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Abstract

PURPOSE OF REVIEW—Recent studies have emerged to reveal the pivotal roles of mTOR 

signaling not only in the maintenance of physiological functions of renal cells but also in 

pathogenesis of renal cell dysfunctions and kidney diseases. We introduce current understandings 

of the mTOR signaling and its crucial roles in glomerular epithelial cell biology as well as the 

pathophysiology related to kidney diseases.

RECENT FINDINGS—mTOR, a Ser/Thr kinase, forms two distinct functional complexes, 

mTORC1 and mTORC2. Recent studies revealed physiological levels of mTORC1 and mTORC2 

activity play key roles in maintaining podocyte and glomerular functions. However, aberrant 

activation of mTORC1 and/or loss of mTORC2 activity in podocytes may underlie the 

pathogenesis of glomerular disorders including diabetic kidney disease.

SUMMARY—An effective treatment for mTORC1-associated podocyte and glomerular 

dysfunction may require the attenuation of mTORC1 activity in the setting of both an intact 

mTORC2 pathway and normal basal mTORC1 activity in order to preserve physiological 

podocyte functions.
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Introduction

Differentiated podocytes possess elaborated foot processes that form a functional filtration 

barrier in glomeruli [1]. Because active filtration requires constant maintenance and renewal 

of the filtration unit, glomerular podocytes may represent a key site of mechanical 

breakdown in renal failure. One of the major reasons for the vulnerability of podocytes as a 
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filter is that these highly differentiated epithelial cells lack replicative capacity [2]. Various 

genetic and environmental insults cause podocyte injuries including podocyte foot process 

effacement and podocyte loss due to cell death or detachment from the glomerular basement 

membrane [3]. Such podocyte injuries lead to generation of proteinuria and glomerular 

dysfunction. In this regard, many glomerular disorders that generate proteinuria constitute a 

spectrum of podocytopathies in which the progression of glomerular dysfunction is often 

associated with net depletion of podocytes from glomerular tufts [4].

Recent studies suggest that changes in podocyte mass/volume/size in response to stresses 

may trigger its injury and cause death and/or detachment from the glomerular basement 

membrane (GBM) [1, 3, 5]. In recent years studies have begun to reveal the molecular 

mechanisms underlying abnormal cell growth and metabolism that leads to the dysfunction 

of podocytes [6-12]. Among these, the mechanistic target of rapamycin (mTOR) signaling 

pathway has been recognized as a key regulatory pathway for normal podocyte function and 

whose dysregulation under disease conditions such as diabetes leads to their dysfunction and 

glomerulopathy [11, 12].

mTOR complexes and the effect of rapamycin

Two distinct functional mTOR containing protein complexes have been identified, termed 

mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) [13-17]. mTORC1 

comprises of mTOR, Raptor, PRAS40, mLST8, and Deptor. Raptor is an essential 

component of mTORC1, functioning as a scaffold for specific mTORC1 substrates such as 

S6K1 and 4EBP1 [18-20]. Raptor also plays an essential role in tethering mTORC1 to the 

lysosomal membrane for its activation [21, 22].

In contrast, mTORC2 comprises of mTOR, Rictor, Sin1, mLST8, Deptor, and Protor. 

Deletion of Rictor, Sin1, or mLST8 abolishes mTORC2 activity as the phosphorylation of 

mTORC2 substrates such as Akt and SGK1 is largely abolished [14, 17, 23-25].

Rapamycin is a potent and specific inhibitor of mTORC1. After associating with FK-506-

binding protein 12 (FKBP12), the rapamycin-FKBP12 complex directly binds to the 

FKBP12-rapamycin-binding (FRB) domain of mTOR kinase in mTORC1 [26] and 

allosterically inhibits mTOR kinase activity by blocking the accessibility of substrates to the 

active site of mTOR kinase [27]. In contrast to its specific effect on mTORC1, rapamycin 

has little effect on mTOR kinase activity in mTORC2. A recent cryo-EM study of mTORC2 

demonstrated that Rictor, an essential mTORC2 component, masks the FRB domain of 

mTOR kinase of mTORC2 [28]. This suggests that the rapamycin-FKBP12 complex may 

not be able to access the FRB domain to inhibit mTOR kinase activity once mTORC2 is 

formed. Interestingly, however, it has been reported that prolonged rapamycin treatment 

attenuates the formation of mTORC2, thereby preventing mTORC2 from phosphorylating 

its substrates [29]. These observations suggest that the rapamycin-FKBP12 complex may 

gain access to newly synthesized mTOR and prevent mTOR from forming functional 

mTORC2.
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Downstream of mTORC1 and mTORC2

mTORC1 functions as a master regulator of cell growth and proliferation by 

phosphorylating and regulating multiple downstream effectors, which involve in protein and 

lipid biosynthesis, glucose metabolism, cellular organelle formation, and protein degradation 

[30] (Fig.1). Among the group of mTORC1 substrates, S6K1 and 4EBP1 are the best 

characterized substrates. mTORC1 directly phosphorylates and activates S6K1 [31-33]. 

Active S6K1 promotes mRNA translation at several different steps including mRNA 

splicing, translation initiation, and elongation by phosphorylating key translational 

regulators such as sker, eIF4B, and eEF2K [34]. Interestingly, S6K1 activation negatively 

feeds back to the PI3K-Akt pathway. By phosphorylating and destabilizing Insulin Receptor 

Substrates (IRS1/2), mTORC1-mediated S6K1 activation inhibits growth factor-induced 

PI3K activation [35-37].

4EBP1 is also well-characterized mTORC1 substrate. In the absence of mTORC1 activity, 

hypo-phosphorylated 4EBP1 binds to eIF4E, a 5’ Cap binding protein, to inhibit its 

interaction with eIF4G1 to form an active initiation complex, thereby suppressing Cap-

dependent translation initiation. Phosphorylation of 4EBP1 by mTORC1 leads to its 

dissociation from eIF4E, which is a critical step of translation initiation [38, 39].

Autophagy is an evolutionarily conserved major catabolic process in which unnecessary, 

dysfunctional, or toxic cellular materials are captured and delivered by double-membrane 

vesicles (i.e., autophagosomes) to the lysosome for degradation [40-42]. This process is 

essential for maintaining cellular energy and nutrient levels under metabolic stress 

conditions such as starvation. mTORC1 functions as a major suppressor for autophagy by 

phosphorylating and inhibiting Ulk1, a kinase required for the initiation of autophagy 

[43-45].

mTORC2 directly phosphorylates and stimulates AGC kinases such as Akt, PKC, and SGK1 

[14, 46-49] (Fig.1). mTORC2-dependent Akt phosphorylation and activation play important 

roles in stimulating glucose uptake, viability, and cytoskeletal organization of cells. For actin 

remodeling, two small GTPases, RhoA and Rac1, have been reported to play critical roles in 

cytoskeleton reorganization downstream of mTORC2. Deletion of mTORC2 disrupts 

formation of the actin cytoskeleton, which is rescued by expression of the constitutively 

active form of Rac1 or RhoA. Although the precise molecular mechanisms remain elusive, 

mTORC2 stimulates GTP-loading of Rac1 and RhoA, indicating that mTORC2 functions as 

an important activator for both Rac1 and RhoA in cytoskeleton formation and organization 

[14].

Upstream of mTORC1 and mTORC2

Growth factors are activators for both mTORC1 and mTORC2 in a manner dependent on 

their activation of the PI3K pathway. In the case of mTORC1, PI3K-activated Akt 

phosphorylates and inactivates TSC2, an essential component of the tuberous sclerosis 

complex (TSC), which functions as a GTPase activating protein (GAP) for Rheb [50-52]. 

Rheb is a Ras-related small GTPase, which directly and potently activates mTORC1 [53, 

54]. Ablation of TSC2 causes constitutive mTORC1 activation even in the absence of 
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growth factors. Thus, by inactivating the upstream negative regulator, growth factor 

signaling leads to mTORC1 activation. Interestingly, both the Rheb small GTPase and the 

TSC complex are mainly expressed on lysosomes [21, 22, 55-57]. These observations 

suggest that growth factor-dependent mTORC1 activation mainly occurs on the lysosomal 

membrane. To stimulate mTORC1 activity on the lysosomal membrane, two lysosome-

associated protein complexes, Rags and their activator, Ragulator, play important roles in 

recruiting mTORC1 to the lysosomal membrane in response to amino acids [21, 22, 58]. 

Rag is an evolutionarily conserved small GTPase and consists of four isoforms 

(RagA/B/C/D) in mammals. RagA or B forms an obligate heterodimer with Rag C or D 

[59-61]. Ragulator is a pentameric protein complex, consisting of five subunits, p18 

(LAMTOR1), p14, MP1, HBXIP, and C7orf59 [21, 58]. Importantly, Ragulator functions as 

both a scaffold and a guanine nucleotide exchange factor (GEF) for RagA/B, which directly 

recruits mTORC1 to the lysosomal membrane [58]. A common picture arising from these 

recent studies is that amino acids play an essential role in recruiting mTORC1 to the late 

endosome/lysosome membranes where Rheb directly activates mTORC1. The current model 

explains why both growth factors and amino acids are required for mTORC1 activity.

The molecular mechanisms underlying growth factor-dependent mTORC2 activation remain 

obscure. A recently study suggests that ribosomes play important roles in growth factor-

mediated mTORC2 activation. mTORC2 physically interacts with some of the ribosome 

subunits, and this binding is enhanced by insulin-derived PI3K activity. Inhibiting intact 

ribosome biogenesis by knockdown of a component of the large or small ribosome subunit, 

but not translational activity, reduces mTORC2 activity [62]. Thus, rather than ongoing 

mRNA translation, it is the amount of cellular ribosomes that defines a key determinant for 

mTORC2 activity in cells.

mTORC1 in podocytes

Interestingly, mTORC1 is hyper-activated in podocytes in both type 1 and type 2 diabetic 

mice and type 2 diabetic patients [11, 12]. Rapamycin treatment, which blocks mTORC1 

activity, prevents the development of diabetic nephropathy (DN) in animal models, 

suggesting that enhanced mTORC1 activity in podocytes may have pathological roles in the 

onset/development of DN. To further reveal the pathological roles of mTORC1 activation in 

podocyte dysfuction, podocyte-specific TSC1 knockout (podo-TSC1 KO), where podocytes 

display aberrant mTORC1 activation, was generated in a non-diabetic mouse background 

[11]. Importantly, podo-TSC1 KO mice recapitulate many pathological phenotypes seen in 

DN including podocyte loss, glomerular basement membrane thickening, mesangial 

expansion, and proteinuria. mTORC1 hyperactivation causes mislocalization of slit 

diaphragm proteins and induces ER stress and epithelial-mesenchymal transition (EMT)-like 

phenotypic changes, which may compromise the integrity of podocytes. Furthermore, in 

both streptozotocin-induced type 1 diabetic mice and obesity-related type 2 diabetic mice 

(db/db mice), partial reduction of mTORC1 activity specifically in podocytes by the deletion 

of one allele of the RAPTOR gene effectively attenuates the onset or development of DN 

[11, 12]. These observations indicate that the aberrant activation of mTORC1 is causative for 

podocyte injury and the onset/development of DN (Fig.2).
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It is noteworthy that complete ablation of mTORC1 activity in podocytes in podo-Raptor 

KO mice leads to early onset of proteinuria [11, 12]. These observations imply that while 

excessive mTORC1 activation is detrimental, basal mTORC1 activity is required for 

maintaining physiological functions of podocytes. In particular, ablation of Raptor in 

podocytes during embryonic stages leads to severe proteinuria, while Raptor deletion in 

podocytes of mature animals shows moderate proteinuria. These findings suggest that basal 

mTORC1 activity is particularly important during the period of podocyte differentiation, 

growth, and functional development (Fig. 2).

As a terminally differentiated cell, podocytes lose their capability for replication once they 

migrate from the parietal epithelium to the surface of the glomerular tuft, where they cover 

the filtration area during the capillary loop stage of kidney development. However, during 

postnatal development, the glomerular tuft volume continues to increase due to increased 

glomerular capillary number and surface area [63, 64]. In order to cope with the enlarging 

glomerular tuft, podocytes need to increase their mass (hypertrophy) to cover the enlarged 

filtration area [65]. In this regard, mTORC1 activity in podocytes may play an important role 

for their postnatal growth (Fig. 2). Insufficient mTORC1 activity may inhibit podocyte 

growth that is needed to accommodate the enlarged filtration area and cause the production 

of proteinuria and the development of focal segmental glomerulosclerosis (FSGS) [66]. In 

line with this notion, Fukuda et al. have developed podocyte-specific AA-4EBP1 transgenic 

rats where podocytes have decreased mTORC1-dependent translational activity. AA-4EBP1 

is a non-phosphorylatable mutant of the mTORC1 substrate 4EBP1 that interferes 

mTORC1-dependent translation initiation. In this model, proteinuria and glomerulosclerosis 

in podocyte-specific AA-4E-BP1 transgenic rats were linearly correlated with increasing 

body weight and glomerular volume. The histology analysis revealed bare areas of the 

glomerular basement membrane due to the detachment of podocyte foot processes, followed 

by adhesion of glomerular tufts to the Bowman's capsule [66]. This study indicated that 

mTORC1-dependent translation sets the threshold for the adaptive growth capacity of 

podocytes and provided a plausible explanation for the high incidence of FSGS in fast 

growing young adults and in the obese population. In addition, these observations also 

support the idea that ablation of mTORC1 activity in podocytes may restrict their capability 

for adaptive growth, which is required during the development of the glomerulus or under 

certain pathological conditions including hypertension, diabetes, and remnant kidney.

mTORC2 in podocytes

In contrast to mTORC1 inhibition in podo-Raptor KO mice, podo-Rictor KO mice in which 

mTORC2 activity is abolished in podocytes did not display any obvious clinical, 

histological, or ultrastructural abnormalities in their glomeruli, even in a long term follow up 

study. However, mTORC2 deletion decreased the ability of podocytes to maintain normal 

function under stress conditions. Upon BSA overloading stress, levels of proteinuria were 

significantly increased in podo-Rictor KO mice compared to wild type littermates, 

suggesting that the function of mTORC2 in podocytes is required for their adaptation under 

certain stress conditions. Moreover, additional Rictor ablation in podo-Raptor KO mice 

(podo-Raptor/Rictor double KO mice) exacerbated proteinuria levels and glomerular 

dysfunction [12]. These observations indicate that in a sensitized mTORC1 mutant 
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background in podocytes, mTORC2 may exert important roles in maintaining the functional 

structure and viability of podocytes.

Given the important role of mTORC2 in cytoskeleton reorganization [14] and the essential 

role of actin cytoskeleton in podocyte integrity (Reviewed by [67]), the activity of mTORC2 

may be needed to preserve actin reorganization in response to stress. It should be noted that 

the activity of Akt, which positively regulates cell survival and reorganization of the 

cytoskeleton, is not completely abolished by the deletion of mTORC2 in many different 

types of cells including podocytes. This might be one of the reasons why podo-Rictor KO 

mice appear superficially wild-type under normal conditions. In line with the above 

observations, Canaud et al. demonstrated that the activity of Akt2 in podocytes is essential 

for maintaining their physiological functions as podocyte-specific Akt2 KO mice show 

considerable podocyte injury and glomerular dysfunction [68].

In accordance with the notion that Akt2 activity is essential for podocyte viability, an earlier 

study suggested that the intact insulin signaling pathway in podocytes is pivotal for 

maintaining podocyte and glomerular functions during normal kidney development. Welsh 

et al. demonstrated that podocyte-specific insulin receptor KO mice (podo-IR KO) display 

proteinuria from 5 weeks of age and develop glomerulosclerosis by week 8 of development. 

Loss of cytoskeletal architecture in podocyte foot processes was the earliest alteration 

detected in podo-IR KO mice [69]. Taken together, these recent studies suggest that aberrant 

activation of mTORC1 in podocytes is likely to be a first step in the pathological signaling 

that occurs under diabetic conditions, leading to aberrant growth phenotypes including 

podocyte and glomerular hypertrophy. Simultaneously, hyper-activation of mTORC1 causes 

a reduction of the IR-PI3K-Akt pathway in podocytes and leads to the impairment of actin 

cytoskeletal reorganization and the loss of podocyte viability.

Rapamycin analogs such as sirolimus are widely used in renal transplant patients as an 

immune suppressive agent. Despite of the beneficial effects of rapamycin on experimental 

DN in animal models, considerable clinical evidence suggests that sirolimus often induces 

albuminuria in renal transplant recipients with compromised renal function [70-72], which 

may limit the clinical use of sirolimus in treating any glomerular diseases including DN. 

Considering that basal mTORC1 activity is required for maintaining normal podocyte 

functions, complete blockade of mTORC1 activity with long-term sirolimus treatment may 

evoke adverse outcomes on podocytes. More importantly, prolonged sirolimus treatment also 

prevents the assembly of newly formed mTORC2 [29], which plays important roles in the 

activation of Akt2. By reducing both cellular mTORC1 and mTORC2 activity, long-term 

sirolimus treatment may compromise the integrity and physiological functions of podocytes 

under stress conditions.

Conclusions

Taken together, an effective treatment for mTORC1-associated podocyte dysfunction may 

require the attenuation of mTORC1 activity in the setting of both an intact mTORC2-Akt 

pathway and normal basal mTORC1 activity in order to preserve physiological podocyte 

functions. One plausible but promising approach may be to target the nutrient-sensing 
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mechanism for mTORC1 activation. Amino acids, especially leucine and glutamine, are key 

nutrients for spatial recruitment and activation of mTORC1 on lysosomal membranes [73, 

74]. Unlike the growth factor-PI3K pathway, spatial regulation of mTOR by amino acids is 

specific to mTORC1 but not mTORC2. Furthermore, a recent study suggested that leucine 

and glutamine use distinct mechanisms to recruit mTORC1 to the lysosomal membrane [75]. 

For instance, disruption of the Ragulator-Rag system abolishes leucine-dependent lysosomal 

localization while glutamine is still able to recruit mTORC1 to lysosomes through an Arf1-

dependent manner. Lack of one of these mechanisms significantly reduces lysosomal 

mTORC1 localization but it does not completely eliminate mTORC1 localization on 

lysosomes, thus preserving some, albeit lower, mTORC1 activity in these cells. In addition, 

hypothetically, lower mTORC1 activity in podocytes may sensitize the growth factor-PI3-

Akt pathway, which is essential for the integrity of podocytes. Therefore, targeting these 

amino acid sensing mechanisms may be a promising approach to reduce but not abolish 

cellular mTORC1 activity without inhibiting the PI3K-mTORC2-Akt pathway in podocytes.

With the notion that the mTOR complexes exist at the nexus of many signaling cascades and 

have numerous crosstalk with other signaling pathways, such as the Notch and Wnt 

pathways, it is likely that multiple pathways may coordinately work to maintain a proper 

balance of mTOR activity, which is essential for normal functions of podocytes. Thus, it is 

important to identify molecular mechanisms underlying dysregulation of mTOR signaling 

under different stress and disease conditions including diabetes and obesity. The elucidation 

of the molecular mechanisms by which mTORC1 or mTORC2 participates in the functions 

of podocytes and other renal cells will be helpful to develop more precise strategies for the 

intervention of specific kidney diseases.
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Key points

1. Mechanistic target of rapamycin complex 1 (mTORC1) is essential for 

physiological functions of podocytes. However, aberrant activation of 

mTORC1 causes podocyte injuries, which is one of the important 

pathomechanisms of glomerulopathies including diabetic nephropathy.

2. mTORC2 is also important for podocyte functions under stress conditions. 

The balance of cellular mTORC1 and mTORC2 activity is important for 

maintaining the functions of differentiated podocytes.

3. An effective treatment for mTORC1-associated podocyte dysfunction may 

require the attenuation of mTORC1 activity in the setting of both an intact 

mTORC2-Akt pathway and normal basal mTORC1 activity in order to 

preserve physiological podocyte functions.
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Figure 1. The mTOR signaling pathway
The regulations of mTORC1 and mTORC2, and the major roles of mTORC1 and mTORC2 

in mammalian cells.
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Figure 2. The roles of mTORC1 and mTORC2 in podocytes in physiologic and pathologic 
conditions
The roles of mTORC1 and mTORC2 in podocytes for their normal development and under 

pathological conditions such as diabetic nephropathy.
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