicable when the fibers are perturbed by mass effect or 

infiltration.

In this paper, we introduce an innovative, connectivity-based clustering method for the 

automated identification of white matter tracts, including those that are disrupted and/or 

displaced in the presence of mass effect and/or edema. The method addresses the 

subjectivity and variability of manual ROI placement. We demonstrate the applicability of 

this paradigm in pre-operative and treatment planning and compare the reliability of this 

technique with the current manual methodology. Besides the ability to identify eloquent 

tracts essential for surgical planning, the proposed technique can also be used in future 

studies to identify smaller tracts and evaluate them longitudinally, with the aim of studying 

treatment effects or performing customized surgery that protects nuanced function. In the 

following sections, we refer to each single pathway of tractography as fiber. Groups of fibers 
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are called fiber bundles. We use the term tract to refer to a white matter (WM) structure of 

interest such as the arcuate or the corpus callosum, which can consist of a single (arcuate) or 

multiple (corpus callosum) fiber bundles.

METHODS

Participants

Institutional review board approval was obtained, with waiver of informed consent for 

retrospective review of medical records. The tract identification paradigm was assessed on 

two datasets comprised of healthy participants and tumor patients. The first dataset consisted 

of nine healthy participants (six males and three females, age 31.25 ± 4.2 years) imaged at 

three time points separated by two weeks. This dataset was used to confirm the accuracy and 

reproducibility of the algorithm in healthy controls, and served as the basis to create the atlas 

of fiber bundles. Six male participants were selected to generate the fiber bundle atlas, and 

the remaining three participants were used in testing. The second dataset consisted of 10 

male patients (age 57.3 ± 18.3 years) with 8 patients being diagnosed with glioblastoma 

multiforme (GBM), one patient with a pleomorphic xanthoastrocytoma, and another with a 

meningioma. All patients developed tumors involving the left temporal or left temporal-

parietal lobes, with one exception of a tumor in the left frontal lobe. Accordingly, given the 

location primarily in the eloquent language areas, we focused primarily on the following 

tracts: the arcuate fasciculus (AF), the inferior fronto-occipital fasciculus (IFOF), and the 

inferior longitudinal fasciculus (ILF).

MRI Acquisition

Data of healthy participants was acquired on a Siemens 3T VerioTM with a monopolar 

Stejskal-Tanner diffusion weighted spin-echo, echo-planar imaging sequence (TR/TE=14.8s/

111ms, 2mm isotropic voxels, b = 1000 s/mm2 and 64 gradient directions). Data of the 

patients with gliomas were acquired using Siemens 3T TrioTim scanner, echo-planar 

imaging sequence (TR/TE=5s/86ms, 1.7×1.7×3 mm anisotropic voxels, b=1000 s/mm2, 30 

gradient directions).

Automated Identification of Tracts

The paradigm starts with generation of a fiber bundle atlas that will emulate the expert, 

using white matter fibers of healthy individuals. The white matter tracts in any patient with a 

brain tumor are then extracted based on the definitions encoded in the atlas. In order to build 

an atlas, a connectivity-based representation of white matter fibers was created.18 To achieve 

this, the brain was first parcellated into 95 regions by mapping the Desikan atlas22 to each 

brain. For healthy participants, we used FreeSurfer23 for mapping the Desikan atlas to the 

diffusion space, whereas DRAMMS24 was used with patients due to its robustness to 

deformations induced by tumors. Whole brain fibers were generated using TrackVis25 (see 

Text, Supplemental Digital Content 1, which provides details of the methods used), and each 

voxel of a fiber was represented by a 95-dimensional vector encoding the connection 

probabilities to the 95 regions, generated using the probabilistic tractography tool 

probtrackx11,26. Finally, a fiber was represented by the average of these vectors for all of its 

voxels, termed the connectivity profile of the fiber. The connectivity-based representation of 
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fibers is expected to be robust to minor changes in the parcellation of the cortex;18 therefore, 

possible challenges associated with registration of the atlas to the patient brains is not 

expected to effect the final tract extraction results critically.

Six healthy participants were selected to generate a fiber bundle atlas. Whole brain fibers of 

all six participants were clustered based on their connectivity profiles. Fiber bundles in the 

atlas were annotated by an expert to identify the WM structures to which they belong. This 

atlas, which establishes automated correspondence between participants,27,28 was then used 

as a prior model for clustering remaining participants (patients and healthy controls) in a 

fully automated manner (Figure 1). A similar approach was established successfully for 

healthy participants.19 However, the distortion of WM fibers by edema and mass effect 

presented new challenges. Therefore, we developed a modified clustering algorithm to 

provide increased accuracy and stability (see Text, Supplemental Digital Content 1, which 

provides details of the methods used).

Evaluation of Automated Tract Identification

The automated tract identification results were evaluated via a comparison with those 

obtained from two experts by manual placement of ROIs. These experts identified six white 

matter tracts, selected for proximity to the lesion, favoring tracts that were pathologically 

affected and displaced. Both experts repeated the drawing of ROIs three times, separated by 

at least a day to estimate the intra-observer reproducibility. Cohen's kappa was used to 

quantify concurrence. Cohen's kappa takes values in the interval (0 – 1), where higher values 

indicate a better agreement. A kappa value of 0.41-0.60 is considered as moderate 

agreement, while 0.61-0.80 is considered substantial, and a score of 0.81-1.0 indicates near 

perfect agreement.29 Furthermore, we compared the selected tracts in terms of a scalar index 

derived from the diffusion tensor, namely fractional anisotropy (FA).

RESULTS

First, the reliability of the framework was assessed by quantitative empirical results based on 

comparisons of automatically identified white matter tracts to those identified with expert 

drawings. Then, we demonstrated the applicability of the proposed framework to surgical 

planning.

Reliability of tract identification

In order to validate the proposed methodology, we first evaluated the automatically 

identified white matter tracts in healthy participants. For example, we identified the IFOF 

and the AF, and then compared the results to those that were produced by experts using 

manual ROIs (Figure 2). A summary of quantified comparisons for healthy participants is 

found in Table 1. The variation in expert drawings, both for inter- and intra-user measures, 

was conspicuously high (Table 1), illustrating the difficulty for an expert to draw ROIs 

reproducibly, even in healthy participants. A detailed set of comparisons is provided as 

supplemental material (see Tables, Supplemental Digital Content 2-5, which provide 

additional experimental results).
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The difficulty in ROI identification is compounded in the presence of gliomas. This was 

demonstrated when experts placed ROIs to isolate the ILF, IFOF, and AF in patients with 

gliomas (Figure 3). Quantitative comparisons (Table 1) show that our method generated 

reliable results in patients with gliomas. Even with extreme deformation of the white matter, 

as in a patient with a prior surgical resection of a tumor, the white matter fibers within the 

internal capsule could be reliably visualized (Figure 4).

Automated tract identification in surgical planning

In surgical planning, the paradigm described herein can improve the visualization of white 

matter tracts in close proximity to the lesion/surgical target. Figure 5 demonstrates an 

automatically extracted IFOF, facilitating efficient visualization of this affected tract without 

any manual intervention. Additionally, our approach enables the selection of points along 

this tract, to further augment surgical planning. At each point, a DTI-based scalar index can 

be calculated, compared to a normative range, to estimate tract integrity. The surgeon can 

select individual points of interest along the fiber, and the distance to the tumor from each of 

these points is automatically provided (Figure 5), which can be used subsequently during the 

determination of the optimal resection margin.

Figure 6 shows a proposed resection plan that was calculated purely based on distances 

between the tumor and selected WM tracts, for a patient with a glioma. This plan was 

likewise enhanced using automated tract identification. The tumor and three white matter 

tracts (AF, IFOF, ILF,) in proximity to the lesion were visualized. A proposed resection 

region was subsequently calculated, representing the tumor and the surrounding margin that 

could be resected with minimal or no damage to the surrounding tracts.

Finally, the concept of an initialization for white matter tract identification was demonstrated 

in Figure 7. In the commonly encountered situation where white matter fibers are obscured 

due to excessive edema, mass effect, or infiltration, our paradigm provides an initial location 

of the tract. This location can be subsequently refined by an expert to provide a more 

detailed and accurate tract representation.

DISCUSSION

Currently, white matter tract identification relies on the manual drawing of ROIs by experts. 

The manual placement of ROIs becomes especially challenging in the presence of human 

gliomas that are characterized by peritumoral vasogenic edema and mass effect. Anatomical 

landmarks, used by experts to identify tract location, can be obscured by these confounders. 

Moreover, tracts that are affected by tumor or edema can terminate prematurely during 

tractography.

In this work, we show that many of the limitations associated with contemporary tract 

identification techniques can be improved or resolved with the proposed paradigm. Our 

approach emulates an expert by defining an atlas of connectivity profiles of all the tracts in 

the brain. The connectivity-based fiber characterization is uniquely beneficial in automated 

identification of tracts, compared to traditional shape-based characterizations14–17 because 

fiber bundles can be fully or partially (in extreme cases) identified irrespective of changing 
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fiber shape and location, or if the fiber is disrupted (Figure 3, Figure 4, and Figure 7), as 

long as they are reconstructed by the tractography algorithm that is used.

It should be noted that our approach is utilized once the tractography is performed, to 

identify any tract of interest from the whole brain tractography results. Hence, the proposed 

methodology should not be taken as resolving or eliminating, to any extent, intrinsic 

limitations of DTI and tractography such as the ones caused by edema and infiltration.30–32 

Our results were produced using a tensor model and tractography method (see Text, 

Supplemental Digital Content 1, which provides details of the methods used) in order to 

demonstrate the potential of the proposed methodology. Thus, even better outcomes can be 

attained using more advanced and sophisticated image reconstruction schemes and 

tractography algorithms.33,34

Neurosurgeons rely on specialized navigation software during surgery for localization and 

identification of critical, though often indistinct, brain structures. The proposed methodology 

can augment such navigation capabilities by providing white matter information in a 

reproducible manner that is currently unavailable (Figure 5 and Figure 6). Furthermore, our 

approach goes beyond simple visualization of anatomical relationships. In Figure 5, we 

demonstrate how the proposed methodology could inform the surgeon on the state of the 

surrounding white matter tissue. In Figure 6, a safe “maximal resection” margin is estimated 

based on the selected white matter tracts of interest in proximity to a surgical target. Due to 

the speed and ease of automated identification of tracts, any number of tracts can now be 

visualized on the fly, without the need for a ROI-based plan. In current clinical practice, 

tracts required by the surgeon are mapped out in advance. By using the proposed tool, any 

tract can be interrogated at any time by any clinician. This is expected to provide immense 

flexibility for treatment planning, whether performed by radiologists, radiation oncologists, 

or surgeons.

The possible intrinsic limitations of DTI and tractography merit a few caveats. Although the 

proposed methodology can provide a reliable identification of any WM tract of interest, 

individual fibers may be incompletely reconstructed by the tractography algorithm used. 

Thus, critical decisions such as the maximal resection margin require constant evaluation by 

an expert (Figure 7). The final decision on the resection plan should be made by careful 

considerations of the limitations of tractography and potential contribution of 

complementary modalities such as fMRI, PET, MR spectroscopy, intraoperative ultrasound, 

electrophysiological monitoring, magnetoencephalography, or direct electrical stimulation of 

fiber tracts.

With standard methods of tract identification, the manual ROIs selected by experts can vary 

significantly, especially for complex tracts.35 We established that our methodology reliably 

generates reproducible white matter tracts by comparing automated results with those drawn 

manually by experts. The overall agreement of the results of automated clustering with the 

experts in healthy participants (Table 1 C vs. E) was comparable to the agreement between 

experts (Table 1 E1 vs. E2), underscoring the reliability of automated clustering as compared 

to manual identification by experts. Similar results were also observed in patients with brain 

tumors (Table 1). In expert generated tracts, the placement of ROIs was left to individual 
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discretion, instead of defining a standard drawing protocol, to capture expert variability more 

realistically. Thus, the overall agreement between experts is expected to be lower than what 

is usually reported in studies where a standard drawing protocol is assumed for all the 

experts.29

In cases where fiber tractography cannot produce a complete set of fibers due to extensive 

edema or mass effect, our framework can be used to identify the approximate location of a 

given tract (Figure 7). This provides context for the expert when placing ROIs manually. 

This iterative and recursive improvement approach that interweaves the automated tract 

identification with expert refinement is beneficial even when the tracts can be identified 

successfully. This can be observed in Figure 2, Figure 3, and Figure 6 where part of ILF is 

clustered together with IFOF, or in Figure 7, where fibers from other bundles are clustered 

together with ILF, due to the way the tracts are defined in the atlas. Future improvement in 

the atlas will be made by increasing the number of participants used in atlas generation as 

well as incorporating annotations by several experts.

The WM tracts that are included in this study (AF, IFOF, ILF) were selected based on the 

expected difficulty of their identification in both healthy and tumor cases by experts, as well 

as their association with eloquent functions such as language.36,37 We selected the tracts that 

were affected by the tumors, as that demonstrated the capability and accuracy of the 

proposed methodology, in the presence of mass effect. Nevertheless, a future evaluation of 

the proposed technique can be performed on other clinically relevant tracts including the 

corticospinal tract or the optic radiation (OR). We could not include the OR in this study, as 

the 30 direction DTI data was fitted with a tensor model, which makes the identification of 

the OR difficult. However, the proposed technique can be applied to tracts produced by any 

diffusion reconstruction model (e.g. HARDI).38,39 Thus, complicated tracts like OR can be 

evaluated with a better dataset in a future study.

Beyond the preoperative surgical planning and intraoperative neurosurgical navigation, the 

ability to automate fiber tract extraction in a reproducible manner, avoiding confounding 

variables of mass effect, edema, and infiltration, has potential implications to quantitate 

white matter integrity and to link it with preservation of neurological function after resection 

of malignant brain tumors,40 or to monitor the recovery of function beyond the site of 

surgery as has been shown for visual pathways following resection of distant tumors.41 

Future directions potentially include the use of automated tract identification to evaluate the 

disease trajectory,40,42–44 modulate radiation therapy42 or evaluate the response to therapy in 

patients with gliomas.45,46 Finally, the integrity of white matter tracts is increasingly being 

applied in the clinical neurosciences as a biomarker of injury in a range of diseases from 

traumatic brain injury47 to early Alzheimer's disease.48 The ability to use automated, 

probabilistic methods, has been shown to be more reliable than manual determinations by 

individual experts,49,50 as substantiated by the current report.

CONCLUSION

We have introduced a novel paradigm that can provide a standardized and reproducible 

automated tract extraction methodology that will enable DTI to advance as a clinical tool. 
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This paradigm reduces many of the current technological limitations associated with the 

identification of WM tracts induced by peritumoral edema, glioma infiltration, and inter-

observer variability. This approach is not only expected to enhance safety, but could also be 

used to evaluate the recovery of function after resection of gliomas in eloquent areas of the 

brain.

Automated identification of white matter tracts also facilitates longitudinal, quantitative 

characterization of white matter changes. Such sequential changes are currently difficult to 

assess due to a lack of reproducibility when identifying white matter tracts. Currently, the 

variability of fiber tracking is compounded due to the participation of multiple 

neuroradiologists and neurosurgeons in pre-operative planning. The automation of tract 

identification facilitates uniformity.

Ultimately, a combined approach of an automated tractography enhanced with surgical and 

radiological expertise may advance safety and efficacy of tumor resection. As the 

complexity of the brain inevitably requires expert judgment, the optimal results in a clinical 

setting would be achieved by using automated methodology, as described here, in 

conjunction with expert refinements. Such an approach represents a balanced scenario in 

which human and machine decisions go hand in hand to optimize outcomes of brain tumor 

surgery.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was supported by grants from the National Institutes of Health (R01-MH092862, PI: Ragini Verma 
and C-F Westin); University of Pennsylvania (CBICA-Radiology Internal Seed Grant, PI: Luke Macyszyn and 
Ragini Verma), and from the Chera Family Foundation (Brain Mapping Grant, PI: Steven Brem). Nickpreet Singh 
was supported by a Medical Student Summer Fellowship grant of the American Brain Tumor Association (ABTA).

ABBREVIATIONS

AF arcuate fasciculus

CB cingulum bundle

DTI diffusion tensor imaging

FA fractional anisotropy

FR fornix

IFOF inferior fronto-occipital fasciculus

ILF inferior longitudinal fasciculus

OR optic radiation

ROI region of interest
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UF uncinate fasciculus

WM white matter
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Figure 1. 
Steps of automated tract identification. The WM fiber bundle atlas is generated by clustering 

fibers of several healthy participants. Atlas is then annotated according to the WM tracts that 

fiber bundles belong to. Fibers of a new patient are clustered adaptively by employing the 

atlas as a prior model. This procedure results in automated correspondence across fiber 

bundles of different patients that are adapted to the same atlas.

Tunç et al. Page 12

Neurosurgery. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Comparison of the clustering results for the AF (top, yellow) and IFOF (bottom, red) to 

expert drawings for two healthy participants. Each expert repeated the drawing three times 

(columns) separated by at least a day. The high variation between expert drawings is evident. 

Overall agreement between the clustering results and the experts suggests a high reliability 

of the clustering paradigm.
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Figure 3. 
Comparison of the clustering results for the ILF (first column), IFOF (second column), and 

the AF (third column) with the expert drawings for a patient with glioma. Edema volume is 

depicted by the gray shade. Due to high amount of deformation induced by mass effect, 

drawings of experts vary significantly as they need to find best inclusion and exclusion ROIs 

heuristically.
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Figure 4. 
Illustration of the WM fibers in the internal capsule in the atlas (first), a healthy participant 

(second), and a patient with a brain tumor and a prior surgical site (third). Surrounding 

edema around the tumor and resection volume is also shown. The part of the internal capsule 

that was reconstructed by the tractography was successfully identified by adaptive clustering 

in both healthy participant and the patient with the tumor despite the presence of large mass 

effect.
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Figure 5. 
Tumor (purple mass) and surrounding WM tract (IFOF) are illustrated. The IFOF is overlaid 

with FA map to show how the tract is affected by the tumor. Distances between manually 

selected points on the tumor and the tract are shown. On the left side are distributions of 

several diffusion scalars along the tract.
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Figure 6. 
Tumor (purple mass) and surrounding three WM tracts, namely IFOF, ILF, and AF are 

illustrated. The spherical volume depicts the maximal margin of resection that is estimated 

so that selected WM tracts are not affected. The estimated maximal margin depends on 

specific WM tracts selected.
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Figure 7. 
A patient with a left temperoparietal periventricular GBM and resulting large mass effect. 

Clustering results for IFOF, ILF, and AF are shown on the top panel. Although tracts are 

only partially identified, these provide an initial estimate that was improved subsequently by 

experts (bottom panel, green fibers). Note that the partial fibers of tracts are captured 

successfully by the clustering algorithm.
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Table 1

Agreement between clustering and experts as quantified by Cohen's kappa for healthy controls and patients 

with brain tumors. Six tracts, namely the arcuate fasciculus (AF), the inferior fronto-occipital fasciculus 

(IFOF), the inferior longitudinal fasciculus (ILF), the cingulum bundle (CB), the fornix (FR), and the uncinate 

fasciculus (UF) were identified. Mean and standard deviation (in parentheses) are given. C: clustering, E1: 

expert 1, E2: expert 2, E: both experts (average of both). Intra-expert agreement quantifies the variation with 

the repeated drawings. The overall agreement between clustering and experts (C vs. E) is comparable to the 

agreement between experts (E1 vs. E2).

Healthy Controls Patients

Bundle C vs. E E1 vs. E2 E (Intra) C vs. E E1 vs. E2

IFOF 0.66 (0.05) 0.61 (0.08) 0.61 (0.14) 0.49 (0.21) 0.42 (0.22)

ILF 0.62 (0.09) 0.67 (0.04) 0.69 (0.10) 0.59 (0.17) 0.55 (0.20)

AF 0.64 (0.10) 0.46 (0.16) 0.78 (0.18) 0.46 (0.21) 0.49 (0.19)

UF 0.60 (0.13) 0.89 (0.03) 0.91 (0.05)

N/ACB 0.76 (0.05) 0.74 (0.05) 0.89 (0.04)

FR 0.61 (0.07) 0.59 (0.04) 0.83 (0.12)
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