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Abstract

Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of
embryonic stem (ES) cells. By using a small molecule, present research has investigated
the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES
cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons mor-
phologically and functionally. The expression and localization of peroxisome proliferator-
activated receptors (PPARs) were examined in neural progenitor cells. PPAR-3 expression
showed robust upregulation compared to solvent control. Treatment with PPAR- agonist
L165041 alone or together with compound 4a significantly promoted neuronal differentia-
tion, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound
4a. Consistently, knockdown of PPAR- in ES cells abolished compound 4a-induced neuro-
nal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also
abolished by sh-PPAR-B, resulting in abnormal mitochondrial Ca®* ([Ca®*]y) transients as
well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by mod-
ulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca®*, PPAR-B
took an important role in neuronal differentiation induced by flavonoid compound 4a.

Introduction

Stem cell differentiation is associated with changes in metabolism and function. Understanding
these changes during neuronal differentiation is important in the context of stem cell research,
neurodegenerative diseases and regenerative medicine. While much has been learned about the
molecular events involved in neuronal differentiation [1], relatively little is known regarding
their bioenergetic demands and how closely their energy metabolism is governed by the genetic
developmental programme [2].
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Mitochondria are vital ATP-generating cellular organelles, and they are particularly essential
in the nervous system [3]. The increased mitochondrial activity associated with differentiation
provides ATP to support fundamental energy-demanding processes involved in neuronal differ-
entiation [1]. Mitochondria dynamics are essential for neuronal functions since they regulate
mitochondrial number, location, morphology and function [1]. Mitochondrial fission and
fusion are regulated by two distinct protein complexes. Drp (dynamin-related protein) and Fisl,
mediate mitochondrial fission, whereas mitofusins (Mfnl and Mfn2) and OPA1 (Optic Atro-
phy-1) regulate mitochondrial fusion [1, 3, 4]. In mammals, mutations in Mfn2 cause Charcot-
Marie-Tooth (CMT) type 2A, a peripheral neuropathy characterized by axonal degeneration
[5]. Cerebellum-specific Mfn2-knockout mice revealed the importance of mitochondrial fusion
in protecting cerebellar neurodegeneration [6]. These findings suggested a key role of Mfn2 in
nervous system. Furthermore, recent reports demonstrated a new function of Mfn2, which was
tethering the endoplasmic reticulum and mitochondria to control the efficiency of mitochon-
drial uptake of Ca®* ions [7-9]. However, relatively little is known about the potential role of
Mfn2 and its upstream determinants in cellular energy metabolism of neuronal differentiation.

Mitochondrial biogenesis and dynamics require coordinated changes in the metabolic
enzymes of oxidative phosphorylation and fatty acid oxidation [10]. Peroxisome proliferator-
activated receptors (PPARs) are lipid-activated transcription factors belonging to the nuclear
receptor superfamily [10]. Three PPAR isotypes (o, B, and y) have been distinguished by tissue-
and developmental-specific expression patterns [11]. PPAR-a, which is mainly rich in tissues
that have high-energy demands, was involved in cardiomyocyte differentiation of mouse ES
cells in vitro [12]. PPAR-y is found primarily in the adipose tissue and plays an important role
in adipose differentiation [13]. PPAR-B is the most ubiquitously expressed with a controversial
role [10, 11]. The important role of lipid molecules in brain development is well known [14].
All three PPAR isotypes are expressed in the brain, while PPAR-f is the most abundant sub-
type [15]. Recent findings demonstrated that modulation of PPAR-f expression might be an
important part of brain pathology [16]. The presence and possible modulation of these recep-
tors were also examined in embryonic rat cortical neurons during their in vitro maturation
[14]. The results suggested a potential role of PPAR- in neuronal maturation. In addition, a
neuronal differentiating effect of PPAR-P was demonstrated in human neuroblastoma cell line
SH-SY5Y [17, 18]. Moreover, it was reported that retinoic acid (RA) induced neurogenesis by
activating both retinoic acid receptors (RARs) and PPAR-f in P19 mouse embryonal carci-
noma cell line [19]. However, the PPAR isotype expressions and their downstream effects dur-
ing neuronal differentiation of ES cells have not been investigated so far.

The role of small molecules in stem cell biology is emerging [20]. Such molecules will likely
provide new insights into mitochondrial metabolism in neuronal differentiation of ES cells,
and may ultimately contribute to effective medicine for tissue repair and regeneration [21].
Our previous work showed that some natural flavonoid compounds, icaritin (ICT) [22] and
isobavachin (IBA) [23] had significant neurogenesis-inducing activities. In the present study,
we used a newly-screened flavonoid compound 4a as a probe of underlying biology, and aimed
to elucidate PPARs expressions and several elements of cellular energy metabolism in neuronal
differentiation of mouse ES cells.

Results

Flavonoid compound 4a promoted neuronal differentiation of mouse ES
cells

Compound 4a (5,7-dimethoxy-8-(3-methyl-pent-2-enyl)-2-phenyl-chromen-4-one) was
offered in this case by Prof. Dr. Yong-ping Yu, which were synthesized by previous methods
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[24]. The structure of compound 4a was shown in Fig 1 A. To induce neuronal differentiation, a
typical 4-/4+ protocol was used (S1 Fig). After compound 4a treatment, the expression and
localization of neuron-specific proteins were evaluated by immunocytochemistry. Among them,
B-tubulin IIT and neuronal nuclei (NeuN) [25] were neuron cytoplasm and nucleus house-keep-
ing marker, neurofilament 160 (NEFM) [26] was axons marker, and synaptophysin [27] was
synaptic vesicles marker. The results in Fig 1B showed that compound 4a could induce neuron-
specific proteins expression. In consistent with this, western blot analysis showed compound 4a
could upregulate the neural specific proteins expression in a developmental way, providing the
fundamentals for synaptic vesicle recycling (Fig 1C). Nestin is a neural progenitor marker,
which expressed at early differentiation stage. Compound 4a induced Nestin expression
robustly on day 8 of differentiation (Fig 1C), indicating that its neurogenesis-inducing effect
appeared as early as neural progenitor cells formation period. The neuronal property of synaptic
vesicle recycling was detected by FM 1-43FX. The dye can be internalized from the culture
medium during synaptic vesicle recycling, in response to a high concentration of potassium ions
in the medium [28]. As a result, cells that possess the neurogenic function display increased
FM1-43FX fluorescence. The fluorescence intensity in ES-derived neurons induced by 4a was
similar to that of cells treated with retinoic acid (RA) (Fig 1D). Since synaptic vesicle recycling is
a neuron-specific function, we confirmed compound 4a could induce functional neuronal dif-
ferentiation. Semiquantitative analysis indicated that the neurogenesis-inducing effect of com-
pound 4a was in a dose-dependent manner at the terminal differentiation point (Fig 1E).

PPAR-B was involved in compound 4a-induced neuronal differentiation
of ES cells

A developmental-dependent expression of PPAR isotypes were identified by western blot anal-
ysis (S2 Fig). Data showed that after compound 4a treatment, PPAR-o deceased during the dif-
ferentiation, while PPAR-f gradually increased both in the early (d 8) and late (d 8+10) stage.
PPAR-y, however, did not change during neuronal differentiation. Therefore, we focused on
the early stage of neuronal differentiation in the following research. Expression and distribu-
tion of PPARs were revealed by double staining PPAR isotypes with neural progenitor marker
Nestin on d 8. The percentages of Nestin positive cells were counted in five different EBs frozen
sections respectively, and the result was about 22.245.9% in DMSO group and 67.8+3.8% in 4a
group. Fig 2A showed that all PPARs were expressed in ES-derived neural progenitors. Typi-
cally, PPAR-f was mainly found in cell nuclei with higher fluorescence intensity. The increased
expression of PPAR-B was also identified by western blot analysis, while both PPAR-o and
PPAR-y stayed the same (Fig 2B), suggesting a key role of PPAR-B in early neuronal differenti-
ation of ES cells induced by compound 4a.

The Effects of PPAR-f agonist L165041 and antagonist GSK0660 on compound 4a-induced
neuronal differentiation were then evaluated (53 Fig). Treatment with PPAR-p agonist
L165041 alone or together with compound 4a significantly promoted neuronal differentiation,
while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. We
further investigated whether PPAR-P knockdown in ES cells could block compound 4a-
induced neurogenesis of ES cells. Transfection and silencing efficiency of sh-PPAR-f plasmid
was evaluated before the experiment (54 Fig). Viability and pluripotency of ES cells were not
affected by sh-PPAR-p. Consistently, knockdown of PPAR-f abolished compound 4a-induced
neuronal differentiation. The results showed that Nestin was downregulated in neural progeni-
tor cells (Fig 3A and 3B), followed by the decreasing of neuron-specific proteins p-tubulin III,
NEFM expression (Fig 3C and 3D) and synaptic vesicle recycling as indicated by FM1-43FX
fluorescence intensity (Fig 3E).
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Fig 1. Flavonoid compound 4a promoted neuronal differentiation of mouse ES cells. A: Structure of compound 4a. B: (a-c) Double
Immunofluoresence staining for neural specific markers in ES-derived neurons induced by 4a on d 8+10. (d) The arrows indicated the areas of
synaptophysin/B-tubulin Ill colocalization. Nuclei were stained with DAPI. Bar = 20 pm (a-c), and 5 um (d). C: Developmental-dependent neural specific
proteins expression induced by 4a (10~” mol/L) during the differentiation course. D: Compound 4a promoted depolarization-induced synaptic vesicle
recycling function of ES-derived neurons. The neuronal property of synaptic vesicle recycling was detected by FM 1-43FX. The data was obtained from
the index of fluorescence intensity normalized to MTT absorbance. E: Dose-dependent neural specific proteins expression in ES-derived neurons
induced by 4a on d 8+10. Data were represented as the mean + S.D. of three independent experiments. Statistical significance was set as *P<0.05,
**P<0.01 vs. DMSO control. Retinoic acid (RA) was used as a positive control.

doi:10.1371/journal.pone.0157747.g001
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Fig 2. PPAR-B was involved in neuronal differentiation of ES cells at early stage. A: Double immunostaining for PPARs and Nestin in ES-derived
neural progenitor cells. After treatment with compound 4a, EBs (d 8) was prepared for frozen section. The expression and localization of PPARs and
Nestin were examined. Nuclei were stained with DAPI, and DMSO was set as solvent control. B: PPARs protein expression in ES-derived neural
progenitor cells. Data were represented as the mean + S.D. of three independent experiments. Statistical significance was set as **P<0.01 vs. DMSO

control.

doi:10.1371/journal.pone.0157747.9002

Effects of PPAR-f3 knockdown on mitochondrial energy metabolism in
compound 4a-induced neural progenitor cells

Compound 4a could increase the protein expressions of mitochondrial biogenesis regulator
PGC-1a, mitochondrial fission protein Drpl and mitochondrial fusion protein Mfn2, which
were abolished by sh-PPAR-f (Fig 4A). Three regulators of mitochondrial biogenesis, PGC-1a,
Nrfl and TFAM mRNA expression were examined (S5 Fig). Consistently, compound 4a could
upregulate PGC-1a, Nrfl and TFAM mRNA expression, which were blocked by sh-PPAR-p,
suggesting a key role of PPAR-P in mitochondrial biogenesis. We further investigated the rela-
tionship between the expressions of Drp1/Mfn2 and Nestin in neural progenitor cells. The
results showed that Mfn2 was positively detected in the Nestin-positive cells. However, Drpl
was mostly detected in the Nestin-negetive cells with pyknotic nuclei (Fig 4B). The results indi-
cated that a close relationship between PPAR-f and Mfn2 took an important role in early neu-
ronal differentiation induced by compound 4a, whereas Drp1 might help to induce apoptosis
[29] of non-neural progenitor cells.

Mfn2 was reported to build a bridge between endoplasmic reticulum and mitochondria to
control the efficiency of mitochondrial uptake of Ca** ions [7-9]. To investigate the effects of
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Fig 3. Effects of PPAR-B gene silencing on 4a-induced neuronal differentiation of ES cells. ES cells were treated with sh-PPAR-f plasmid for 24
h, and then cultured according to 4-/4+ protocol. A-B: Nestin expression was detected by immunostaining and western blot assay on d 8. Nuclei were
stained with DAPI. Bar = 20 um. C: B-tubulin Il expression was detected by immunostaining on d 8+10. Nuclei were stained with DAPI. Bar = 50 um. D:
B-tubulin 1l and NEFM expression was detected by western blot assay on d 8+10. The data was obtained from the index of each proteins compared
with GAPDH. E: The neuronal property of synaptic vesicle recycling was detected by FM1-43FX. The data was obtained from the index of fluorescence
intensity normalized to MTT absorbance. Statistical significance was set as *P<0.05, **P<0.01 vs. sh-control group. Data represent mean + S.D. of
three independent experiments.

doi:10.1371/journal.pone.0157747.g003

PPAR-p gene silencing on mitochondrial Ca** ([Ca*"]y), ES-derived neural progenitor cells
were loaded with 4 pM Rhod-2AM prior to the experiment and then stimulated with 40 uM
IP; at the time as indicated. The results showed that PPAR-B knockdown affected [Ca** ]y
transients in ES-derived neural progenitor cells (Fig 5A). IP;-evoked [Ca®]y transients
recorded in sh-control ES-derived neural progenitor cells appeared with a sharp peak, suggest-
ing that the ability of the [Ca**]y buffering still kept normal. In contrast, the same ability
almost disappeared in sh-PPAR-f group. [Ca®*]y; concentration was revealed by co-staining of
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Fig 4. Effects of PPAR- 8 gene silencing on mitochondrial system of 4a-induced neural progenitor cells. A: Effects of PPAR- gene silencing on
mitochondrial fission and fusion function. PGC-1a is a master regulator of mitochondrial biogenesis. Fis1 and Drp1 mediate mitochondrial fission,
whereas OPA1 and mitofusins (Mfn1 and Mfn2) mediate mitochondrial fusion. B: Double immunostaining for Drp1/Nestin and Mfn2/Nestin in 4a-
induced neural progenitor cells. Bar = 40 uym. Statistical significance was set as **P<0.01 and ***P<0.001 vs. sh-control group, *P<0.05 and **P<0.01
vs. 4a+sh-control group. Data represent mean + S.D. of three independent experiments.

doi:10.1371/journal.pone.0157747.g004

Rhod-2AM with Mito green (Fig 5B). Compared to sh-control group, sh-PPAR-f decreased the
fluorescence intensity of Mito green and Rhod-2, indicating that mitochondrial activity and
[Ca®*]y concentration was downregulated by sh-PPAR-f. The results were consistent with the
previous finding that mitochondrial biogenesis and Mfn2 were affected by sh-PPAR-. [Ca**]y
could stimulate three rate-limiting enzymes in the Krebs cycle, resulting in accelerated ATP
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Fig 5. Effects of PPAR-S gene silencing on mitochondrial energy metabolism of 4a-induced neural progenitor cells. A: Mitochondrial Ca®*
([Ca®*]u) transients was measured with Rhod-2AM. ES-derived neural progenitor cells were loaded with 4 uM Rhod-2AM prior to the experiment and
then stimulated with 40 uM IP; at the time as indicated. B: [Ca®*] concentration was revealed by co-staining of Rhod-2AM with Mito green. Bar = 10 ym.
C: Glucose consumption was detected by a commercial glucose monitor. D: Basal oxygen consumption rate (OCR) and extracellular acidification rate
(ECAR) in ES-derived neural progenitor cells were measured by a XF96 Extracellular Flux Analyzer, and were normalized to cell numbers. Statistical
significance was set as *P<0.05 vs. sh-control group.

doi:10.1371/journal.pone.0157747.9005

production [30]. Although glucose consumption in ES-derived neural progenitor cells was not
affected by sh-PPAR-J (Fig 5C), energy metabolism pathway was shifted. The results in Fig 5D
showed that basal oxygen consumption rate (OCR) was decreased and extracellular acidifica-
tion rate (ECAR) was increased in sh-PPAR-f ES-derived neural progenitor cells.
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Discussion

Recent studies link changes in energy metabolism with the fate of ES cells [31, 32]. Relative
shifts in metabolism from ES cells to lineage-specific differentiation place variable demands on
mitochondrial biogenesis and activity for cell types with distinct energetic and biosynthetic
requirements [32]. Neurons are excitable cells that need large amounts of energy to support
their survival and functions [33]. By generating energy and regulating subcellular Ca**, mito-
chondria may play essential roles in controlling fundamental processes in neuroplasticity,
including neural differentiation, neurite outgrowth, and synaptic vesicle recycling [1]. Here we
used flavonoid compound 4a as a probe to dissect the involvement of mitochondrial energy
metabolism in neuronal differentiation of ES cells. We further demonstrated the role of PPAR-
B on the underlying mechanism, and other related molecular targets including Mfn2 and mito-
chondrial Ca*".

It has been shown that flavonoids are key compounds for the development of a new genera-
tion of therapeutic agents that are clinically effective in treating neurodegenerative diseases
[34]. Our previous work found that ICT [22] and IBA [23] had significant neurogenesis-induc-
ing activities. Based on the core molecular scaffolds, a synthetic flavonoid library was designed
and synthesized, with 27, 3”-unsaturated alkyl groups at C-8 position as well as hydroxy or
methoxy groups at different positions [24]. A cell-based phenotypic screen was undertaken to
identify chemical inducers of neuronal differentiation of P19 embryonal carcinoma (EC) and
mouse ES cells (data not shown). Here flavonoid compound 4a faithfully facilitated ES cells to
differentiate into neurons morphologically and functionally. Neural specific proteins were
upregulated in a developmental way, providing the fundamentals for neurite outgrowth and
synaptic vesicle recycling. Importantly, Nestin expression was promoted at early differentiation
stage, indicating that the neurogenesis-inducing effect of compound 4a appeared as early as
neural progenitor cells formation. The FM 1-43FX fluorescence intensity in ES-derived neu-
rons induced by 4a was similar to that of cells treated with RA. Since synaptic vesicle recycling
is a neuron-specific function, we confirmed compound 4a could induce functional neuronal
differentiation.

PPARs, which serve as lipid-activated transcription factors, play key roles in the regulation
of differentiation and mitochondrial energy metabolism. It is therefore we examined the role of
PPARs on the underlying mechanism of compound 4a-induced neuronal differentiation.
Expression and distribution of PPARs were revealed by double staining PPAR isotypes with
neural progenitor marker Nestin. The results showed that PPAR-f had very good colocaliza-
tion with Nestin-positive cells. Compound 4a could promote PPAR-f protein expression.
Treatment with PPAR-B antagonist GSK0660 abolished the neurogenesis stimulatory effect of
compound 4a with downregulation of neural specific proteins. Consistently, knockdown of
PPAR-B blocked compound 4a induced neurogenesis of ES cells, indicating the important role
of PPAR-B in neuronal differentiation.

Mitochondria help neurons to meet their high energy demands of proper neuronal function
[3]. Furthermore, mitochondrial biogenesis, together with mitochondrial fission and fusion,
helps the transmission of energy across long distances, which is particularly essential in neu-
rons [3]. We then analyzed the downstream events of PPAR- involved in compound 4a-
induced neural progenitor cells. Mitochondrial biogenesis was upregulated by compound 4a
treatment, which was altered by PPAR-f knockdown, suggesting a key role of PPAR- in mito-
chondrial biogenesis. Mfn2 expression is crucial in mitochondrial metabolism through the
maintenance of the mitochondrial network architecture [35]. Furthermore, Mfn2 could tether
endoplasmic reticulum to mitochondria, thereby increasing the efficiency of mitochondrial
Ca** uptake and ATP production [7-9]. Recent research demonstrated that Mfn2 was a
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PPAR-B-selective target, which might play an important role in regulating myocardial energy
homeostasis [36]. In accordance with these findings, present study showed that compound 4a
increased the protein expression of mitochondrial fusion protein Mfn2, which were abolished
by sh-PPAR-f. Moreover, Mfn2 was positively detected in the Nestin-positive cells, indicating
that a close relationship between PPAR-B and Mfn2 took an important role in early neuronal

differentiation induced by compound 4a.

Mitochondrial Ca** could stimulate three rate-limiting enzymes in the Krebs cycle, as a key
regulator of mitochondrial ATP production in mammalian cells [30]. By determining the inter-
mediates of energy metabolism, we found that PPAR-B knockdown affected mitochondrial
Ca’" buffering activity and intracellular Ca®>* homeostasis. Besides, PPAR- knockdown
reduced mitochondrial Ca®* concentration. Consistently, energy metabolism pathway in ES-
derived neural progenitor cells was shifted. OCR was decreased and ECAR was increased in sh-
PPAR-f3 ES-derived neural progenitor cells, although glucose consumption was not affected.
Because OCR and ECAR are indicators of mitochondrial respiration and anaerobic glycolysis
pathway, the shift of mitochondrial respiration to anaerobic glycolysis might result in less ATP
production and failing to fulfill the adequate level of bioenergetic capacity of neuronal
differentiation.

Conclusion

In summary, our observation demonstrated that by modulating mitochondrial energy metabo-
lism through Mfn2 and mitochondrial Ca?t, PPAR-B took an important role in neuronal dif-
ferentiation induced by flavonoid compound 4a. This study provides novel insights for the role
of mitochondria in the differentiation of neurons from ES cells. Further work is needed to
focus on the action mechanism between compound 4a and PPAR-. The effect of other flavo-
noids on PPAR- expression should also be investigated.

Materials and Methods

Retinoic acid (RA), dimethylsulfoxide (DMSO), FM 1-43FX, MTT, B-mercaptoethanol (B-
ME), 4,6-Diamidino-2-phenylindole (DAPI), inositol 1,4,5-triphosphate (IP3), L165041 and
GSKO0660 were purchased from Sigma-Aldrich (St. Louis, MO, USA). DMEM medium, fetal
bovine serum (FBS), B27 supplement, neuralbasal medium was obtained from Gibco BRL
(Burlington, Ontario, Canada). Non-essential amino acids (NEAA) stock solution was pur-
chased from Hyclon (Logan, USA). Recombinant mouse leukemia inhibitory factor (LIF) was
obtained from Millipore (CA, USA). Antibodies were used as follows: -tubulin III, neuronal
nuclei (NeuN), and neurofilament 160 (NEFM) were purchased from Sigma-Aldrich

(St. Louis, MO, USA); synaptophysin and GAPDH were products of Cell Signaling; Nestin was
from Millipore (CA, USA); PPAR-q, -B, -y, Mfnl and Mfn2 were ordered from Abcam; PGC-
lo, Fis1, Drpl and OPA1 were purchased from Santa Cruz Biotechnology. Secondary antibod-
ies were purchased from Multisciences. Rhod-2AM was purchased from Dojindo Molecular
Technologies. MitoTracker Green was a product of Life technologies.

Cell culture and differentiation scheme

Mouse embryonic fibroblasts (MEF) cells were prepared as previously described [37, 38]. ICR
mice (2213 g) were obtained from the Experimental Animal Center, Zhejiang University,
Hangzhou, China (License No.: scxk-Zhejiang-2004-0014). Mice were housed under 12 h
light/12 h dark and 21+1°C conditions. To obtain fetuses, mice (3 female and 1 male) were
housed together at 17:00. The following morning, when a copulation plug was detected, was
defined as d 0 of gestation. All efforts were made to minimize the number of animals used, and
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their suffering. Fetuses were obtained from the mice on d 13 of gestation for the preparation of
MEEF cells. The MEF cells of generation three to generation five were used as feeder cells, which
were treated with 1 mg/L mitomycin C for 1 h and plated at an appropriate density.

Mouse ES cells (D3 line, ATCC, CRL-1934) were routinely cultured on MEF cells in DMEM,
supplemented with 10% FBS, 0.1 mM B-ME, 1xNEAA and 1x10° U/L LIF. To induce neuronal
differentiation, LIF was withdrawn from the medium and a typical 4-/4+ protocol was used as
previously described [22, 39]. Briefly, drops (30 uL) containing about 900 ES cells were placed
onto the lids of Petri dishes and the cells were cultured in hanging drops for 2 days. After EBs
formed, they were transferred into agar coated Petri dishes and continued to be suspension cul-
tured for another 2 days. On d 4, compound 4a (final, 10~ mol/L) was added into the medium
and the EBs were continually suspension cultured for another 4 days. On d 8, EBs was planted
onto poly-D-lysine-coated culture plates to induce the differentiation in neurobasal medium
supplemented with B27, with the treatment of each compound. The culture treated with 10~
mol/L RA was considered as positive control and 0.1% DMSO was set as solvent control.

To investigate whether PPAR-J agonist or antagonist would affect the neurogenesis of ES
cells, EBs were treated with either L165041 (10~> mol/L) or GSK0660 (10~® mol/L) as previ-
ously described [10].

Immunocytochemistry analysis

Immunostaining was performed on neuronal cultures (d 8+10) at the end of differentiation
course and frozen EBs (d 8) section as previously described [22, 39]. Neuronal cultures seeded
on coverslips were washed with PBS solution and then fixed for 10 min in ice-cold methanol,
while frozen EBs sections were fixed in 4% paraformaldehyde for 2 h [40]. Non-specific bind-
ing sites were blocked with 10% FBS in PBS for 1 h. The cells were incubated with primary anti-
bodies at appropriate dilutions in 0.5% triton X-100 in PBS overnight at 4°C, and then with the
corresponding fluorescent secondary antibodies at a dilution of 1:200 for 2 h. Nuclear staining
was performed with 2 pg/mL DAPI and the immunostaining results were visualized by micro-
scopic examination using Leica DMI 3000B or on a confocal microscope (Fluoview FV1000,
Olympus). For neuronal cultures, primary antibodies were used at the following dilutions: -
tubulin III mouse monoclonal (1:1000) and rabbit polyclonal (1:1000), NeuN rabbit polyclonal
(1:1000), synaptophysin rabbit polyclonal (1:100), NEFM mouse monoclonal (1:100). While
for frozen EBs section, primary antibodies were used at the following dilutions: Nestin mouse
monoclonal (1:1000), PPAR-a. rabbit polyclonal (1:1000), PPAR-f rabbit polyclonal (1:500),
PPAR-y rabbit polyclonal (1:500), Mfn2 rabbit polyclonal (1:500), Drp1 rabbit polyclonal
(1:1000). Negative controls were performed by omitting the primary antibody. Experiments
were repeated independently at least three times.

Western blot analysis

Western blotting was performed as previously described [22, 39]. The cells were collected in
RIPA buffer and lysed 30 min on ice. The lysates were centrifuged at 14000 rpm for 30 min at
4°C. An aliquot of 40 pg of the supernatant protein from each sample separated electrophoreti-
cally on 8% SDS-PAGE. Subsequently, proteins were transferred onto PVDF membranes and
blocked for 1 h in 5% nonfat milk in PBS, followed by an overnight incubation at 4°C with
respective antibody. The specific dilutions of the primary antibodies were as follows: Nestin
(1:1000), B-tubulin III (1:1000), NEFM (1:500), synaptophysin (1:1000), PPAR-o (1:1000),
PPAR-B (1:1000), PPAR-y rabbit polyclonal (1:1000), PGC-10. (1:1000), Fis (1:1000), Drp1
(1:1000), OPA1 (1:1000), Mfn1 (1:1000), Mfn2 (1:1000) and GAPDH (1:10000). Then the
membranes were incubated with HRP-conjugated secondary antibody (1:400). The proteins
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were visualized with an enhanced chemiluminescent substrate. The density of the products was
quantitated using Quantity One version 4.6.2 software (Bio-Rad).

FM 1-43FX fluorescent analysis

FM 1-43FX fluorescent analysis protocol was used as previously described [28, 41]. In brief, at
the end of neuronal differentiation course, remove the culture medium from neuronal culture.
Wash the cells for 30 s two times with 100 ul Krebs-Ringer buffer (115 mM NaCl, 5.9 mM KCl,
1.2 mM MgCl,, 1.2 mM NaH,PO,, 1.2 mM Na,SO,, 2.5 mM CaCl,, 25 mM NaHCO; and 10
mM glucose) prewarmed to 37°C. Add 100 pl of prewarmed Krebs-Ringer buffer containing
100 mM potassium ions (20.9 mM NaCl, 100 mM KCI, 1.2 mM MgCl,, 1.2 mM NaH,PO,, 1.2
mM Na,SO,, 2.5 mM CaCl,, 25 mM NaHCOj; and 10 mM glucose) and 2 mM FM 1-43EX to
the cells. Incubate the cells for 5 min at 37°C. Wash the cells for 30 s three times with 100 pl
Krebs-Ringer buffer to remove excess FM 1-43FX. Add 100 pl Krebs-Ringer buffer to the cells.
Measure the fluorescent intensity of the cells using DTX-880 Multimode Detector. The results
across each well were then normalized by the MTT assay.

MTT assay

MTT labeling mixture (final, 0.5 mg/mL) was added to each well and incubated for additional
4 h. The formazan precipitate was dissolved in 200 pL. DMSO and measured with a DTX-880
Multimode Detector at 570 nm. Assays were performed in triplicate in three independent
experiments.

RNA silencing

Mouse PPAR-B shRNAs (sh-PPAR-f) with the sequences, 5 ~GGAGCATCCTCACCGGC-AA-
3" and 5’ ~GCAGCTGGTCACTGAGCAT-3" [42] were constructed into pGPU6/GFP/Neo plas-
mid by GenePharm. In the PPAR- knockdown experiments, these two plasmids were used at a
1:1 ratio. Scrambled shRNA (sh-control) with the sequence 5 ~-GTTCTCCGAA-CGTGTCACG
T-3’ was used as negative control. ES cells were transfected with either sh-PPAR-f plasmid or
sh-control plasmid (2 pg/mL) with lipofectamine 2000 according to the manufacturer protocol.
GEFP expression of ES cells was examined 48 h after transfection. To assess gene silencing, pro-
tein level of PPAR-P was determined by western blot 72 h after transfection. Viability and pluri-
potency of ES cells was also evaluated after transfection with sh-PPAR-f plasmid.

[Ca®*]y measurements with Rhod-2

ES-derived neural progenitor cells were loaded with 4 pmol/L Rhod-2AM [43] prior to the
experiment and then stimulated with 40 pmol/L IP; at the time as indicated. Single cell fluores-
cence was excited at 545nm and images of the emitted fluorescence obtained by a cooled CCD
camera mounted on the microscope equipped with a polychromator (IX S1, Olympus). All
analyses of [Ca®*]y transients were processed at a single-cell level and expressed as the relative
fluorescence intensity. [Ca®**]ym concentration was also revealed by co-staining of Rhod-2AM
(4 pmol/L) with Mito green (200 nM) [44]. The images were visualized by confocal microscope
(Fluoview FV1000, Olympus).

Glucose consumption

Cell culture supernatants of a 48 h culture of ES-derived neural progenitor cells were used to
quantify glucose consumption using a commercial glucose monitor (Accu-Chek, Roche).
Amounts of glucose consumption were normalized to the number of cells [45].
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OCR and ECAR measurements

Oxygen consumption rate (OCR) and extra-cellular acidification rate (ECAR) were measured
in ES-derived neural progenitor cells with a XF96 Extracellular Flux Analyzer (Seahorse Biosci-
ence, Billerica, MA, USA) as previously described [46]. Cells were seeded in 12 wells of a XF
96-well cell culture microplate (Seahorse Bioscience) at a density of 10* cells/well in 200 L of
DMEM and incubated for 24 h at 37°C in 5% CO, atmosphere. After replacing the growth
medium with 180 pL of bicarbonate-free DMEM prewarmed at 37°C, cells were preincubated
for 30 min before starting the assay procedure. Data were expressed as pmol of O, per minute
and normalized to the number of cells.

Statistical analysis

Data are expressed as mean values + standard deviation (S.D.). At least three independent
experiments were done. Statistical analysis was performed by Student’s t-test and one-way
ANOVA. A value of P<0.05 was considered to be significant.
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