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Abstract
Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release

from PLGA microspheres depends not only on polymer properties but also on drug type,

particle size, morphology of microspheres, release conditions, etc. Selecting a subset of rel-

evant properties for PLGA is a challenging machine learning task as there are over three

hundred features to consider. In this work, we formulate the selection of critical attributes for

PLGA as a multiobjective optimization problem with the aim of minimizing the error of pre-

dicting the dissolution profile while reducing the number of attributes selected. Four bio-

inspired optimization algorithms: antlion optimization, binary version of antlion optimization,

grey wolf optimization, and social spider optimization are used to select the optimal feature

set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also

used for comparisons. Selection of crucial variables is performed under the assumption that

both predictability and model simplicity are of equal importance to the final result. During the

feature selection process, a set of input variables is employed to find minimum generaliza-

tion error across different predictive models and their settings/architectures. The methodol-

ogy is evaluated using predictive modeling for which various tools are chosen, such as

Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP),

multivariate adaptive regression splines, classification and regression tree, and hybrid sys-

tems of fuzzy logic and evolutionary computations (fugeR). The experimental results are

compared with the results reported by Szlȩk. We obtain a normalized root mean square

error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is

smaller, nine versus eleven.
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1 Introduction
Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Hydrolysis of
PLGA ester bonds in the human body leads to monomers, which can be introduced in Krebs
cycle because they occur naturally. Therefore, PLGA is considered as a biodegradable and bio-
compatible polymer with minimal toxicity. A wide range of PLGA products is used as matrices
for drug delivery systems such as microspheres, implants, in-situ gelling solutions, and medical
devices (sutures, stents) [1]. Together with its biocompatibility, PLGA drug-protective proper-
ties as carriers are exploited i.e. for peptide drugs, DNA, RNA [2].

Despite an enormous amount of research focusing on PLGA microspheres, the complexity
of such multi-compartment systems requires a more thorough understanding of their behavior.
All types of variables can affect dissolution. It depends not only on polymer properties but also
on drug type, particle size, the morphology of microspheres, release conditions, etc. [3].
Extracting knowledge from already gathered data is one approach to filling the research gap.
Therefore, in this work, we have used existing data sets to discover complex relationships of
releasing drug from PLGA matrices.

This study was conducted with the scope of analyzing the potential of some bio-inspired
computational techniques for modeling experimental data coming from pharmaceutical sci-
ences, where there is a need to find crucial variables governing the behavior of pharmaceutical
dosage forms, in particular, PLGA microspheres. During the last decade, research for elucida-
tion of macromolecular drugs release mechanism from PLGA-based drug delivery systems
were in focus [4–7]. Most of the work is based on mathematical modeling [4, 5, 8, 9]. Only a
few are directly related to the usage of heuristic computational techniques for knowledge
extraction [10, 11].

Due to the recently introduced Process Analytical Technology (PAT) initiative [12] and the
concept of Quality by Design (QbD) [13], there is a need to introduce to pharmaceutical indus-
try multivariate, robust modeling techniques suitable for identification of crucial variables gov-
erning the analyzed processes. Moreover, PAT urges the need for thorough understanding of
relationships responsible for pharmaceutical formulation behavior.

In QbD, this conforms with the selection of critical quality attributes (CQAs) and critical
process parameters (CPPs), where an influence of formulation composition and technological
process variables on desired quality of developed formulation should be taken into consider-
ation. Numerous factors, like raw materials stability, lactide to glycolide acid ratio in polymers
and technological process play a significant role in formulation quality. Thanks to the devel-
opment of modern analytical techniques the number of potential CQAs and CPPs is counted
in hundreds or even thousands of factors. In order to minimize the risk of inadequate quality
of formulation, appropriate technology, and raw material is selected and controlled by careful
choice of the minimal set of CQAs and CPPs. Reduction of control variables is performed
both for the sake of clarity of reasoning and numerical stability of the developed models. For
the latter, a so-called “curse of dimensionality” [14] is a rationale for simplification of the
models. It is especially applicable in the holistic approach [15] integrating CQAs and CPPs
into the single model. Such solution is known for improving knowledge management and is a
natural domain for application of computational intelligence (CI) tools [15]. Data-driven
models based on CI are developed without a priori assumption and based on automatically
acquired knowledge could be used for selection of CQAs and CPPs in an empirical manner.
However, for this task, a robust and efficient feature selection method is needed, which is in
the focus of this work concentrated on the in vitro dissolution profiles of macromolecules
from PLGA microspheres. Our rationale is that CI tools could select some of CQAs and CPPs
relevant to this endpoint.
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2 Materials and Methods

2.1 Materials
For consistency in comparison of the results for both approaches, original data was extracted
from publication and the structure of the data was retained as in Szlȩk et al. [10]. In brief, the
data was gathered after reviewing about 200 scientific publications. The extracted data consists
of drug release profiles of 68 PLGA formulations from 24 publications. Originally, the input
vector consisted of 320 variables (molecular descriptors of protein, excipients, formulation
characteristics, and the experimental conditions) and 745 time points (records). All data were
of numeric format with continuous values, except variables such as “Production method” and
“Lactide to glycolide ratio” which took discrete values (1, 2, 3, etc.). The amount of the drug
substance released (Q) was the only dependent variable as shown in Fig 1, its values were rang-
ing from 0 to 100%. Data set which were used during the modeling have been uploaded on
SourceForge [16].

Data set was split according Data set was split according to the 10-fold cross-validation
scheme, each time excluding all data belonging to the particular formulation, thus simulating the

Fig 1. Construction of the data set.

doi:10.1371/journal.pone.0157610.g001
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real application of the model forced to predict the dissolution behavior of the unknown formula-
tion [17]. Preliminary studies indicated that linear scaling of the data from 0.1 to 0.9 did not
lower the prediction error, thus the data without normalization was used. We did not use exter-
nal validation data set due to limited data available in the literature. In order to predict a dissolu-
tion for all the proposed models, the data from publication must have: protein incorporated into
PLGAmicrosphere, its dissolution profile, protein with known structure to obtain chemical
descriptors, process parameters etc. Therefore publications fulfilling all above criteria are scarce.

2.2 Procedure for crucial variables selection
The identification of smallest possible feature subset is a complex search problem, proved to be
NP-Complete [18]. Therefore, an exhaustive examination of all possible subset combinations of
features is not tractable for large feature sets. For our case, we have 2320 possible subsets, which is
roughly 2.13e96 sets of features to be investigated. A reasonable approach is to use approximation
algorithms or heuristics. We will use randomized search, specifically bio-inspired randomized
search algorithms because there is evidence in the literature showing that they are effective for
features selection [19–22]. These algorithms evolve a population of subsets of features towards
those that meet specified criteria. We will try here four different bio-inspired algorithms [23]. In
addition to these methods, we use the well known LASSO algorithm for comparison purposes.

Once a subset of features has been selected, the performance of a predictive model on the
selected attributes is tested. We selected a number of well-known predictive tools such as Cub-
ist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivari-
ate adaptive regression splines (MARS), classification and regression tree (CART), and hybrid
systems of fuzzy logic and evolutionary computations (fugeR). In fact, the predictive models
are not just used at the end of the selection process, but their are build into the evaluation (fit-
ness) function of each of the feature selection methods. The feature selection methods improve
a randomly generated solution iteratively, and each time an improvement is suggested, its qual-
ity is assessed by a predictive model.

2.2.1 Feature selection models. The proposed feature selection models are needed to find
aminimal subset of input variables (features) from several hundred thatminimize the model
prediction error. The search space represents each variable as an individual dimension, and the
span of each dimension ranges from 0 to 1 and hence requires an inventive searching method
to find optimal subset in the huge search space that minimizes the fitness function. We define
the fitness/objective function as follows:

# Fitness ¼ a P þ b
j R j
j C j ; ð1Þ

where P is the error of the prediction model, R is the size of selected variable subset, C is the
total number of variables in the data set, α and β are two parameters corresponding to the
importance of prediction performance and subset size, α 2 [0, 1] and β = 1− α.

Below we briefly describe the algorithms used for selecting the features. The main parame-
ters of the bio-inspired techniques are given in Table 1, but there are other parameters specific
to each method which is set either according to domain-specific knowledge or based on trial
and error on small simulations.

1. Antlion optimization.
Antlion optimization (ALO) is a bio-inspired optimization algorithm proposed by Mirjalili
[24]. ALO algorithm imitates the chasing mechanism of antlions in nature. The pseudocode
of antlion optimization (ALO) is given in Algorithm 1. Complete clarification of the main
steps and details about the role of ALO’ parameters can be found in [24].
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2. Binary antlion optimization.
The optimization algorithms in continuous mode usually find a feature subset that maxi-
mizes the classifier performance where search agents are positioned in a d-dimensional
search space at positions over the interval [0, 1]. In binary mode, the search space is much
more limited as only two values {0, 1} are allowed for each dimension and hence is expected
that the optimizer will perform better. Binary antlion optimization (BALO) is an extension
of ALO to work in binary mode. While in ALO antlions and ants are continuously changing
their positions to any point in the space, in BALO, the solutions are restricted to the binary
{0, 1} values. This modification of ALO adapts and performs very well for the feature selec-
tion task. The pseudocode of a binary version of antlion optimization (BALO) is presented
in Algorithm 2. More details can be found in [25].

Algorithm 1: Antlion optimization (ALO) algorithm.

1: Input: N number of ant lions, n number of ants, NIter maximum number of
iterations.

2: Output: The optimal ant lion binary position and its fitness value.
3: Randomly initialize a population of ant positions and a population of

antlion positions.
4: Calculate the fitness of all the ants and antlions.
5: Find the fittest antlion (elite).
6: t = 0.
7: while t� T do
8: for all Anti do
9: Select an antlion using Roulette wheel.

10: Slide ants toward the antlion.
11: Create a random walk for the Anti and normalize it
12: end for
13: Calculate the fitness of all ants.
14: Replace an antlion with its corresponding ant; if the ant becomes

fitter).
15: Update the elite; if an antlion becomes fitter than the current

elite.
16: t = t+1
17: end while
18: Select the elite antlion elite and its fitness.

Algorithm 2: Binary antlion optimization (BALO) algorithm

1: Input: N number of antlions, n number of ants, NIter maximum number of
iterations.

Table 1. Parameter setting for the bio-inspired methods.

Parameter Value(s)

K for cross validation 10

No. of search agents 8

No. of iterations 100

Problem dimension Number of features in the data

Search domain in binary algorithms {0, 1}

Search domain in continuous algorithms [0, 1]

α parameter in the fitness function 0.99

β parameter in the fitness function 0.01

doi:10.1371/journal.pone.0157610.t001
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2: Output: Optimal antlion binary position (Elite) and its fitness value.
3: Initialize a population of n ants0 positions at random 20,1.
4: Initialize a population of N antlions0 positions at random 20,1.
5: Calculate the fitness of all ants and antlions.
6: Find the fittest ant lion (elite).
7: While Stopping criteria do not meet do
8: Calculate the mutation rate (r) given the random walk step size and cur-

rent iteration number.
9: Calculate the fitness of all ants.

10: Replace an antlion with its corresponding ant; if it becomes fitter
(Catching Prey).

11: Update elite; if an antlion becomes fitter than it.
12: end while
13: Select the elite antlion (elite) and its fitness.

3. Grey wolf optimization.
Grey Wolf Optimization (GWO) is bio-inspired heuristic optimization algorithm that imi-
tates the way in which wolves search for food and survive by avoiding their enemies [26].
Grey wolves are social animals that live in groups, and the pack size contains between 5 to
12 wolves on average. In the computational model, α is the fittest solution, β and δ are the
second and third best solutions. The hunting process is guided by α, β, and δ while the ω fol-
low them. The algorithm is outlined in Algorithm 3, with more details being available in
[27, 28].

4. Social spider optimization.
Social Spider Optimization (SSO) algorithm mimics the social behavior of the spider colony
in nature [29]. SSO is swarm-based and consists of two main components: social members
and communal web [30]. Social spider optimizer is formally presented in algorithm 4, with
more details about the algorithm implementation available in [29, 31, 32].

Algorithm 3: Grey wolf optimization (GWO) algorithm

1: Input: N number of grey wolves, NIter maximum number of iterations.
2: Output: Optimal grey wolf position and its fitness value.
3: Initialize a population of N positions of the grey randomly.
4: Find the α, β, and δ solutions based on their fitness values.
5: while Stopping criteria does not meet do
6: for all Wolfi 2 pack do
7: Update current grey wolf0s position.
8: end for
9: Update coefficient vectors.

10: Evaluate the positions of individual wolves.
11: Update α, β, and δ.
12: end while
13: Select the optimal grey wolf position and its fitness.

Algorithm 4: Social spider optimization (SSO) algorithm

1: Input: Nf number of female spiders, Nm male spiders, PF attraction
threshold, NIter maximum number of iterations.

2: Output: Optimal social spider position and its fitness value.
3: while t� NIter do
4: Randomly initialize the female spiders.
5: Randomly initialize the male spiders.
6: Evaluate the fitness (weight) of each spider.
7: Calculate the female cooperative operator.
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8: for i = 1;i < = Nf;i++ do
9: Calculate the Vibci and Vibbi.

10: end for
11: Calculate the male cooperative operator.
12: Calculate the Vibfi.
13: Perform the mating operation.
14: Update the best solution; if a spider becomes fitter than the best.
15: end while
16: Produce the best spider position and its fitness.

Besides the bio-inspired methods above, we also used Least absolute shrinkage and selection
operator (LASSO) for comparison purposes. Tibshirani has introduced an attractive LASSO
method for shrinkage and variable selection in 1996 [33]. LASSO method applies the penalty
concept; the optimization should depend on the quadratic program (QP) or non-linear general
program that is recognized to be computationally expensive. LASSO performs better prediction
accuracy by shrinkage as the ridge regression. Therefore, LASSO is a useful tool to accomplish
the reduction (shrinkage) and variable selection operations simultaneously [34].

2.3 Predictive models

1. Cubist: is a package which implements Cubist rule-based predictive decision trees develop-
ment firstly proposed by Quinlan [35]. Cubist models introduce linear equations at their
terminal branches; therefore, they can predict numeric values. The maximum number of
rules was fixed at 100, the number of committees was set from one to 100. The extrapolation
parameter, which controls the estimation ability of created models beyond the original
observation range, was set to 100. The sample parameter, which is a percentage of the ran-
domly selected data set for model building, was established at zero, which means that no
data subsampling was employed, and all the models were built on previously prepared 10cv
data sets [36].

2. Random Forest (RF): creates an ensemble of decision trees using random inputs. Package
randomForest of R environment was used [37]. It implements the Fortran code proposed
by Breiman and Cutler [38]; therefore, it is suitable both for classification and regression
problems. Similar to classification, regression forest is formed by growing trees depending
on a random vector, but instead of categorical response in case of classification, the tree pre-
dictor takes on numerical values. Then the output predictor is formed by taking the average
over all trees [39]. During model development, the following parameters have been used:
number of randomly selected variables at each split was between 1 and half the size of a vec-
tor (mtry), maximum number of nodes was set between 10 and 500 (maxnodes), and num-
ber of trees was set from 10 to 500 (ntree).

3. Monmlp (monotonic multilayer perceptron): [40, 41] is used to take advantage of the learn-
ing without back-propagation. Thus, monotonicity has been turned off. All of the prepared
models had two hidden layers, each one numbering from 2 to 20 nodes. The hidden layer
uses hyperbolic tangent (tansig) transfer function, and the output layer uses linear function
applied. Ensemble systems were employed and consisted of ten neural networks. Variables
have been scaled linearly from 0.1 to 0.9. Epoch has been set from 50 to 1,000. The “trials”
parameter has been set to 5 to avoid getting stuck in local minima.

4. Deep learning neural networks (h2o): we observed that, in order to properly train neural net-
works of complicated functions, noisy, or nonlinear data, deep architectures may be needed.
The term “deep architecture” refers to a neural network composed of multiple hidden layers
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with many neurons within each layer. Deep learning neural networks are used to solve com-
plex problems by introducing combinations of simpler solutions. Therefore, those systems
can operate in real-world environments [42]. Hyperbolic tangent has been used as activa-
tion function of choice. Epochs varied from 1,000 to 10,000,000. Neural nets consisted of
two to eight hidden layers with two to two hundred nodes per layer. Overall more than 250
architectures have been trained and tested [43].

5. fugeR: an idea of applying genetic algorithms in the field of fuzzy modeling appeared in the
early nineties of last century [44]. Fuzzy systems gain the advantages of evolutionary tech-
niques to develop a model based on large, and often complex, data sets. At the same time
retaining its simplicity of representing data as linguistic variables and describing relations
between variables by conditional rules. The package fugeR is designed for training fuzzy sys-
tems based on evolutionary algorithms. A maximum number of rules developed during
training varies from 10 to 500. Maximum variables per rule have been set from 4 to 9. A
number of generations considered are 50, 100, 200, 500 or 1000, and the population was
either 100 or 500. The elitist parameter was set to be 20% out of every generation [45].

6. Classification and regression tree (CART): was used in order to compare with more sophisti-
cated models such as the random forest. CART was first introduced by Breiman et al. [46].
CART is a machine-learning method for constructing prediction models from the data. The
models are trained by partitioning the multidimensional space and fitting a simple predic-
tion model within each partition. When a modeling is done, the results can be represented
graphically as a decision trees. Regression trees, which were used in this article, are designed
for dependent variables that take continuous or discrete values. In this case, the prediction
error is typically measured by the squared difference between the observed and predicted
values [47].

7. Multivariate adaptive regression splines (MARS): was introduced by Jerome H Friedman in
1991 [48]. MARS model is a weighted sum of constant and basic functions multiplied by
the coefficients. Basic function in MARS models is so called hinge function. The model
development is usually composed of 2 steps. In the first step, the model is created from the
single intercept and is extended iteratively by adding pairs of hinge functions. This process
leads to a reduction of training error and produces the overfitted model. Therefore, during
the next step redundant, basic functions are removed from the model to improve generali-
zation ability of the final model [49]. In this work, earth package for R environment was
implemented in presented work as an example of multivariate adaptive regression splines
method [50].

3 The proposed system evaluation
The measures described in the following section are used as indicators of the quality of solu-
tions for the computational models. Root mean square error (RMSE) is used by both the fea-
ture selection and the predictive models. Normalized RMSE is used for clarity of presentation
and comparability with other works. Each algorithm has been applied 20 times with random
positioning of the search agents. Repeated runs of the optimization algorithms were used to
test their convergence capability.

3.1 Performance metrics
We use the following notations:

• obsi and predi are the observed and predicted values respectively;
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• Xmax and Xmin are the maximum and minimum observed values respectively;

• μ is the mean of the observed values;

• n is total number of samples;

• i is the index of a sample in the data set.

The indicators (measures) used to compare the different algorithms are as follows:

1. Root mean square error (RMSE): measures the average squared root errors, the error being
the difference between the observed output and the predicted output, as given in Eq (2):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðobsi � prediÞ2
n

r
ð2Þ

2. Normalized root mean square error (NRMSE): is the normalized root mean square error
(NRMSE): as in Eq (3).

NRMSE ¼ RMSE
Xmax � Xmin

� 100% ð3Þ

3. R-squared (R2): is the proportion of variability in a data set that is accounted for by a statisti-
cal model as given in Eq (4).

R2 ¼ 1�
Pn

i¼1 ðobsi � prediÞ2Pn
i¼1 ðobsi � mÞ2 ð4Þ

3.1.1 Results and discussions. Overall, regarding all methods and 10-cv (cross-validation)
sets, nearly 18,000 models were trained and tested. Feature selection models selected various
combinations of features as presented in Table 2. Fig 2 shows the frequencies of features
regarding all subsets of features selected by ALO, BALO, GWO, and SSO (orange circles)
together with features obtained by Szlȩk et al. [10] (blue circle). Connections are drawn when a
variable is present at least in two subsets of features. NRMSE varied from 31.1% to 15.9%. Ran-
dom Forest algorithm yielded the lowest error; therefore, it was used for selecting optimal
inputs vector as in Table 3.

RF model developed on the nine input vector, 9(2) (purple circle in Fig 2), selected by
BALO algorithm, yielded one of the lowest NRMSE. Deep learning neural networks applied to
the same vector resulted in error of 16.87%. Selected inputs are shown in Table 4. Comparable
results were obtained, 15.97% versus 15.4%, to those by Szlȩk et al. [10], but the vector of inputs
was smaller, nine versus eleven. It is a rule of a thumb that increasing the number of indepen-
dent variables improves the model fitness; however, the model might be unnecessarily com-
plex. In this case, we have reduced the complexity by reducing the number of inputs by two
(over 18% reduction of the number of inputs) at the same time NRMSE raised only of 0.6%. It
can be noted from Table 4 that the methods such as MARS and CART failed, giving the lowest
NRMSEs of 19.10 and 19.97 respectively.

Both BALO and the method described by Szlȩk et al. [10] lead to the selection of ‘Time
(days)’ and ‘PVA inner phase concentration (%)’ as crucial parameters governing the dissolu-
tion process. Moreover, as it is depicted in Fig 2, variables ‘PVA inner phase concentration (%)’
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Table 2. PLGA features selected by the optimization algorithms.

FS
method

No.
Inputs

Input Labels

ALO 8 Protein descriptor: Randic index, No of atoms; Plasticizer descriptor: logD at
pH 8, No of acceptor atoms at pH 9; Emulsifier descriptor: No of rings, Principal
component of polarizability tensor axx, Water accessible surface area of all atoms

with positive partial charge; Assay conditions: Time (days)

ALO 12 Protein descriptor: No of asymmetric atoms, Largest ring system size, No of ring
atoms, No of ring bonds, No of aliphatic atoms, No of bonds; Plasticizer

descriptor: No of stereoisomers, No of acceptor atoms at pH 3, No of acceptor
atoms at pH 14; Emulsifier descriptor: No of rotatable bonds, No of donor

atoms at pH 7; Assay conditions: Time (days)

ALO 20 Protein descriptor: Dreiding energy, Maximal projection area, No of rotatable
bonds, No of ring atoms, No of chain atoms, No of aliphatic bonds, van der Waals
volume, Formulation characteristics: PVA inner phase concentration (%), Inner
phase volume (mL); Plasticizer descriptor: No of aliphatic atoms, Platt index,

count, No of hydrogen bond donors, No of acceptor atoms at pH 10, No of donor
atoms at pH 10; Emulsifier descriptor: No of bonds, Water accessible surface

area of all polar atoms, No of asymmetric atoms, Wiener polarity; Assay
conditions: Time (days)

BALO 9(1) Protein descriptor: No of hydrogens, No of heteroaromatic rings, No of rings, No
of heteroaliphatic rings; Formulation characteristics: PVA inner phase

concentration (Plasticizer descriptor: No of heteroaliphatic rings, logD at pH 9;
Emulsifier descriptor: No of hydrogen bond donors; Assay conditions: Time

(days)

BALO 9(2) Protein descriptor: -; Formulation characteristics: PVA inner phase
concentration (%); Plasticizer descriptor: Minimal projection radius, Randic

index, logD at pH 4; Emulsifier descriptor: No of aromatic atoms, Szeged index,
logD at pH 9, No of donor atoms at pH 8; Assay conditions: Time (days)

BALO 9(3) Protein descriptor: No of aliphatic bonds, No of rings, No of aromatic atoms;
Formulation characteristics: PVA inner phase concentration (%), PVA outer

phase concentration (%); Plasticizer descriptor: -; Emulsifier descriptor: No of
ring bonds, logD at pH 3, No of donor atoms at pH 4; Assay conditions: Time

(days)

BALO 11 Protein descriptor: No of chain atoms, No of rotatable bonds, No of aliphatic
rings; Formulation characteristics: PVA inner phase concentration (%),

Encapsulation ratio; Plasticizer descriptor: No of ring bonds, logD at pH 7;
Emulsifier descriptor: Dreiding energy, No of acceptor atoms at pH 10, No of

acceptor atoms at pH 12; Assay conditions: Time (days)

BALO 12 Protein descriptor: No of oxygen atoms, No of aliphatic rings, Largest ring size,
No of chain bonds; Formulation characteristics: PVA inner phase concentration
(%), PLGA concentration (%), Dissolution pH; Plasticizer descriptor: No of

acceptor atoms at pH 0, No of donor atoms at pH 12; Emulsifier descriptor: No
of donor atoms at pH 1, No of donor atoms at pH 14; Assay conditions: Time

(days)

GWO 15 Protein descriptor: No of aliphatic bonds, No of rings of atom, No of bonds, No
of chain atoms; Formulation characteristics: PVA inner phase concentration (%),
Production method; Plasticizer descriptor: Harary index, Platt index, logD at pH

2, No of donor atoms at pH 4; Emulsifier descriptor: logD at pH 10, No of
acceptor atoms at pH 1, No of acceptor atoms at pH 8, No of donor atoms at pH

5; Assay conditions: Time (days)

GWO 18 Protein descriptor: No of oxygen atoms, No of aliphatic bonds, No of
asymmetric atoms, Platt index, No of ring atoms, Ring system count, No of

aromatic rings; Formulation characteristics: PVA inner phase concentration (%),
Encapsulation ratio; Plasticizer descriptor: molecular, Hyper wiener index,

Randic index, No of donor atoms at pH 8; Emulsifier descriptor: No of molecule
fragments, No of donor atoms at pH 11, No of donor atoms at pH 4, No of donor

atoms at pH 5; Assay conditions: Time (days)

(Continued)
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(circle labeled as 89), and ‘Time (days)’ (labeled as 300) were also selected by most of the algo-
rithms. Not surprisingly the time was the most common variable for all data sets. The time var-
iable determines dissolution profile both physically and numerically—the latter is due to the
structure of data set, where each dissolution point is represented by separate data record.
Despite high occurrence of the variables belonging to formulation characteristics, e.g.

Table 2. (Continued)

FS
method

No.
Inputs

Input Labels

GWO 24 Protein descriptor: Largest ring size, Minimal projection area, Length
perpendicular to the min area, Szeged index, No of heteroaliphatic rings, No of
chain atoms; Formulation characteristics: PVA inner phase concentration (%);

Plasticizer descriptor: Polar surface area, No of molecule fragments, logD at pH
6, bpKa1, No of acceptor atoms at pH 0; Emulsifier descriptor: No of aliphatic
atoms, principal component of polarizability tensor ayy, principal component of
polarizability tensor ayy, No of asymmetric atoms, No of chiral centers, Maximal
projection area, logD at pH 6, logD at pH 10, No of acceptor atoms at pH 7, No of
acceptor atoms at pH 11, No of donor atoms at pH 5; Assay conditions: Time

(days)

GWO 25 Protein descriptor: Cyclomatic number, Minimal projection radius, No of ring
atoms, Atom count, No of aromatic atoms, Largest ring size, van der Waals
volume; Formulation characteristics: PVA inner phase concentration (%),
Dissolution additive concentration (%), Production method; Plasticizer

descriptor: No of heteroaliphatic rings, Water accessible surface area of all
hydrophobic atoms, Dreiding energy, logD at pH 12, No of acceptor atoms at pH
3, No of donor atoms at pH 8, No of donor atoms at pH 9, No of donor atoms at
pH 14; Emulsifier descriptor: principal component of polarizability tensor axx,
ASA, Water accessible surface area of all hydrophobic atoms, No of acceptor
atoms at pH 8, No of acceptor atoms at pH 9, No of donor atoms at pH 10;

Assay conditions: Time (days)

GWO 26 Protein descriptor: No of aliphatic rings, No of chiral centers, Balaban index,
Hetero No of rings, HeteroNo of aromatic rings; Formulation characteristics: PVA

inner phase concentration (%), PVP molecular weight, Production method;
Plasticizer descriptor: Largest ring size, Harary index, Hyper wiener index,

Szeged index, bpKa2, No of acceptor atoms at pH 4, No of acceptor atoms at pH
14; Emulsifier descriptor: No of aliphatic bonds, No of aliphatic rings, Water

accessible surface area of all atoms with positive partial charge, Water accessible
surface area of all atoms with negative partial charge, Maximal projection area,
logD at pH 8, logD at pH 14, logP, bpKa2, No of donor atoms at pH 1; Assay

conditions: Time (days)

SSO 8 Protein descriptor: No of chain atoms, Minimal projection radius, No of ring
bonds, No of aliphatic rings; Formulation characteristics: -; Plasticizer

descriptor: No of rings, logD at pH 11; Emulsifier descriptor: Hyper wiener
index, Wiener polarity; Assay conditions: -

SSO 13 Protein descriptor: Length perpendicular to the max area, Minimal projection
radius, Length perpendicular to the min area, No of rings; Formulation

characteristics: Production method; Plasticizer descriptor: No of ring bonds,
principal component of polarizability tensor axx, logD at pH 3; Emulsifier
descriptor: Smallest ring size, Markush library size, No of hydrogen bond
donors, No of acceptor atoms at pH 14, No of donor atoms at pH 4; Assay

conditions: -

LASSO 19 Protein descriptor: -; Formulation characteristics: Production method;
Plasticizer descriptor: No of fragment count, logD at pH from 0 to 14, logP;

Emulsifier descriptor: -; Assay conditions: Time (days)

LASSO 22 Protein descriptor: -; Formulation characteristics: Mean particle size (μm), PLGA
to plasticizer ratio, Dissolution pH, Production method; Plasticizer descriptor:
No of fragment count, logD at pH from 0 to 14, logP; Emulsifier descriptor: -;

Assay conditions: Time (days)

doi:10.1371/journal.pone.0157610.t002
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Fig 2. Graph showing frequencies of occurrence together with connections between selected vectors of
features.Connections are drawn when variable is present in at least two subsets of features.

doi:10.1371/journal.pone.0157610.g002

Table 3. NRMSE for input vectors selected by bio-inspired algorithms.

FS method No. Inputs Cubist Mon-mlp MARS CART RF fugeR

ALO 8 22.45 24.55 25.90 27.64 21.95 -

12 25.95 25.15 25.30 26.13 22.19 -

20 18.73 20.20 21.45 21.30 16.33 20.15

BALO 9(1) 21.20 20.63 21.28 24.17 18.81 -

9(2) 18.26 17.31 20.86 20.99 15.97 18.09

9(3) 22.60 21.88 22.15 23.80 19.79 -

11 19.40 19.35 21.37 24.25 18.70 -

12 17.26 18.17 21.41 22.33 16.56 18.73

GWO 15 19.30 18.88 20.64 20.10 16.73 19.10

18 20.65 18.58 21.34 22.21 17.63 -

24 20.30 22.30 21.40 22.88 17.90 -

25 20.04 19.29 19.10 20.50 15.86 19.10

26 17.32 22.22 21.74 19.97 16.22 -

SSO 8 30.49 31.12 30.97 32.60 28.89 -

13 27.09 25.82 26.45 25.60 24.86 -

LASSO 19 22.78 17.90 21.74 21.70 17.15 -

22 22.78 18.48 21.74 21.59 17.20 -

doi:10.1371/journal.pone.0157610.t003
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‘Encapsulation ratio’ (circle labeled as 93) or ‘Production method’ (labeled as 101), it is worth
pointing out that also protein molecular descriptors such as, ‘Minimal projection radius’
(labeled as 35) and ‘No of aliphatic bonds’ (labeled as 7) were present. This may suggest an
influence of protein size on its dissolution from PLGA microspheres.

Moreover, BALO algorithm (BALO_9(2)) separated four variables describing peptide drugs
and three for excipients. In contrary, Szlȩk et al. [10], have pointed to three inputs representing
proteins, but none of them described excipients (Table 5). Depending on the algorithm used,
these chemical descriptors are either included or not in the features vector; thus their impact
on dissolution is not well established. Further enhancement of the database would be required
to elucidate the above relationships.

Overall RF model’s performance is a result of an average error of separate formulations. As it
is depicted in Fig 3, the error may vary and it depends on formulation characteristics. An exam-
ple of good prediction, which falls below 5%, is presented in Fig 3-A. In contrary, failed predic-
tion is showed in Fig 3-B (NRMSE of 20.6%). Therefore, errors of 10-cv predictions were closely
investigated. The NRMSE of 24 formulations fell below 10%, 19 formulations had an error
between 10 and 15%, and the rest 25 formulations showed error higher than 15%. It indicates
good performance of the model for more than two-thirds tested formulations. When constitu-
ents of microspheres were investigated it was observed that, out of 14 proteins, only for four of
them predictions failed (chymotrypsin, human serum albumin, insulin, L-asparaginase). There-
fore, it is strongly recommended not to use the final model to predict dissolution profiles for

Table 4. Results for BALO 9(2), trained and tested on 10cv data sets.

Algorithm NRMSE R2

Cubist 18.26 0.611

Monmlp 17.31 0.652

Deep learning neural nets 16.87 0.655

fugeR 18.09 0.612

RF 15.97 0.692

CART 19.97 0.571

MARS 19.10 0.591

doi:10.1371/journal.pone.0157610.t004

Table 5. Comparison of selected features by BALO and obtained by Szlȩk et al. [10].

BALO 9in(2) Szlȩk et al. [10] 11in

No of hydrogen atoms–protein descriptor. Szeged index–protein descriptor.

No of heteroaromatic rings–protein
descriptor.

pI–protein descriptor.

No of rings–protein descriptor. Quaternary structure of macromolecule: 1- monomer,
2–dimer–protein descriptor.

No of heteroaliphatic rings–protein
descriptor.

Lactide to Glycolide in polymer ratio—formulation
characteristics.

PVA inner phase concentration (%)—
formulation characteristics.

PVA inner phase concentration (%)—formulation
characteristics.

Heteroaliphatic ring count–plasticizer
descriptor.

PVA outer phase concentration (%)—formulation
characteristics.

LogD at pH 9–plasticizer descriptor. Encapsulation rate (%)—formulation characteristics.

No of donor atoms–emulsifier descriptor. Mean particle size (μm)—formulation characteristics.

Time (days)–assay conditions. Dissolution pH–assay conditions. Production method: 1–w/o/
w, 2–s/o/w, 3–s/o/o,4–spray-dried—formulation
characteristics. Time (days)–assay conditions.

doi:10.1371/journal.pone.0157610.t005
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PLGAmicrospheres containing those proteins. The high errors for those formulations could be
the result of the small number of formulations consisting those proteins. On the other hand
obtained errors for bovine serum albumin, recombinant human erythropoietin, recombinant
human epidermal growth factor, lysozyme, recombinant human growth hormone, hen ovalbu-
min, beta-amyloid, recombinant human erythropoietin coupled with human serum albumin,
bovine insulin, alpha-1 antitrypsin were below 15%, which points that the most of the dissolu-
tion profiles were well predicted.

Nevertheless the results obtained show that random forest is useful to predict dissolution
behavior from PLGAmicrospheres. Moreover, the results obtained come from a model trained
on the use of enhanced 10-cv technique, which may indicate that the model will be useful even
if unknown formulations are meant to be predicted.

4 Conclusions
In this paper, we address the PLGA feature selection problem by using bio-inspired optimiza-
tion algorithms such as antlion optimization (ALO), binary version of antlion optimization
(BALO), grey wolf optimization (GWO), and social spider optimization (SSO), and also
LASSO algorithm to select optimal feature subset for predicting the dissolution profile of
PLGA. Feature selection is considered as a biobjective optimization problem that minimizing
the prediction error of the data analysis model while minimizing the number of features used.
A set of input features were employed to find minimum generalization error across different
predictive models and their settings/architectures. We evaluated our proposed solution using
different predictive modeling algorithms such as cubist, random forests, artificial neural net-
works (monotonic MLP, deep learning MLP), MARS, CART, and hybrid systems of fuzzy logic
and evolutionary computations (fugeR). The experimental results are compared with Szlȩk
results. We obtained a root mean square error 15.97% versus 15.4%, but the selected input fea-
tures was smaller, nine versus eleven.
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