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ABSTRACT
Mechanisms of adaptation to acute changes in osmolarity are fundamental for life. When exposed to
hyperosmotic stress, cells and organisms utilize conserved strategies to prevent water loss and
maintain cellular integrity and viability. The production of glycerol is a common strategy utilized by
the nematode Caenorhabditis elegans (C. elegans) and many other organisms to survive
hyperosmotic stress. Specifically, the transcriptional upregulation of glycerol-3-phosphate
dehydrogenase, a rate-limiting enzyme in the production of glycerol, has been previously
implicated in many model organisms. However, what fuels this massive and rapid production of
glycerol upon hyperosmotic stress has not been clearly elucidated. We have recently discovered an
AMPK-dependent pathway that mediates hyperosmotic stress resistance in C. elegans. Specifically,
we demonstrated that the chronic activation of AMPK leads to glycogen accumulation, which under
hyperosmotic stress exposure, is rapidly degraded to mediate glycerol production. Importantly, we
demonstrate that this strategy is utilized by flcn-1 mutant C. elegans nematodes in an AMPK-
dependent manner. FLCN-1 is the worm homolog of the human renal tumor suppressor Folliculin
(FLCN) responsible for the Birt-Hogg-Dub�e neoplastic syndrome. Here, we comment on the dual
role for glycogen in stress resistance: it serves as an energy store and a fuel for osmolyte
production. We further discuss the potential utilization of this mechanism by organisms in general
and by human cancer cells in order to survive harsh environmental conditions and notably
hyperosmotic stress.
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Introduction

When the extracellular osmolarity is higher than the
intracellular osmolarity, cells experience hyperosmotic
stress, which promotes water flux out of the cell by
osmosis, causing cellular shrinkage, severe macromo-
lecular damage, cell cycle arrest, and cell death.1 Most
organisms are exposed chronically or accidentally to
high salinity environments and the ability to adapt to
the availability of water is essential for life. In humans,
many organs are exposed to water stress, due to water
evaporation such as the skin, or through water osmo-
sis into more concentrated aqueous environments due
to physiological processes such as in kidneys, colon,
and bladder.1 Cells/tissues/organisms have developed
strategies to adapt to threatening hyperosmotic
environments. These strategies include cytoskeletal
rearrangements to offset the mechanical pressure, the
upregulation of antioxidant enzymes to neutralize the

sudden increase in reactive oxygen species, the induc-
tion of transporters to regulate water transport, and
the upregulation of heat shock proteins to ensure
protein homeostasis.1-3 In addition to the above-men-
tioned strategies, the synthesis of compatible organic
solutes, also called osmolytes, is a widely-used strategy
by all organisms which keeps cellular osmotic pressure
equal to that of the external environment.4

The most common organic osmolytes include
amino acids and derivatives (glycine, proline, taurine,
etc.), carbohydrates, polyols and derivatives (trehalose,
glycerol, inositol, myo-inositol, sorbitol, etc.), methyl-
amines such as glycine betaine, and urea.4

In yeast and in the nematode Caenorhabditis ele-
gans (C. elegans), the exposure to hyperosmotic stress
causes the rapid accumulation of glycerol via the tran-
scriptional upregulation of glycerol-3-phosphate
dehydrogenase, a rate limiting enzyme in glycerol
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synthesis.5-7 Importantly, several hyperosmotic stress-
resistant C. elegans mutants display heightened glyc-
erol levels due to constitutive activation of gpdh-1 and
subsequent glycerol accumulation.8-12 Although the
use of glycerol in invertebrates to survive hyperos-
motic stress is widely accepted, what fuels the rapid
glycerol production upon hyperosmotic stress expo-
sure has not been clearly elucidated.

Among pathways that lead to glycerol production,
the degradation of glycogen leads to glucose-1-phos-
phate, which is rapidly converted to glucose-6-phos-
phate, a major metabolic intermediate that may enter
the glycolysis pathway or produce glycerol-3-phos-
phate, a crucial metabolite for glycerol synthesis
(Fig. 1).13 Importantly, our recent work demonstrates
that this strategy is utilized to survive hyperosmotic
stress by C. elegans wild-type nematodes and is
enhanced upon loss of flcn-1, the worm homolog of
the renal tumor suppressor protein Folliculin (FLCN),
responsible for the Birt-Hogg-Dub�e cancer syndrome
in humans.14 Specifically, we also highlighted an

important role for glycogen reserves in the rapid pro-
duction of glycerol upon hyperosmotic stress exposure
thereby enhancing organismal survival.14

FLCN-1/AMPK regulates hyperosmotic stress
resistance in C. elegans

We have previously shown that FLCN-1 regulates
resistance to energy stresses in C. elegans and mam-
malian cells including oxidative stress, anoxia, heat,
and serum starvation.15-17 We also showed that the
increased resistance to energy stresses is evolutionarily
conserved and requires the 5’AMP-activated protein
kinase (AMPK), a major regulator of cellular energy
homeostasis and stress response.15,17 In our recent
work, we demonstrate an important role for FLCN-1/
AMPK in the regulation of resistance to hyperosmotic
stress in C. elegans.14 Specifically, we showed that loss
of flcn-1 enhanced the resistance of C. elegans nemato-
des to high NaCl conditions (400mM and 500mM
NaCl) and improved their recovery from acute salinity
attacks. Using the flcn-1(ok975); aak-1(tm1944); aak-2
(ok524) triple mutant animals that we generated, we
showed that this FLCN-1-dependent hyperosmotic
stress resistant phenotype strictly requires both
AMPKa catalytic subunits AAK-1 and AAK-2.14

FLCN-1/AMPK regulates glycogen metabolism
in C. elegans

Using electron microscopy and iodine staining, we
observed a prominent accumulation of glycogen in
different tissues of C. elegans nematodes upon loss of
FLCN-1, especially in the hypodermis.14 Glycogen is a
polymer of glucose molecules widely used as an energy
storage in animals. Glycogen is synthesized from
UDP-glucose by glycogen synthase and is degraded
into glucose-1-phosphate using glycogen phosphary-
lase, and both enzymes are highly evolutionarily con-
served (Fig. 1).13 Importantly, we observed that the
inhibition of glycogen synthesis and degradation by
RNAi against glycogen synthase and glycogen phos-
phorylase, respectively, abrogated the resistance of
wild-type animals to hyperosmotic stress and strongly
suppressed the advantageous resistance mediated by
loss of flcn-1.14

Since the chronic AMPK activation has been shown
to lead to glycogen accumulation in multiple model
systems, and because we have previously demon-
strated that loss of flcn-1 chronically activates AMPK

Figure 1. Representative scheme of glycogen metabolism and
osmolyte production in C. elegans. PYGL: Glycogen phosphory-
lase, GSY: Glycogen Synthase.
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in C. elegans and in mammalian cells,15 we hypothe-
sized that the increased accumulation of glycogen in
flcn-1 animals depends on AMPK. Indeed, we demon-
strated using iodine staining, that AMPK is required
for glycogen accumulation in both wild-type and flcn-
1 animals.14 This result explains why loss of AMPK or
inhibition of glycogen metabolism lead to the same
phenotypic outcome in regards to hyperosmotic stress
resistance in C. elegans.

Glycogen breakdown fuels glycerol production
and enhances hyperosmotic stress survival

While glycogen has been also shown to mediate a
parental-associated effect of stress resistance in C. ele-
gans embryos,18 two recent reports that were pub-
lished while our manuscript was under review, have
also linked glycogen to hypoosmotic-anoxic stress
resistance in C. elegans.19,20 However, how glycogen is
leading to hyperosmotic stress resistance specifically
has not been clearly elucidated. In our recent work, we
showed that following hyperosmotic stress exposure,
glycerol is rapidly produced in both wild-type and
flcn-1 animals, but more prominently in flcn-1 nemat-
odes, which is consistent with the massive glycogen
breakdown in these animals.14 We also showed that
the enzymes responsible for glycogen synthesis,
glycerol-3-phosphate dehydrogenases (gpdh-1 and
gpdh-2) are strongly transcriptionally induced in both
wild-type and flcn-1 animals, but more prominently
upon loss of flcn-1. Supporting the important role of
glycerol in the resistance to hyperosmotic stress, we
generated the flcn-1; gpdh-1; gpdh2 triple mutant and
determined its resistance to the gpdh-1; gpdh-2 double
mutant animals. Indeed, we found that the loss of
glycerol-3-phosphate dehydrogenases, strongly sup-
pressed the increased resistance to hyperosmotic stress
conferred by loss of flcn-1.14

The glycogen accumulation conferred by loss
of FLCN-1 is evolutionarily conserved

In this work, we also highlighted an evolutionary con-
served role of FLCN/AMPK in the regulation of glyco-
gen metabolism. Specifically, we showed that glycogen
accumulates in the tumors of BHD patients and in
renal tissues of kidney-specific Flcn KO mice. This
result implies that glycogen could play an important
role in BHD tumorigenesis. In accordance, heightened
glycogen levels were also reported in the muscle

tissues of muscle-specific Flcn KO mice as compared
to the controls.21,22

A dual role for glycogen

The role of glycogen as an energy source has been
widely demonstrated in multiple organisms. How-
ever, its role as a reservoir for the production of
osmolytes upon acute exposure to hypertonic stress
has not been clearly reported. In Corynebacterium
glutamicum, the exposure to hyperosmotic shock was
shown to result in glycogen degradation and the syn-
thesis of the osmoprotectant trehalose.23 In C. ele-
gans, recent reports demonstrate an important role
for glycogen in mediating survival to hypoosmotic-
anoxic stress.19,20 Our data suggest that glycogen deg-
radation leads to different outcomes depending on
the type of stress. It is possible that the glycogen
degraded by energy stresses generates ATP while the
glycogen degraded by hyperosmotic stress produces
glycerol. In support to this, we observed that the pre-
treatment of wild-type and flcn-1 mutant animals
with Paraquat (PQ; oxidative and energy stressor)
suppressed the increased resistance of flcn-1 nemato-
des to NaCl, while the pretreatment of wild-type and
flcn-1 mutant worms with 200 mM NaCl increased
their resistance upon PQ exposure.14 This could
imply that the pretreatment of the animals with PQ
depletes them from glycogen, generating ATP, and
abrogating their ability to produce glycerol later on
upon NaCl exposure. However, the pretreatment of
the worms with NaCl depletes the glycogen stores
and produces glycerol, a carbon source that could be
used to produce ATP upon exposure to PQ.

The paradoxical role of AMPK in glycogen
metabolism

The AMPK-dependent regulation of glycogen metab-
olism has long been a paradox. The acute activation of
AMPK has been shown to inhibit glycogen synthase
leading to glycogen degradation.24-27 However, the
chronic activation of AMPK has been shown to lead
to glycogen accumulation. Mechanistically, the
chronic activation of AMPK has been shown to
increase glucose uptake and result in the accumulation
of glucose-6-phosphate, which allosterically activates
glycogen synthase and leads to glycogen synthesis.28-30

Accordingly, the constitutive activation of AMPK via
mutations in the g2 and g3 subunits has been
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associated with glycogen accumulation in the skeletal
and cardiac muscles of pigs and mice.30-36 In agree-
ment, and similarly to what we have reported,14 yeast
snf1 mutants display decreased levels of glycogen as
compared to the control.37 Importantly, whether the
osmotic stress-dependent acute activation of AMPK
leads to the activation of glycogen phosphorylase is
still not clear and needs further investigation.

Using the nematode to understand
the Birt-Hogg-Dub�e disease

Birt-Hogg-Dub�e is an autosmal dominant neoplastic
syndrome characterized by skin lesions named fibro-
folliculomas, pulmonary cysts, pneumothorax, and
an increased presdisposition to renal cysts and
tumors.38-51 BHD is caused by germline mutations in
the BHD gene, which encodes FLCN, a 64KDa pro-
tein, expressed in most tissues.52 Since the discovery
of the FLCN gene, diverse FLCN-related cellular func-
tions have been reported. However, it remains unclear
whether these biological processes are directly regu-
lated by FLCN or they are simply a result of indirect
effects related to FLCN.

Although mammalian model organisms such as mice
and rats are highly advantageous to study disease-related
biological processes in humans due the close anatomical
and physiological similarities between systems, they have
disadvantages including space, cost, and time-consuming
transgenic technologies. The nematode C. elegans has
emerged as an excellent model organism to study con-
served signaling pathways. In fact, many biological pro-
cesses are highly evolutionary conserved such that
findings in C. elegans are applicable to humans. Impor-
tantly, deregulation in pathways that regulate prolifera-
tion, cell death, and metabolism is associated with tumor
formation and dissemination. Although C. elegans nem-
atodes do not develop tumors per se, the molecular path-
ways that lead to cancer in humans are conserved across
evolution and lead to other phenotypic outcomes in the
worm, which have been successfully used by researchers,
to genetically determine molecular interactions and to
screen for anticancer drugs.53-55

In analogy with the important role of glycogen in
survival to stress, glycogen could also be an impor-
tant molecule that fuels tumorigenesis. Glycogen
accumulates in many cancer types including ovarian
cancer,56 kidney cancer,57 colorectal cancer,58 bladder
cancer,59 and others.60 In addition, higher glycogen

levels were detected in breast, kidney, bladder, uterus,
skin, ovary, and brain cancer cell lines60, and recent
studies have demonstrated a critical role for glycogen
in the survival of cancer cells to hypoxic environ-
ments and glucose restriction.57,61 Importantly, the
inhibition of glycogen degradation induced apoptosis
in pancreatic cancer cells and impaired the in vivo
growth of tumor xenografts.57

The AMPK-dependent regulation of hyperosmotic
stress that we observed in C. elegans is a very interest-
ing aspect in regards to BHD disease, which is mostly
manifested by enlarged renal cysts and tumors in all
mammalian models including rats, mice, dogs, and
men.40-42,44,48 Since the kidney is an organ chronically
exposed to hyperosmotic stress, it is possible that the
BHD renal tumors and cysts are formed because of an
increased resistance to hyperosmotic conditions,
which could lead to DNA damage. In support of this,
loss of FLCN and VHL, which are both renal tumor
suppressor genes, predispose to renal clear cell carci-
nomas which are glycogen-rich tumors. Based on our
recent findings in C. elegans, we speculate that glyco-
gen plays a dual role in BHD neoplasm: it supplies
cancer cells with energy and helps them resist the
renal hyperosmotic environment.

Concluding remarks

Future experiments aiming to determine which osmo-
lytes are produced following glycogen degradation in
animals are necessary to understand the role of glyco-
gen in hyperosmotic stress resistance. Although we
show that glycerol is a major osmoprotectant, other
osmolytes resulting from the hyperosmotic-stress
dependent degradation of glycogen could also contrib-
ute to the survival of cells/organisms.

As a continuation of this work, it will be important to
assess this pathway in cell culture systems and in BHD
mouse models and to target it in cancer models to deter-
mine potential therapeutic benefits in the treatment of
BHD disease in specific and kidney cancers in general.
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