
Original article

HITSZ_CDR: an end-to-end chemical and disease

relation extraction system for BioCreative V

Haodi Li1, Buzhou Tang1,2,*, Qingcai Chen1, Kai Chen1, Xiaolong Wang1,

Baohua Wang3 and Zhe Wang2

1Intelligent Computing Research Center, Harbin Institute of Technology Shenzhen School, China, 2Key

Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin

University, China, 3College of Mathematics and statistics, Shenzhen University, China.

*Corresponding author: Tel: þ8613725525983; Email: tangbuzhou@gmail.com

Citation details: Li,H., Tang,B., Chen,Q. et al. HITSZ_CDR: an end-to-end chemical and disease relation extraction system

for BioCreative V. Database (2016) Vol. 2016: article ID baw077; doi:10.1093/database/baw077

Received 4 December 2015; Revised 20 April 2016; Accepted 21 April 2016

Abstract

In this article, an end-to-end system was proposed for the challenge task of disease

named entity recognition (DNER) and chemical-induced disease (CID) relation extraction

in BioCreative V, where DNER includes disease mention recognition (DMR) and normal-

ization (DN). Evaluation on the challenge corpus showed that our system achieved the

highest F1-scores 86.93% on DMR, 84.11% on DN, 43.04% on CID relation extraction, re-

spectively. The F1-score on DMR is higher than our previous one reported by the chal-

lenge organizers (86.76%), the highest F1-score of the challenge.

Database URL: http://database.oxfordjournals.org/content/2016/baw077

Introduction

In recent years, chemicals (or drugs), diseases, and their re-

lations have attracted considerable attention as they play

important roles in many areas of biomedical research and

healthcare such as biocuration, drug discovery and drug

safety surveillance (1). Automatic recognition and normal-

ization of chemical and disease mentions, and automatic

extraction of chemical–disease relation (CDR) from litera-

ture have become more and more necessary because man-

ual annotation of them is too expensive and insufficient to

keep up with the rapid growth of literature.

In last few years, many attempts have been conducted

to recognize such entities and to extract such relations

automatically using natural language processing methods.

However, automatic chemical and disease named entity

recognition (DNER) and chemical–disease relation (CDR)

extraction remain challenges. The lack of benchmark data-

sets has seriously limited the development of relative tech-

niques as there is no fair comparison of systems. Through

BioCreative V, a challenge task of automatic extraction of

mechanistic and biomarker CDRs from the biomedical lit-

erature in support of biocuration, new drug discovery and

drug safety surveillance was proposed to advance text-

mining research on relationship extraction and provide

practical benefits to biocuration (2). This task included

two subtasks: DNER, including disease mention
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recognition (DMR) and normalization (DN), and chem-

ical-induced disease (CID) relation extraction. DNER is a

preliminary step for CID relation extraction. Beside

DNER, chemical named entity recognition (CNER),

including chemical mention recognition (CMR) and nor-

malization (CN), is also a preliminary step. Therefore, the

related work of CMR and CN was also introduced here.

Most CMR and DMR methods may fall into two catego-

ries: rule-based and machine learning-based. The rule-based

methods define rules to find CMs and DMs from dictionaries

such as Unified Medical Language System (UMLS) (3),

ChEBI (4), Medical Subject Headings (MeSH) (5), PubChem

(6), DrugBank (7) and Comparative Toxicogenomics

Database (CTD) (8) by exact/approximate matching. For ex-

ample, Vazquez et al. (9) proposed a rule-based system to de-

tect drug and chemical compound mentions by building a

dictionary about morphological characteristics of the men-

tions automatically for approximate matching. The machine

learning-based methods (10–12) usually regard CMR and

DMR as a sequence labeling problem and state-of-the-arts se-

quence labeling algorithms such as conditional random fields

(CRFs) (13) were deployed to them. When ompared with the

rule-based methods, the machine learning-based methods

usually showed better performance.

Most current CN and DN systems are rule-based (14–

16) such as tmChem (17), which defined a series of rules to

match items in MeSH and ChEBI for CMs. A small num-

ber of normalization systems are based on machine learn-

ing methods. For example, DNorm (18), a DN system

based on machine learning methods, regarded the normal-

ization problem as an information retrieval problem and

used a pairwise learning algorithm to get a ranked list of

normalized names.

CID relation extraction is a relation extraction task

similar with protein-protein interaction extraction (19)

and drug side effect extraction (20). Three types of meth-

ods have been proposed for this problem: statistic-based

(21), machine learning-based (22) and pattern learning-

based (23). The statistic-based methods usually determine

CID relations according to co-occurrence frequencies of

chemical and disease pairs. The machine learning-based

methods regard the CID relation extraction problem as a

classification problem and the most popular algorithm

used is support vector machines (SVMs). The pattern

learning-based methods first extract and rank the syntac-

tical patterns from sentences that contain known pairs

from unsupervised corpus, and then discover new pairs

based on their associated pattern scores.

In this study, we proposed an end-to-end system for the

challenge of automatic extraction of mechanistic and bio-

marker CDRs, including three subsystems for CMR and

DMR, CN and DN and CID relation extraction,

respectively. Because CNER (i.e. CMR and CN) is a pre-

liminary step of CID relation extraction, we also presented

the performance of our system on CNER although it was

not considered for system ranking in the challenge.

Evaluation on the corpus of the challenge showed that our

system achieved the highest F1-scores of 92.96% on CMR,

86.93% on DMR, 92.19% on CN, 84.11% on DN,

43.04% on CID relation extraction, respectively, higher

than the ones reported by the challenge organizers because

of post-challenge analysis and improvement.

Methods

Dataset

The CDR task organizers of BioCreative V manually anno-

tated 1500 PubMed records, of which 1000 records were

used as training and development sets, and the remaining 500

records were used as a test set. Each record consists of two

sections: title and abstract, in which not only chemical and

disease mentions with MeSH identifiers (IDs), but also CID

pairs with relations (i.e. CID relations) were marked up (24).

Figure 1 shows an example of annotated records (ID:

7468724), where the consecutive underlined words are CMs

and DMs. The statistics of the datasets are listed in Table 1,

where ‘T&D’ denotes training and development, ‘DOC’ de-

notes documents, and ‘#*’ denotes the number of ‘*’.

Overview of Our System

Our system is an end-to-end system, composed of four

modules: a pre-processing module, a module for CMR and

DMR, a module for CN and DN, and a CID relation ex-

traction module. Given a PubMed record with title and ab-

stract, the preprocessing module first split it into sentences

and tokenized the sentences. Then the CMR and DMR

module extracted all CMs and DMs in each sentence.

Subsequently, the CN and DN module mapped each ex-

tracted mention to a MeSH ID. Finally, the CID relation

extraction module found out between which chemicals and

diseases there had CID relations. We used the tokenization

module of MedEx (25), a specific tool for medical informa-

tion extraction, for sentence boundary detection and toke-

nization. The other three modules were presented in detail

in the following sections. The system presented here was

an improved version of our previous system submitted to

the challenge after post-challenge analysis. The main im-

provement lies in CN and DN.

Chemical and disease mention recognition (CMR

and DMR)

A stacked ensemble system was proposed for chemical and

disease mention recognition (CDMR). CDMR was firstly
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recognized as a sequence labeling problem, and two indi-

vidual sequence labeling modules: CRFs and structure sup-

port vector machines (SSVMs) were deployed. Then, a

meta-classifier based on SVMs with a linear kernel (i.e. lin-

ear SVMs) was used to check whether a mention recog-

nized by any one of the two previous sequence labeling

modules was correct or not. The features used in both

CRFs and SSVMs were the same, as shown in Table 2.

In the meta-classifier, a variety of features were used to

describe the agreement and consistency between the previ-

ous modules. Each mention predicted by a sequence label-

ing module was compared with all other mentions in the

same or adjacent position. For each pair of mentions, we

extracted the following eight features:

i. If the text spans match

ii. If the text spans partially match (any word overlap)

iii. If the text spans match and concept types match

iv. If the text spans partially match and the concept types

match

v. If the text spans have the same start position

vi. If the text spans have same end position

vii. If one text span subsumes the other

viii. If one text spans are subsumed by the other

Furthermore, given a mention, how many modules pre-

dicted it and which module predicted it were also taken

into account.

Chemical and disease normalization (CDN:

CN and DN)

As there were quite a few abbreviations among CMs and

DMs such as ‘CAD’, standing for ‘coronary artery disease’

and a CM or DM may have aliases, e.g. ‘ischemic heart

disease’, ‘atherosclerotic heart disease’, ‘atherosclerotic

cardiovascular disease’ and ‘coronary artery disease’ stand

for the same disease, we first completed the abbreviations,

then normalized the full names or did not, and finally

mapped them to MeSH IDs. Figure 2 shows the work-

flow of the normalization module in our system, where

the “name normalization” in the grey box is an extra

option.

We used Ab3P (29) to find full names of abbreviations

from records, MeSH WebSearch API (http://eutils.ncbi.

nlm.nih.gov/) and Wikipedia API (http://www.wikipedia.

com/) for name normalization, and tried different strat-

egies for MeSH ID mapping as follows:

Using dictionary look-up to find MeSH ID.

Combining results of systems using different name nor-

malization module.

Given a CM or DM, both MeSH WebSearch API and

Wikipedia API return a name list. If the first name in the

list exactly matches an item in MeSH, the mention is nor-

malized as the item with an ID; otherwise, the mention

is discarded. Figure 3 gives an example of DN for a

DM ‘axonal neuropathy’ using dictionary look-up.

Figure 1. Example of annotated records.

Table 1. Statistics of the dataset for the CDR task of

BioCreative V.

Datasets # DOC # chemicals # diseases # CID relations

mention ID mention ID

T&D 1000 10550 2973 8426 3829 2050

Test 500 5385 1435 4424 1988 1066

Database, Vol. 2016, Article ID baw077 Page 3 of 8

Deleted Text: conditional random fields (
Deleted Text: )
Deleted Text: ,
Deleted Text: 2.4
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: for example
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text:  (IHD)&hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://eutils.ncbi.nlm.nih.gov/
http://eutils.ncbi.nlm.nih.gov/
http://www.wikipedia.com/
http://www.wikipedia.com/
Deleted Text: &hx201C;
Deleted Text: &hx201D;


Through MeSH WebSearch API and Wikipedia API, we

obtained two name lists of length 5: {‘Giant Axonal

Neuropathy’, ‘Spinocerebellar Ataxias’, ‘Alcoholic

Neuropathy’, ‘Giant Axonal Neuropathy, Autosomal

Dominant’, ‘Severe infantile axonal neuropathy’} and

{‘Giant axonal neuropathy with curly hair’, ‘Giant Axonal

Neuropathy’, ‘Acute motor axonal neuropathy’,

‘Gigaxonin’, ‘Gan’}, respectively. The first name in the

name list returned by MeSH WebSearch API, ‘Giant

Axonal Neuropathy’, was found in MeSH with ID

D056768, while the first name in the name list returned by

Wikipedia API, ‘Giant axonal neuropathy with curly hair’,

was not, denoted by ‘ID ¼ �1’.

In addition, a re-ranking system based on SVM-rank

was further proposed to combine the results of the above

two systems for possible improvement, where all names in

the lists as shown in Figure 3 were regarded as candidates

for re-ranking. The features used in the system include:

i. Bag-of-words of the mention

ii. Similarity between a candidate and the mention

iii. Similarity between a candidate and other mentions in

the context of the mention

iv. Whether a candidate generated by MeSH WebSearch

API, Wikipedia API or both of them

v. Place of a candidate in the ranked list returned by

MeSH WebSearch API

vi. Place of a candidate in the ranked list return by

Wikipedia API

Table 2. Features used in two individual sequence labeling modules: CRFs and SSVMs.

Feature Description

Bag-of-words Unigrams: w0, w�1, w1, w�2, w0;

Bigrams: w�2w�1, w�1,w0, w0w1, w1w2;

Trigrams: w�2w�1w0, w�1w0w1, w0w1w2

wi is a token at position relative the current token.

Part-of-speech (POS) tags Unigrams: p0, p�1, p1, p�2, p2

Bigrams: p�2p�1, p�1p0, p0p1, p1p2;

Trigrams: p�2p�1,p0, p�1,p0,p1, p0,p1,p2

pi is a POS tag at position i relative the current token.

Combinations of tokens and POS tags w�1p�2, w1p�1, w�1p0, w2p�1, w0p0, w0p1, w1p0, w1p1, w1p2,

Sentence information Length of the current sentence; whether there is any bracket unmatched in the current sentence?

Affixes Prefixes and suffixes of the length from 1 to 5.

Orthographical features Whether the current word is an upper Caps word? Contains a digit or not? Has uppercase characters

inside? Etc.

Word shapes Any or consecutive uppercase character(s), lowercase character(s), digit (s) and other character(s) in

the current word is/are replaced by ‘A’, ‘a’, ‘#’ and ‘-’ respectively.

Section information Which section the current word belongs to, title or abstract?

Word representation features [5] Brown clustering (https://github.com/percyliang/brown-cluster);Word2vec (https://code.google.com/

p/word2vec/).

Dictionary features Chemical dictionary: CTD, DrugBank, MeSH, Pharmacogenetics Knowledge Base (PharmGKB) (26),

UMLS, and Wikipedia;

Disease dictionary: CTD, MeSH, UMLS, disease ontology (27), National Drug File Reference

Terminology (NDF-RT) (28) and Wikipedia.

Frequency features Whether the frequency of the current word is higher than a given value (4 in our system) and the in-

verse document frequency of it is less than another given value (0.1 in our system)?

Character N-grams Character N-grams (N¼1, 2, . . ., 4) within the current word.

Figure 2. Workflow of our normalization module.
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Our previous system submitted to the challenge used

‘name normalization’ (see Figure 3).

CID relation extraction

First, we designed a rule-based filter to generate CID rela-

tion candidates, and then built a classifier based on linear

SVMs to check whether there was a relation in any candi-

date. During training, a candidate was assigned as ‘TRUE’

(a postive sample) if it was annotated in the training and

development sets, otherwise, it was assigned as ‘FALSE’ (a

negative sample). The candidates were generated:

i. CID pairs within three sentences. We selected the

proper number from {1, 2, 3, 4} according to the recall

and precision of the filter on the training and develop-

ment sets.

ii. Among the CID pairs with same chemical and drug

MeSH IDs generated by step 1, only the pairs between

which there have fewest words were kept.

iii. Among the CID pairs generated by step 2, the pairs be-

tween which the number of words was more than a

threshold were removed. The threshold was the aver-

age number of words between all positive samples gen-

erated by step 2 on the training and development sets

(i.e. 78).

The features used in the machine learning-based classi-

fier included bag-of-words of both mentions, the number

of other mentions between a CID pair, and CDR based on

CTD.

Results

In our experiments, CRFsuite (30), SVMhmm (31) and lib-

linear (32) were used as implementations of CRFs, SSVMs

and the ensemble meta-classifier for CMR and DMR re-

spectively, SVMrank (33) was used as an implement of

SVM-rank for CN and DN, and liblinear was also used as

an implement of the SVM classifier for CID relation ex-

traction. To optimize parameters of all subsystems using

machine learning methods, we conducted 10-fold cross-

validation on the combination of training and development

sets. The performance of each subsystem was evaluated by

precision (P), recall (R) and F1-score (F1), calculated by

the official tool provided by the challenge organizers. As

the challenge organizers provided some tools as baseline

systems, we compared our system with them. Before intro-

ducing results of our system in detail, we should note that

all results presented in the following sections may be differ-

ent from those presented in our previous article (34) as

some records failed to be processed because of data trans-

mission problem.

CDMR: CMR and DMR

Our system achieved F1-scores of 92.96 and 86.93% on

CMR and DMR, respectively, as shown in Table 3, where

the F1-score on DMR is a little better than that of our pre-

vious system submitted to the challenge (86.76%), the

highest F1-score of the challenge (34), due to data trans-

mission problem. When compared with the baseline sys-

tems: tmChem and DNorm, provided by the organizers,

our system showed much better performance. It outper-

formed tmChem by 4.36% on CMR and DNorm by

6.69% on DMR, respectively. When compared with CRFs

and SSVMs, the stacked ensemble method performed

slightly better, due to significantly higher precision. For ex-

ample, on DMR, the stacked ensemble method outper-

formed SSVMs by 0.05% in F1-score because of much

higher precision (88.68% vs 87.74%). Among CRFs and

SSVMs, SSVMs achieved higher F1-score, mainly due to

higher recall. SSVMs outperformed CRFs by 0.6 and 0.1%

Figure 3. An example of DN for a DM axonal neuropathy using dictionary look-up.

Table 3. Results of our system on CMR and DMR (%).

Method Chemical Disease

P R F1 P R F1

DNorm NA NA NA 81.62 78.91 80.24

tmChem 93.08 84.53 88.60 NA NA NA

CRFs 94.25 90.44 92.30 88.37 85.23 86.78

SSVMs 94.58 91.35 92.93 87.74 86.05 86.88

Stacked ensemble 95.05 90.96 92.96 88.68 85.23 86.93
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in F1-score on CMR and DMR, respectively. The differ-

ences between recalls were 0.95 and 0.82%.

CDN: CN and DN

The direct dictionary look-up system (without using name

normalization mentioned in Figure 2) outperformed the

two dictionary look-up systems using name normalization

by at least 2.51% in F1-score on CN and 3.77% in F1-

score on DN. Among the two dictionary look-up systems

using name normalization, the system using Wikipedia API

for name normalization was a better one. The re-ranking

system taking the outputs of the two dictionary look-up

systems using name normalization as input did not bring

any improvement. The highest F1-scores of our system on

CN and DN were 92.68 and 84.11%, respectively, much

higher than four baseline systems: ‘dictionary look-up’ that

directly looked up MeSH using DMs from CTD,

‘tmChem’, ‘DNorm’ and ‘DNorm*’ that adopted DMs

from our DMR system as input of DNorm for DN, as

shown in Table 4. The smallest F1 differences between the

baseline systems and our system on CN and DN were 4.67

and 2.82%, respectively. The reason why our previous sys-

tem submitted to challenge used name normalization mod-

ule (see Figure 2) and only achieved a highest F1-score of

67.82%, much lower than that presented here (78.24%), is

just because the name lists returned by MeSH WebSearch

API and Wikipedia API were sometimes empty within a

limited time for communication between our system and

the challenge server.

CID relation extraction

Table 5 showed the performance of our system when using

the output of different CN and DN systems (as mentioned

earlier) as input. The system taking the output of the

“Mapping directly” CN and DN system (see Table 4)

achieved the highest F1-score of 43.04%, outperforming

the systems taking the other three CN and DN systems:

‘MeSH WebSearch’, ‘Wikipedia’ and ‘Re-ranking’ (see

Table 4) as input by 4.97, 3.77 and 5.87%, respectively.

When compared with two baseline systems: (i) ‘Co-

occurrence’ that took output of both tmChem and DNorm

as input, and determined CID relations according to the

frequency of CID pairs; (ii) ‘Co-occurrence*’ that took

output of the ‘Mapping directly’ CN and DN system (see

Table 4) as input, and determined CID relations according

to the frequency of CID pairs, our system showed much

better performance. The F1-score difference between

the baseline systems and our system achieved 13.15%

(29.89 vs 43.04%). Among the two baseline systems, ‘Co-

occurrence*’ was a much better one, indicating that the

‘Mapping directly’ CN and DN system is much better than

tmChem and DNorm again. When compared with our pre-

vious systems submitted to the challenge that took the out-

puts of the three CN and DN systems: ‘MeSH WebSearch’,

‘Wikipedia’ and ‘Re-ranking’ as input, the current systems

also achieved much better performance (the previous high-

est F1-score of 41.26% (34) vs the current highest F1-score

of 42.65%) because that there was no data transmission

problem in the current systems.

Discussion

An end-to-end machine learning-based system was pro-

posed for the CDR extraction challenge of BioCreative V,

composed of three subsystems: CMR and DMR, CN and

DN and CID relation extraction. For each subsystem, we

investigated the performance of different methods.

On CMR and DMR, similar with previous studies (34)

on other named entity recognition problems, the stacked

ensemble method outperformed than CRFs and SSVMs

(see Table 3). The main reason lies in that the stacked en-

semble method is able to make a good choice when there

are conflicts between CRFs and SSVMs, resulting in higher

precision. For example, given a tokenized sentence frag-

ment ‘We have described a patient with severe rheumatoid

arthritis and a history of mefenamic acid nephropathy in

whom hyperkalemia and inappropriate hypoaldosteronism

. . .. . .’ with one CM (i.e. ‘mefenamic acid’) and three DMs

Table 4. Results of our system on CN and DN (%).

Method Chemical Disease

P R F1 P R F1

dictionary look-up NA NA NA 42.71 67.46 52.30

tmChem 95.02 81.11 87.52 NA NA NA

DNorm NA NA NA 81.15 80.13 80.64

DNorm* NA NA NA 81.25 81.33 81.29

MeSH 87.15 90.73 88.90 77.89 80.43 79.14

Wikipedia 87.95 91.43 89.68 78.62 82.14 80.34

Re-ranking 87.83 90.03 88.92 78.36 78.11 78.24

Mapping directly 93.48 90.94 92.19 88.64 80.03 84.11

Table 5. Results of our system on the CID relation subtask

(%).

Method P R F1

Co-occurrence 16.43 76.45 27.05

Co-occurrence* 18.51 77.65 29.89

MeSH WebSearch 53.82 34.33 41.92

Wikipedia 54.61 34.99 42.65

Re-ranking 55.83 34.15 42.37

Mapping directly 57.93 34.24 43.04
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(i.e. ‘rheumatoid arthritis’, ‘hyperkalemia’ and

‘hypoaldosteronism’), all CMs and DMs were correctly

recognized by CRFs and SSVMs at the same time except

the DM ‘hypoaldosteronism’, which was correctly recog-

nized by CRFs, but wrongly recognized as ‘inappropriate

hypoaldosteronism’ by SSVMs. The stacked ensemble

method chooses the correct DM. Nevertheless, there were

still a large number of errors in our system, such as abbre-

viations that could not be recognized. In future work, we

will try to develop a post-processing to further handle

boundary errors and abbreviations.

On CN and DN, by checking errors of our dictionary

look-up systems using two name normalization tools,

we found that a large number of errors were caused

by name normalization (see Figure 2) such as ‘neuroneal

lost’ wrongly normalized as ‘Frontotemporal Lobar

Degeneration’ by MeSH WebSearch API and ‘amphotericin’

wrongly normalized by Wikipedia API. This may be also the

main reason why the re-ranking method performed worse

than the two individual dictionary look-up system using

name normalization. When compared with the best DN sys-

tem of the challenge, which was also a dictionary look-up

system (35), our system is still inferior. The main difference

lies in that the best system of the challenge considered more

accurate domain dictionaries and rules for name

normalization.

It is easy to understand that the CID extraction system

taking the output of the ‘Mapping directly’ CN and DN sys-

tem (see Table 5) outperformed the other systems for com-

parison since the ‘Mapping directly’ CN and DN system was

better than other CN and DN systems as shown in Table 4.

When compared with the best CID relation extraction system

of the challenge (36), our system is still not good enough. The

main factors affecting the performance of our CID extraction

systems include: (i) whether the candidate filter is good

enough? The more positive samples and less negative samples

in candidates, the better the candidate filter is; (ii) which ma-

chine learning algorithm and which features you use? The

numbers of positive and negative samples in candidates gener-

ated by the filter in our CID extraction system on the training

and development sets are 1530 and 5079. It means that the

recall of the filter is 74.63% (1530/2050, where 2050 is the

total number of CID relations in the training and develop-

ment sets as shown in Table 1), which is a little low, and the

precision of the filter is 23.15%, which is imbalanced. During

the limited time of the challenge, we only developed a simple

CID extraction system with limited features. For further im-

provement, we will try to other strategies to generate better

candidates with higher recall and precision, and try other ma-

chine learning algorithms and much richer features such as

features generated by deep learning algorithms.

Conclusion

In this article, we introduced an end-to-end system for the

challenge of automatic extraction of mechanistic and bio-

marker CDRs in BioCreative V, which consists of three

subsystems corresponding to CMR and DMR, CN and

DN and CID relation extraction. Ensemble learning meth-

ods slightly outperformed two individual state-of-the-art

machine learning methods (i.e. CRFs and SSVMs) on

CMR and DMR when they were regarded as sequence

labeling problems, and achieved the best performance on

DMR as far as we known. On CN and DN, a good name

normalization module is a key point of dictionary look-up

methods. The CID relation extraction remains a challenge.
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