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Abstract

Variable selection for optimal treatment regime in a clinical trial or an observational study is 

getting more attention. Most existing variable selection techniques focused on selecting variables 

that are important for prediction, therefore some variables that are poor in prediction but are 

critical for decision-making may be ignored. A qualitative interaction of a variable with treatment 

arises when treatment effect changes direction as the value of this variable varies. The qualitative 

interaction indicates the importance of this variable for decision-making. Gunter, Zhu and Murphy 

(2011) proposed S-score which characterizes the magnitude of qualitative interaction of each 

variable with treatment individually. In this article, we developed a sequential advantage selection 

method based on the modified S-score. Our method selects qualitatively interacted variables 

sequentially, and hence excludes marginally important but jointly unimportant variables or vice 

versa. The optimal treatment regime based on variables selected via joint model is more 

comprehensive and reliable. With the proposed stopping criteria, our method can handle a large 

amount of covariates even if sample size is small. Simulation results show our method performs 

well in practical settings. We further applied our method to data from a clinical trial for 

depression.
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1. Introduction

Personalized medicine is emerging as a new strategy for treatment which takes individual 

heterogeneity in disease severities, background characteristics, clinical measurements and 

genetic information into consideration. In this paradigm, treatment duration, dose and type 

are adjusted over time and tailored according to an individual’s information, aiming to 

optimize the effectiveness of treatment. This is different from the traditional “one-size-fits-

all” treatment, which ignores the long-term benefits and individual heterogeneities. Great 

interest lies in finding optimal treatment regimes based on data from clinical trials and 

observational studies (e.g. Murphy, 2003; Robins, 2004; Moodie, Richardson and Stephens, 

2007).

An optimal treatment regime could involve one treatment decision or a sequence of 

treatment decisions at multiple stages. The latter one is referred to as the optimal dynamic 

treatment regime, which is a sequence of decision rules tailored through time to individual’s 

information, and will maximize the final expected response when implemented. A large 
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number of works have been developed to derive optimal dynamic treatment regimes based 

on data from clinical trials and observational studies. For example, marginal structure 

models (Robins, 1997; Murphy, Van Der Laan and Robins, 2001) allow estimation of the 

mean response under a dynamic treatment regime. Q-learning (Watkins, 1989; Watkins and 

Dayan, 1992; Murphy, 2005; Zhao et al., 2011; Chakraborty, Murphy and Strecher, 2010; 

Song et al., 2011) and A-learning (Murphy, 2003; Robins, 2004) are two popular backward 

induction methods for deriving optimal dynamic treatment regimes: the former builds 

regression models for the so-called Q functions while the latter is based on modeling 

contrast functions. More recently, Zhang et al. (2012) proposed a value-function based 

optimization algorithm to find the best treatment regime in a specified class of treatment 

decision rules based on the inverse propensity score weighted (IPSW) estimation of the 

value function. They further extended the method to an augmented IPSW estimation, which 

enjoys the double robustness property. Zhao et al. (2012) proposed an outcome-weighted 

learning method, recasting the estimation method of Zhang et al. (2012) in a classification 

framework, and developed an outcome weighted support vector machine to estimating 

optimal treatment regimes.

In practice, the sequential multiple assignment randomized trial (SMART) is an 

experimental design useful for deriving optimal dynamic treatment regimes (Murphy, 2005; 

Qian, Nahum-Shani and Murphy, 2013). The SMART designs have been used for some 

chronic or relapsing diseases. Examples include the Sequenced Treatment Alternatives to 

Relieve Depression (STAR*D) trial (Fava et al., 2003; Rush et al., 2004), the Clinical 

Antipsychotic Trials of Intervention Effectiveness (CATIE) for treatment of Alzheimer’s 

disease (Schneider et al., 2001) and the psychosocial treatments study for Attention Deficit 

Hyperactivity Disorder (ADHD) in children and adolescents (Pelham Jr, Wheeler and 

Chronis, 1998). As our ability to collect individual’s information is growing, there are more 

and more covariates measured and available in clinical studies. For example, a clinical trial 

may collect a large amount of information on patient’s demographics, medical history, 

intermediate outcomes and side effects. However, it may be expensive or time-consuming to 

collect all these information in clinical practice, and redundancy in covariates information 

may impair the accuracy of optimal treatment decisions as well as the interpretations. Hence 

a natural problem for finding optimal treatment regimes is to select important covariates that 

could facilitate us to make treatment decisions.

Our work is motivated from the Sequenced Treatment Alternatives to Relieve Depression 

(STAR*D) study. The STAR*D study is a randomized multistage clinical trial of patients 

with nonpsychotic major depressive disorder. As there are a lot of antidepressant 

medications but not a single treatment is universally effective, this study aims to determine 

which treatment strategies, in what order or sequence, provides the optimal treatment effect. 

However, there are a large amount of covariates collected at baseline, including patient’s 

demographic characteristics, medical history, etc. For treatments at the second level and 

higher, there are also lots of intermediate medical measurements that are available for 

making the treatment decisions at next level. It’s hard to select covariates useful for making 

treatment decisions from such a large amount of covariates based on expert opinion only, 

hence variable selection for identifying the optimal treatment regime is needed.

Fan et al. Page 2

Ann Appl Stat. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Variable selection is an important area in modern statistical research. However, current 

variable selection techniques focused on selecting variables relevant for prediction, which 

may not be suitable for selecting variables relevant for decision making. Variables that are 

vital for decision making may be neglected by techniques targeting on prediction due to the 

small predictive abilities of the interactions of these variables with treatment. In medical 

decision-making setting, Gunter, Zhu and Murphy (2011) distinguished between predictive 
variables, which help to increase accuracy of estimator, and prescriptive variables, which 

facilitate prescription of optimal treatment regimes. A prescriptive variable must have 

qualitative interaction with treatments, that is, treatment effects change direction when the 

value of this variable varies. Our goal of this paper is to develop a variable selection method 

to identify prescriptive variables for implementing optimal treatment regimes, especially 

when the number of covariates is large.

Scarce research have been carried out to study the variable selection techniques for decision 

making. Qualitative interaction tests (Gail and Simon, 1985; Piantadosi and Gail, 1993; Yan, 

2004) have been used to test a small number of expert determined pre-specified interactions. 

However, many of the tests were designed for testing only qualitative interactions between 

categorical variables and treatments. Moreover, when the number of covariates is large these 

tests are too conservative when controlling the error rate for multiple testing. Penalized 

methods have also been studied to identify variables important for making treatment 

decisions. Qian and Murphy (2011) developed a two-stage procedure in the framework of Q-

learning, where they first estimated the conditional mean response using L1 penalized least 

squares, and then derived the estimated optimal treatment regime from estimated conditional 

mean. The use of L1 penalized least squares leads to estimated optimal treatment regimes 

with fewer variables needed. Lu, Zhang and Zeng (2013) proposed a penalized least squares 

regression framework to select important variables for making treatment decisions, which 

corresponds to a form of A-learning. Shrinkage penalties were incorporated on the 

interaction terms such that variables relevant to decision making were selected. However, 

both of these penalized methods do not directly target on selecting prescriptive variables, 

and hence may be inappropriate for selecting variables that are important for decision 

making. Gunter, Zhu and Murphy (2011) proposed variable selection methods for qualitative 

interactions, where two variable-ranking quantities were presented. These quantities 

characterize qualitative interactions, which depend on two factors: the magnitude of 

interaction and the proportion of patients for whom the optimal treatment changes given the 

knowledge of the variable. However, these quantities may identify too many covariates as 

the potential prescriptive variables when there are a large number of covariates. Also these 

quantities examine the effect of each variable individually, which may ignore the correlation 

between covariates and thus lead to identification of spurious variables or miss some 

important prescriptive variables for decision making.

In this paper, we proposed a new sequential advantage variable selection method. Our goal is 

to select variables with qualitative interactions to derive the optimal treatment regime, but 

our method is based on sequential advantage, which is the additional improvement of the 

value based on the estimated optimal treatment regime with a new variable included. This 

sequential advantage selection method takes variables already in the model into account and 

judge whether to include a new variable or not by the additional information provided by 
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this variable on decision making. As our method selects relevant variables sequentially, it 

can handle a large number of covariates even if the sample size is small. Another merit of 

the sequential selection procedure is that it does not include those variables which are 

marginally important but jointly unimportant and hence avoids redundant information in the 

model for decision making. We also proposed a stopping criteria based on proportion of 

incremental sequential advantages to decide how many variables to be included for decision 

making.

The paper is organized as follows. In Section 2 we introduce the framework for identifying 

optimal treatment regimes, and the S-score method for selecting prescriptive variables. 

Section 3 provides the proposed sequential advantage selection for variable selection in 

optimal treatment decision making. We demonstrate their performance in Section 4 by 

simulation studies in various scenarios, and illustrate these methods using data from the 

STAR*D clinical trial in Section 5.

2. Variable Selection for Optimal Treatment Regime

2.1. Optimal Treatment Regime

Consider a clinical trial or an observational study where point exposure treatments are given 

to n subjects sampled from the population of interest, and assume that there are two possible 

treatment options assigned to each subject. Denote A as the treatment and assume possible 

values of A are coded as {0, 1}, which is in accordance with two treatment options. We aim 

to find the optimal treatment regime based on p–dimensional covariates of a subject X = 

(X1, X2, …, Xp)T. Following a treatment A given to the subject, a response Y could be 

obtained. Suppose larger response is preferred. The observed data can be summarized as (Xi, 

Ai, Yi), i = 1, …, n, where Xi = (Xi1, …, Xip)T. A treatment regime d(X) is a mapping from 

, the space of covariates X, to , the space of action A. Our goal is to find the treatment 

regime dopt(X) that can maximize the expected mean response.

In this context, we want to identify the optimal treatment regime mapping from  to {0, 1}. 

To put it formally, we need to introduce potential outcomes Y*(1) and Y*(0), which are the 

outcomes that would be observed if a subject is assigned to treatment 1 or 0. With the 

concepts of potential outcomes, an optimal treatment regime can be defined as dopt(X) = 

argmaxd∈  Y*(d(X))], where  is the collection of all possible treatment regimes, i.e., all 

possible mappings from  to .

Two assumptions are essential to make identifying optimal treatment regimes possible. First 

is the stable unit treatment value assumption (Rubin, 1978): Y = I(A = 0)Y*(0) + I(A = 

1)Y*(1). That is, an individual’s outcome is the same as the potential outcome for the 

assigned treatment, and is not influenced by other individuals’ treatment allocations. Second 

is the no unmeasured confounders assumption: {Y*(0), Y*(1)} ⊥ A|X, i.e., the treatment 

assignment is independent of the potential outcomes conditional on observed covariate 

information (Robins, 1997). With these two assumptions, it is straightforward to show that
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that is, Y*(d(X))] can be expressed by the observed data. Hence the optimal treatment 

regime could be derived as:

That is, for each possible value of covariate X, we’ll find the treatment a that maximizes the 

expected response. Because the distribution of (X, A, Y) is unknown in practice, we could 

only estimate Y|X = x, A = a) given a posited model based on the observed data.

2.2. S-Score Method

When there are a large amount of covariates, only some of the covariates need to be 

considered in the model Y|X = x, A = a) as independent predictors for making optimal 

treatment decision. Gunter, Zhu and Murphy (2011) mentioned that current variable 

selection techniques pay more attention to selecting the predictive variables, but are likely to 

neglect some important prescriptive variables. Parmigiani (2002) proposed value of 

information using the experimental outcome to help evaluating the treatment effect. Gunter, 

Zhu and Murphy (2011) proposed S-score based on the value of information, which is a 

quantity of a variable that characterizes the degree of qualitative interaction. The ranking of 

S-scores shows the ranking of possibilities of different covariates to be prescriptive 

variables. To put it formally, the S-score for a univariate covariate Xj, j = 1, …, p, is defined 

as:

(1)

Here 𝔼̂(Y|Xj = xij, A = a) is an estimator of Y|Xj = xij, A = a), the expected response of Y 
given covariate Xj and treatment A, and â is the optimal treatment regime without 

considering the effect of the covariates, that is, â = argmaxa 𝔼 ̂(Y|A = a). For example, if the 

model for Y|Xj, A) is Y|Xj, A) = β0 + β1Xj + β2A + β3XjA, then (β0, β1, β2, β3)T can be 

estimated by the least squares estimates, denoted as (β̂
0, β̂

1, β̂
2, β̂

3)T. S-score for Xj then has 

the following expression:

(2)

We note that Sj is always non-negative. The first and second terms of Sj in (1) are obtained 

based on the same model of Y given covariate Xj and treatment A, but the first term adopts 

the optimal treatment based on the posited model for Y|Xj = xij, A = a), while the second 

term adopts the optimal treatment based on no covariate information. Hence only the 

interaction term of those individuals whose optimal treatment based on Xj is different from 

the optimal treatment â that based on no covariate information will give a contribution to the 

S-score. As stated in Gunter, Zhu and Murphy (2011), the S-score captures both the 
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magnitude of interaction and the proportion of subjects whose optimal treatment changes. 

For example, in equation (2), (β̂
2 + β̂

3xij) stands for the treatment effect, which depicts the 

magnitude of the interaction between the variable Xj and the treatment A, and [1(β2̂ + β̂
3xij ≥ 

0) − â] stands for the proportion of patients whose optimal treatment changes given 

knowledge of the variable Xj. Therefore both these two factors are reflected in S-score, 

which makes S-score a good quantity that characterizes the degree of qualitative 

interactions.

3. Sequential Advantage Selection

S-score characterizes qualitative interaction of each individual covariate, which helps to find 

prescriptive variables for deriving optimal treatment regimes. However, there are some 

limitations with the S-score method. First, when the number of covariates is very large, the 

S-score method tends to select many variables with no qualitative interactions with the 

treatments since their S-scores are nonzero due to the correlations among covariates. 

Second, since each variable is evaluated individually with the S-score method, some 

variables that are jointly crucial for optimal treatment decision making may be neglected by 

the S-score method, because the S-score method does not take correlations between 

variables into account. We are thus motivated to consider sequential selection based on 

modified S-scores, which calculates the conditional marginal S-scores for each covariate 

sequentially with the variables previously included in the model. The new quantity to 

evaluate each covariate is called sequential advantage.

For convenience, we use ℳ = {j1, .., jk} to denote an arbitrary model with Xj1, ..., Xjk as the 

selected covariates. Let ℱ = {1, ..., p} denote the full model. Xi is the covariate for ith 

subject and Xi(ℳ) = {Xij : j ∈ ℳ} is the covariate for ith subject corresponding to model 

ℳ. The sequential advantage of a variable Xj with k–1 variables Xj1, ..., Xjk–1 already in the 

model is defined as:

where ℳ(k–1) = {j1, ..., jk–1}, , and  is the optimal 

treatment regime based on k–1 variables Xj1, ..., Xjk–1. This sequential advantage is similar 

to that in equation (1), but the model of the mean response Y) is based on the current 

variable Xj and all the variables that are selected before the kth step. Here 

 is an estimator of the mean response of Y given all the available 

covariates at this step  and treatment A. In practice, a linear model with main effects of 

 and A, and interaction effects between  and A can be used to model 

. This quantity shows the additional advantage of the variable Xj for 

improving the optimal treatment decision. Sequential selection guarantees that no redundant 

variables are included in the decision-making model and leads to a joint model for obtaining 
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the optimal treatment regime. In the sequential advantage selection, we provide a stopping 

rule based on the proportion of the incremental sequential advantage. Below is the algorithm 

of sequential advantage selection for decision making.

Step 1 (Initialization)

Let ℳ(0) = ∅. First compute

(3)

Let

(4)

where π is the probability of assigning a patient treatment 1 in the study. Here S(0) is a 

quantity of total gain in outcome by using the optimal treatment  rather than randomly 

assigning treatments to patients. This is a baseline advantage increment, and will be used as 

a reference in the stopping criteria.

Step 2 (Sequential Advantage Selection)

In the kth step (k ≥ 1), we have ℳ(k–1). For every j ∈ ℱ\ℳ(k–1), we consider candidate 

covariates  and compute the sequential advantage V corresponding to 

jth covariate in kth step. The kth variable to be selected is the one with the largest sequential 

advantage in this step, that is:

(5)

Update ℳ(k) = ℳ(k–1) ∪ {jk}. The optimal treatment regime that based on the first k 
variables Xℳ(k) is also updated accordingly:

(6)

Let , which is the sequential advantage increment based on the kth selected 

variable.
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Step 3 (Stopping Criteria)

Iterate Step 2 until we get the sequence p*
 = {j1, ..., jp

*
}, where p* is the first l ∈ {0, 1, .., 

p} that satisfies propl ≥ c and propl+1 < c. Here propl stands for the proportion of the 

incremental sequential advantage and is defined as:

(7)

with propp+1 = 0. This quantity characterizes the proportion of the additional advantage of 

the lth selected variable to sum of all the sequential advantages explained by the lth selected 

variable and all previously selected variables. Here c is a cut-off point for the proportion of 

the incremental sequential advantage. We choose c = 0.01, that is, if a newly selected 

variable could only explain less than 1% of the information explained by currently total 

selected variables, we will not include this variable and stop. If prop1 < c, then p* = 0, which 

means we will not include any variable in the model. The variables (j1, ..., jp
*
)t are the 

selected important prescriptive variables to make treatment decisions, and  is 

the optimal treatment regime for the corresponding model.

4. Simulations

To test performance of the proposed method on variable selection and the accuracy of 

estimating the decision rule, we compared sequential advantage selection (SAS) with S-

score method in Gunter, Zhu and Murphy (2011) and the method proposed by Lu, Zhang 

and Zeng (2013) under various settings. Although S-score has a natural ranking of the 

covariates, it doesn’t provide an optimal treatment regime based on the variables selected. 

For fair comparison, we handle S-score method in two ways: one is to include all variables 

with non-zero S-scores and to see whether they include the true important variables; the 

other is to include the same number of variables as that of SAS method based on S-score 

ranking and to fit a new linear model with these variables to get the optimal treatment 

regime. The method proposed by Lu, Zhang and Zeng (2013) adopts LASSO type shrinkage 

penalties on a least squares loss function, which has a form of A-learning and thus does not 

rely on the correct specification of the baseline function. As done in Lu, Zhang and Zeng 

(2013), we use the sample mean of responses Y as the baseline function in A-learning here, 

and the LASSO penalty for variable selection. We refer this method as LASSO in simulation 

results. The tuning parameter λ of the LASSO method is chosen by cross validation. The 

LASSO method and its cross validation is implemented using R-package glmnet. In our 

simulation settings, we considered both randomized studies and observational studies with 

confounders that are not relevant variables for decision making.

For each simulation data set, we generated n = 200 observations (Xi, Ai, Yi), i = 1, ..., n, 

where Yi is the response variable, Ai is the treatment assigned to ith patient whose possible 

value is {0, 1}, and Xi is a column vector containing p = 1000 independent variables. Let 

Xn×p = (X1, X2, ..., Xn)T, and X̃
n×(p+1) = (1n×1, X). We consider the following three models 
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to generate simulation data, which have linear form of covariates for the interaction with 

treatment, and different function forms for the baseline:

• Model I:  with γ1 = (1, −1, 0p–2)T.

• Model II:  with γ1 = (1, −1, 0p–2)T, γ2 = 

(1,02, −1, 05, 1, 0p–10)T.

• Model III:  with γ1 and γ2 

being the same as in Model II.

Here covariates Xi = (Xi1, ..., Xip)T are generated from a multivariate normal distribution. 

Each entry is normal with mean 0, variance 1, and the correlation between covariates is 

Corr(Xij, Xik) = ρ|j–k|, for j ≠ k, j, k = 1, ..., p. In our simulations, we used linear models with 

main effects of covariates and treatment as well as interaction effects between covariates and 

treatment to model the response Y given some covariates and treatment. Hence the fitted 

models in SAS procedure are eventually correctly specified when the true model is Model I, 

but the main effect parts of the models are misspecified when the true models are Model II 

and III. To examine the performance with different correlations between covariates, ρ is 

chosen to be 0.2, 0.5 and 0.8 to represent weak, moderate and strong correlations 

respectively. The error term ε is normally distributed with mean zero and variance 0.25.

Based on these models, the optimal decision will be I(βTX̃ ≥ 0), hence important variables 

for decision making are those whose corresponding coefficient βj ≠ 0. We consider two sets 

of values for β:

• β0 = 0.1, β1 = 1, β9 = −0.9, β10 = 0.8, other βj’s are zero.

• β0 = 0.1, β1 = 1, β9 =−0.9, β10 = 0.8, β20 = 0.8, β22 = 1.5, β30 = −2, β35 = 2, β40 

= 3, other βj’s are zero.

In the first scenario, there are 3 important prescriptive variables: X1, X9 and X10, which we 

refer to as sparse true model. In the second scenario, there are 8 important prescriptive 

variables: X1, X9, X10, X20, X22, X30, X35 and X40, which we refer to as less sparse true 

model. As the generative models are complex, it becomes rather difficult to evaluate the 

degree of marginal qualitative interaction of each variable with treatment by the absolute 

value of β due to the correlation between covariates. As an illustration, we show in Figure 1 

the marginal interaction plots of variables, X1, X9 and X10 with treatment under two choices 

of correlation between covariates: ρ = 0.2 and ρ = 0.8, which are shown in the left and right 

panel of Figure 1 respectively. These marginal plots are from one simulation under model I 

with the first choice of β. The coefficients for the interaction terms of X1, X9 and X10 with 

treatment A are 1, −0.9 and 0.8. Based on Figure 1, it can be seen that the qualitative 

interaction effects for one of the variables X9 and X10 become weak due to the high 

correlation between these two variables and the opposite effects of these two variables.

In the simulation settings, we consider both scenarios of randomized studies and 

observational studies. In the randomized study, the treatment is assigned to each patient 

randomly with P(A = 1) = P(A = 0) = 1/2. In the observational study, the treatment is 
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assigned to each patient with , where logit(u) = 

log{u/(1 − u)}.

We implement SAS, S-score and the LASSO methods on each simulated data set with 500 

replications. To evaluate the performance of these three methods, we compare them in two 

aspects. For variable selection, we recorded the average number of variables selected by 

each method. We also reported true discovery rate (TDR), the proportion correctly identified 

important variables among all the selected variables, and true positive (TP), the number of 

correctly identified important variables. For accuracy of estimated optimal treatment 

regimes, we evaluated the true mean response following the estimated optimal treatment 

regime ĝopt of the three methods, as well as the error rate of the estimated optimal treatment 

regime compared to the true optimal treatment regime. The true value of an estimated 

treatment regime is estimated by the average outcome of Monte Carlo simulation with 

10,000 replicates. Simulation results are shown in Tables 1, 2, 3 and 4, where Tables 1, 3 are 

results for variable selection and Tables 2, 4 are for results for estimation of optimal 

treatment regimes.

We summarize the observations as follows. First, S-score method seems to always select too 

many variables if all covariates with non-zero S-scores are included. Under weak and 

moderate correlations, i.e. ρ = 0.2 or 0.5, the LASSO method tends to select a few more 

variables than SAS method in models I and II when the true models are sparse, and selected 

much more variables than SAS method when the true models are less sparse. What’s more, 

standard deviations of the number of variables selected by SAS method are small, which 

shows stability of SAS method. As the correlation increases, the average true positives for 

all three methods gets lower, which is reasonable as there are less information provided by 

highly correlated covariates. SAS method is capable to include more important variables 

than the S-score method and LASSO method in all simulation settings. When the true model 

is sparse, SAS method can recover almost all the important variables under weak and 

moderate correlations with small variances of the true positives.

The true discovery rates depend on both the number of variables selected and the ability to 

identify important variables. When the true models are sparse, the TDRs of SAS method are 

not very high especially under moderate to high correlations. However, for the cases where 

the true models are less sparse, which are shown in Table 3, the TDRs of SAS method are 

relatively high because the size of variables selected is small, and are much higher than 

those of S-score and the LASSO methods.

According to Table 2 and Table 4, SAS method provides a good estimate of optimal 

treatment regime with values close to the values obtained by implementing the true optimal 

treatment regime and low error rates, especially in the case of model I. The error rates of S-

score method are slightly higher than those of SAS method in most cases. The error rates 

provided by the LASSO method are approximately 0.4 in most cases. Despite that the 

LASSO method could select some important variables, the estimated optimal treatment 

regime did not provide accurate decision rules partly because the LASSO estimates tends to 
have big bias due to shrinkage. In Table 4 when the true decision rule is less sparse, the 

values of estimated optimal treatment regimes of SAS method are the closest to the true 
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optimal values among the three methods in all cases. In Table 2 when the true decision rule 

is sparse, the values of estimated optimal treatment regimes of the LASSO method are larger 

than those of SAS method in some cases with Model II and Model III, even if the error rates 

of the LASSO method are higher. This may be because the values in the cases with only 

three important variables are not sensitive to treatment regimes, hence a treatment regime 

that is not close to the optimal treatment regime could still lead to a high value. However, in 

the case with eight important variables as shown in Table 4, as the magnitudes of the 

nonzero coefficients β are larger, treatment regimes that are far from the optimal treatment 

regime could get values much lower than the optimal value.

We also compare solution paths of three methods to evaluate their selection performance. 

Here we define the solution path as the trajectory of the number of identified important 

interaction variables as the numbers of selected variables increases according to the selection 

order. For demonstration purpose, we only plot the solution paths for the first 30 selected 

variables. SAS method has a natural order of selected variables. For S-score method, we 

ranked the variables by the descending order of S-scores of these variables. The LASSO 

method has a solution path of β, which can be used to determine the order of variables 

entering the model. The solution path plots allow us to evaluate the ability of each method to 

identify important variables given that the same number of variables is selected. These plots 

are given in Figure 2, 3, 4 and 5 under different simulation settings.

As shown in Figures 2–5, when the number of variables included in the model for each 

method is fixed, SAS method includes the largest number of important variables in most 

cases. When the data are generated under model I, SAS method can include all the important 

variables in a small number of steps when ρ is not too large. When ρ is large, as the two 

important variables 9 and 10 are highly correlated, they are likely to be missed by all the 

three methods, while SAS method still has the highest probability of including these two 

variables. When the data are generated under model II and model III, all of the methods used 

the mis-specified models to fit the data and the performance on variable selection is not as 

good as those in model I. However, SAS method still outperforms other two methods. As the 

LASSO method is implemented in the framework of A-learning which is robust to baseline 

function mis-specification, it seems to suggest that SAS method also embraces this 

robustness.

Overall, SAS method performs well on both the aspect of variable selection and the aspect 

of estimating optimal treatment regime. SAS method can select most important variables at a 

moderate size of the set of selected variables. When the model is correctly specified and the 

correlations between covariates are not too high, the SAS method is able to identify all 

important variables. The error rates of the optimal treatment regime based on SAS method 

are low and the estimated values are close to the truth. While the S-score and LASSO 

methods have their appeal in some cases, SAS method is also competitive in these cases and 

is more advantageous considering its ability to identify important variables for decision 

making.
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5. Application to STAR*D Study

We apply the proposed method to data from STAR*D Study, which was conducted to 

determine the effectiveness of different treatments for patients with major depressive 

disorder (MDD) who have not been adequately benefiting from initial treatment with an 

antidepressant. There are 4041 participants (age 18–75) with nonpsychotic MDD enrolled in 

this study. Initially these participants were treated with citalopram (CIT) up to 14 weeks. 

Subsequently, 3 more levels of treatments were provided for participants without a 

satisfactory response to CIT. At each level, participants were randomly assigned to treatment 

options acceptable to them. At Level 2, participants are eligible for seven treatment options, 

which may be conceptualized as two treatment strategies: medication or psychotherapy 

switch, and medication or psychotherapy augmentation. Available treatments for participants 

elected to switch are: sertraline (SER), venlafaxine (VEN), bupropion (BUP) and cognitive 

therapy (CT); available treatments for patients elected to augment are: augmenting CIT with 

bupropion (CIT+BUP), buspirone (CIT+BUS) or cognitive therapy (CIT+CT). Participants 

without a satisfactory response to CT were provided additional medication treatments which 

is called Level 2A. All participants who did not respond satisfactorily at Level 2 or 2A were 

eligible for Level 3, where possible treatments are medication switch to mirtazapine (MIRT) 

or nortriptyline (NTP), and medication augmentation with either lithium (Li) or thyroid 

hormone (THY). Participants without satisfactory response to Level 3 were re-randomized at 

Level 4 to either tranylcypromine (TCP) or a combination of mirtazapine and venlafaxine 

(MIRT+VEN). Participants who respond satisfactorily were followed up to 1 year. See Fava 

et al. (2003) and Rush et al. (2004) for more detailed description of this STAR*D design.

For illustration, we focused on comparing treatment BUP and SER within subset of 

participants who agreed to be randomized within medication switch at Level 2. Our goal is 

to identify relevant prescriptive predictors and estimate the optimal treatment decision 

within this sub group. Possible relevant covariates include participant features such as age, 

gender, socioeconomic status, and ethnicity, illness features such as medication history, 

family history of mood disorders, and care features such as clinician type. Intermediate 

medical conditions from Level 1 such as degree of symptom improvement and side effect 

burden are also considered. Table 5 lists all of the 305 covariates considered to make 

treatment decision. Symptomatic status was measured by the 16-item Quick Inventory of 

Depressive Symptomatology -Clinician-Rated (QIDS-C16). Because low QIDS-C16 stands 

for remission, we use negative QIDS-C16 as our final outcome. There are 319 participants 

who had complete records of covariates and final outcomes within medication switch 

substrategy group that had been randomly assigned to treatment BUP or SER. Among these 

participants 153 were treated with BUP and 166 were treated with SER.

We applied the three methods, SAS, S-score and the LASSO method considered in 

simulations to this real data set. The variable selection results are as follows. The LASSO 

method doesn’t select any variable for treatment decision. S-score method had 219 variables 

with non-zero S-scores. SAS method selected 33 variables with cut-off point in the stopping 

criteria as 0.01. The reason that the LASSO method didn’t include any variables is probably 

that these covariates could not provide a good prediction on the response. It is reasonable as 

most of the covariates are categorical, which doesn’t include much information about the 

Fan et al. Page 12

Ann Appl Stat. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



response. The S-score method selects a lot of covariates, which indicates that there are 

potentially some prescriptive variables among these covariates. SAS method includes a 

moderate size of covariates as the important variables, which provides a guidance to 

clinicians on the covariates that have an effect on treatment decision making. The optimal 

treatment regime based on SAS method assign 155 patients to treatment BUP, and the rest 

164 patients to treatment SER. Among these 33 variables, 10 of them are related to the 

answers in psychiatric diagnostic screening questionnaire, 5 of them are about rating of 

depression, 2 of them are QIDS-C and QIDS-SR score changing rates at Level 1, 7 of them 

are related to patient rated inventory of side effects. The rest 9 variables are demographic 

factors of the patients. Both covariates at baseline and at Level 1 are selected. For selected 

covariates at baseline, there are covariates related to both the patient’s features and illness 

features; For selected covariates at Level 1, which are intermediate covariates, there are 

covariates related to the depression changing rate after the first treatment is given, as well as 

the side effects of the treatment at Level 1. Hence the optimal treatment decision at Level 2 

depends on a comprehensive examination of patient’s situation at both baseline and Level 1.

To further examine the variables selected by SAS method, we evaluate the values obtained 

following the estimated optimal treatment regime based on these selected variables. The 

average value of a treatment regime is estimated by inverse probability weighted estimator 

used in Zhang et al. (2012), defined as . Here g(Xi) is the 

estimated treatment regime, and π(Ai) is the probability of receiving treatment Ai. As the 

LASSO method didn’t include any variables, we want to compare the estimated value for the 

estimated optimal treatment regime of SAS method to the values we get when all subjects 

are treated with the same treatment, that is, the treatment regime based on no covariate. The 

estimated value for SAS method is −7.84, and the estimated values with treatment BUP and 

SER are −10.74 and −10.52, respectively. To examine whether the difference between the 

value based on SAS method and the value with one treatment only is significantly different 

from 0, we used 1000 bootstrap sample to obtain the confidence interval for the differences 

of values. The 95% bootstrap confidence interval for the value difference between SAS 

method and BUP treatment is (0.74, 5.15), and the 95% bootstrap confidence interval for the 

value difference between SAS method and SER treatment is (0.37, 4.82). As both 

confidence intervals don’t include zero, it suggested that the value using optimal treatment 

regime based on SAS method is better than the values based on one treatment only.

6. Discussion

In this article, we proposed a variable selection method for optimal treatment decision 

making, which targets prescriptive variables that are important for decision making and 

selects variables in a sequential procedure such that the variables selected contain no 

redundant information. We provided a stopping criteria such that our final decision-making 

model can provide enough information with a small number of variables. Our method can be 

applied to data with continuous outcomes and binary treatment options from a clinical trial 

or an observational study. Simulation studies demonstrated that our method could identify 

most important variables under various settings, and provide a good estimated optimal 

treatment regime that has a small error rate and a high average outcome value.
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Gunter, Zhu and Murphy (2011) proposed a hybrid algorithm that combines the LASSO 

selection and S-score ranking. Specifically, it first uses the LASSO method to select both 

important predictive and prescriptive variables, and then uses the S-score method to rank the 

selected variables for making treatment decision rules. Similarly, SAS method can also be 

combined with the LASSO method to provide a comprehensive algorithm for variable 

selection. What’s more, in the stopping criteria we proposed, we can tune the cut-off point c 
using data to achieve the goal of maximizing the expected outcome of the treatment regime.

The proposed method is applicable to the case with more than two treatment options. It may 

be extended to the situation where the outcome is categorical or censored by appropriately 

modeling the expected outcome given the covariates and the treatment. Moreover, since 

dynamic treatment with multiple decision points is common for chronic disease, it is 

desirable to extend our method to the dynamic treatment regime with multiple stages.
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Fig. 1. 
Illustration of qualitative interactions of the covariates X1, X9 and X10 with treatment A. 

These are marginal plots of response Y versus covariates X1, X9 and X10 (from top to 

bottom) in two di3erent treatment groups, treatment 1 and treatment 0 from one simulation 

based on model I and the first choice of β. Correlations between covariates are: ρ = 0.2 (left 

panel) and ρ = 0.8 (right panel). The fitted lines are from simple linear regression based on 

data from one treatment group. Black triangles and dashed lines are from treatment 1, and 

red circles and dotted lines are from treatment 0.
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Fig 2. 
Solution path of sequential advantage selection (SAS), S-score and LASSO methods. These 

plots are from the randomized study with the first choice of β (three important prescriptive 

variables: X1, X9 and X10), and are given for all combinations of three baseline functions 

and three choices of correlations of covariates. Black solid line: SAS method; Red dashed 

line: S-score method; blue dot-dashed line: LASSO method.
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Fig 3. 
Solution path of sequential advantage selection (SAS), S-score and LASSO methods. These 

plots are from the randomized study with the second choice of β (eight important 

prescriptive variables: X1, X9, X10, X20, X22, X30, X35 and X40), and are given for all 

combinations of three baseline functions and three choices of correlations of covariates. 

Black solid line: SAS method; Red dashed line: S-score method; blue dot-dashed line: 

LASSO method.
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Fig 4. 
Solution path of sequential advantage selection (SAS), S-score and LASSO methods. These 

plots are from the observational study with the first choice of β (three important 

prescriptive variables: X1, X9 and X10), and are given for all combinations of three baseline 

functions and three choices of correlations of covariates. Black solid line: SAS method; Red 

dashed line: S-score method; blue dot-dashed line: LASSO method.
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Fig 5. 
Solution path of sequential advantage selection (SAS), S-score and LASSO methods. These 

plots are from the observational study with the second choice of β (eight important 

prescriptive variables: X1, X9, X10, X20, X22, X30, X35 and X40), and are for all 

combinations of three baseline functions and three choices of correlations of covariates. 

Black solid line: SAS method; Red line: S-score method; blue dot-dashed line: LASSO 

method.
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Table 5

List of covariates used in application of sequential advantage selection method on the STAR*D study.

PARTICIPANT FEATURES

1 Gender 2–6 Ethnicity

7 Economic study consent 8 Depressed mood

9 Diminished interest or pleasure 10 Weight loss while not dieting

11 Insomnia or hypersomnia 12 Psychomotor agitation or retardation

13 Fatigue or loss of energy 14 Feelings of worthless or guilt

15 Diminished ability to concentrate 16 Recurrent thoughts of death or suicide

17 Age 18 Number of relatives living with patient

19 Number of friends living with patient 20 Total number of persons in household

21 Years of schooling completed 22 Highest degree received

23 On medical or psychiatric leave 24 Medicare

25 Medicaid 26 Private insurance

27 Better able make important decisions 28 Better able to enjoy things

29 Impact of your family and friends 30–35 Current marital status

36–41 Current employment status 42–44 Currently a student

45–46 Currently do volunteer work

ILLNESS FEATURES

47–60 Cumulative Illness Rating Scale 61–78 Hamilton rating scale for depression

79–93 Quick Inventory of Depressive Symptomatology 94–97 Medication history

98–236 Psychiatric diagnostic screening questionare 237 Baseline Axis I psychiatric condition

238 Baseline Axis II psychiatric condition 239 Family hx depression

240 Family hx bipolar disorder 241 Family hx alcohol abuse

242 Family hx drug abuse 243 Family hx suicide

INTERMEDIATE MEDICAL CONDITIONS

244–294 Patient rated inventory of side effects 295 AIDS-C percent improvement

296 QIDS-C score change rate 297 QIDS-SR score change rate

298 FISER frequency score change rate 299 FISER intensity score change rate

300 GRSEB score change rate 301 CGII score change rate

302 Patient presently a suicide risk 303 Patient in remission

304 Study medical daily dose

CARE FEATURES

305 Type of clinical site
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