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Abstract

We developed a Bayesian clustering method to identify significant regions of brain activation. 

Coordinate-based meta data originating from functional magnetic resonance imaging (fMRI) were 

of primary interest. Individual fMRI has the ability to measure the intensity of blood flow and 

oxygen to a location within the brain that was activated by a given thought or emotion. The 

proposed method performed clustering on two levels, latent foci center and study activation center, 

with a spatial Cox point process utilizing the Dirichlet process to describe the distribution of foci. 

Intensity was modeled as a function of distance between the focus and the center of the cluster of 

foci using a Gaussian kernel. Simulation studies were conducted to evaluate the sensitivity and 

robustness of the method with respect to cluster identification and underlying data distributions. 

We applied the method to a meta data set to identify emotion foci centers.

Index Terms

Bayesian; clustering; fMRI; meta analysis

1 Introduction

Functional neuroimaging is a new branch within the neurosciences that is being credited 

with advancing our understanding of the human brain and its processes in neuroscientific 

research related to public health. Accurately identifying activated foci or regions in the brain 

in association with an outcome of interest is crucial in terms of disease prediction and 

prevention. Functional magnetic resonance imaging (fMRI) is the most widely used method 

for this type of study. FMRI is able to measure changes in tissue perfusion, blood 

oxygenation, and blood volume [1]. The amount and location of these changes are measured 

when subjects are under some situational environment or experiment that provokes a 

thought, emotion, or action. Brain activation recorded in fMRI happens before, during, and 

after the expected stimulation and thus gives rise to background noise or simulation 

occurring that is not due to the stimulant and therefore must decipher which areas of 
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activation are statistically greater than the general mass activity or noise [2]. Furthermore, 

because of the high cost, fMRI studies tend to have very small number of participants (less 

than 20) which causes inflated type II error (low power) and lack of reproducibility [3]. To 

increase sample size and testing power, meta analyses are being implemented to summarize 

these smaller individual studies ([4], [5], [6], [7], [8]). Two types of meta analyses are 

commonly used, intensity based meta analysis (IBMA) and coordinate based meta analysis 

(CBMA) [7], corresponding to the two types of individual fMRI data with one represented a 

statistical image/map (intensity based) and the other as a coordinate system (coordinate 

based), respectively. Our primary focus is on the more commonly used coordinate based 

meta analysis data [1].

Meta data of CBMA only supplies the (x, y, z) coordinates or foci (focus-single) of peak 

activations. The activation magnitude may or may not be given [7]. The overall aim of 

CBMA is to identify areas within the brain that are statistically activated during a given 

stimulant. A variety of statistical methods for analyzing CBMA have been proposed: 

activation likelihood estimation (ALE) ([6], [9], [10], [11], [12]), kernel density analysis 

(KDA) ([5], [13], [14]), and a hierarchical spatial point process model proposed in [8].

Activation likelihood estimation (ALE), based on the assumption that all foci are 

independent, divides the brain into a smaller cubes called voxels. The probability of a foci 

being within a particular voxel is modeled using a 3-D Gaussian function. All probabilities 

are summed for each voxel resulting in an activation likelihood estimate, which is 

interpreted that at least one of the activated foci is within that voxel ([6], [9], [10]). 

Advancements have been made to improve this original work such as methods to determine 

the probability distribution size, estimating clusters between studies instead of within, and 

controlling for false discovery ([10], [11], [12]). The need for these advancements indicates 

the results can vary due to voxel size, Gaussian kernel standard deviation, and controlling for 

multiple testing.

Kernel density analysis (KDA), similar to ALE in that it treats each foci independent and 

divides the brain into voxels, implements a smoothing kernel which is a spherical indicator 

function with a given radius for each foci. After the smoothing, a smoothed histogram 

reflects the estimated density of each activation location in each voxel ([13], [15]). 

Advancements have been made to treat studies as a unit of analysis rather than foci 

(multilevel KDA). In this case, the proportion of studies becomes the focus rather than the 

number of foci that are activated in a specific region of the brain [14]. Activation peaks are 

nested within studies when the test statistics are calculated which allows each study to 

contribute proportionally ([5], [14]). Although this multilevel KDA made significant 

improvements, the analysis is still driven by voxel size, radius size for the smoothing 

spherical kernel, and an underlying distribution assumption [7].

The hierarchical spatial point process model proposed by Kang et al. [8] is formulated from 

a marked Cox process and identifies population centers that represent the most likely 

activation location of a foci across studies. The model is comprised of three levels. The first 

layer models the individual foci, assumed independent, by clustering with an independent 

cluster process controlled by a random intensity function. At this level, two types of foci are 

Ray et al. Page 2

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2017 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



considered: singly and multiply reported, which were assigned a ’mark’ as to identify the 

specific types. The second level models the latent study activation center, again assumed 

independent and clustered by an independent cluster process and driven by a random 

intensity function. These two layers are both assumed conditional on the realization of latent 

study activation centers or latent population centers, respectively, and normally distributed. 

Also, both layers allow for individual foci and study centers to be singleton clusters and 

model this by an independent homogeneous Cox process. The third and final level models 

the latent population centers with a homogeneous Cox process controlled by a homogeneous 

random intensity. This method has the power to identify clusters at different levels with final 

focus on the population level. However, assuming the realization of both the foci and studies 

to be normally distributed limits the model to only identify clusters of a certain distribution 

or shape and therefore can miss or mis-cluster foci.

In this article, we take a different route and propose a Bayesian hierarchical spatial Cox 

point process model [16] to identify individual foci clusters while adjusting study effects 

using meta data. The method incorporates two nesting Dirichlet processes (DPs) [17]. To 

adjust for study effect, we implemented a Dirichlet process because of its ability to describe 

abnormal studies effects. The Gaussian kernel is utilized to measure the contribution of a 

focus with respect to a cluster center to the intensity of the Cox point process. The foci 

clusters are identified after adjusting for study effect and through a Dirichlet process as well. 

Via these two DPs, we gain the potential to describe possibly more complicated patterns of 

spatial effects on the intensity. This approach is different from the method by [8] in that the 

focus there was at the population level, while the proposed method is on clustering 

individual foci while adjusting study effect. Both ALE and KDA methods, on the other 

hand, are voxel based approaches with no focus on clustering and are conditional on those 

specific brain locations. Our method is a method for clustering. Compared to the existing 

clustering methods (such as the K-means approach), the proposed approach is able to 

incorporate prior knowledge of study effect into the clustering process, has the potential to 

incorporate other factors, and can identify foci centers with irregular shapes.

Model details including prior, joint posterior, and conditional posterior distributions and the 

algorithm applied to exercise the Dirichlet process, are discussed in section 2. Section 3 

presents 7 simulation studies and section 4 describes an application of the method to a meta 

data set, which was discussed in [8] and [5]. Finally, section 5 presents a discussion of the 

findings, thoughts on our model, and future research.

2 Model

2.1 Notation

The general spatial Poisson point process is defined on a space M, such that M ⊆ ℜ3 and 

driven by a locally integrable intensity function, ν: M → [0, ∞) and ∫R ν(ξ)dξ < ∞ for all 

bounded R ⊆ M [16]. Define an intensity measure μ(R) = ∫R ν(ξ)dξ, which is also locally 

finite for bounded R ⊆ M and diffuse, μ(ξ) = 0 for ξ ∈ M [16]. By letting this intensity 

function be a realization of a nonnegative random field, Z = {Z(ξ) : ξ ∈ M}, this extends to 

a Cox process. Straightforwardly, by restricting this Cox process to |R| < ∞ the following 

density function can be attained [16]:
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Due to the process’ ability to model and cluster within spatial randomness, we can directly 

apply this model to any spatial data but in particular, CBMA data. Let the intensity measure 

be driven by multiplicative of a Gaussian kernel which is bounded by the brain space B, 

such that B ⊆ ℜ3 and |B| < ∞. Furthermore, let sij = (x, y, z) denote a single focus which 

represents a talairach or Montreal Neurological Institute (MNI) coordinate in the brain, for 

sub-study j in study i, i = 1, …, I, j = 1, …, Ji. We have , where n is the total 

number of observed foci. Denoted by s = s1,1…sI,JI represents all foci in the CBMA study 

such that s ⊂ B. The density function above can now be redefined as:

where aij allows multiplicative focus impact on the intensity. We let the contribution of each 

focus be comprised of two components: expected 3-D individual focus effect (θij) and 

expected 3-D study effect (pi). Consequently, the Gaussian kernel is defined as K(sij) = exp 
(−||sij − pi − θij ||2/ρ), where ρ is a scale parameter. To avoid the unidentifiability problem 

due to the inclusion of aij, we set ρ = 1. This then yields the probability density function:

To identify foci clusters and centers, we assume each realization sij is from the following 

mixture

after adjusting for study effect. To infer the clusters and their centers, we implement a fully 

Bayesian approach. This approach will also allow us to incorporate prior knowledge on the 

strength of study effect, which enables a proper adjustment for study effect and avoids 

biased inferences on the locations of cluster centers.
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2.2 Prior and hyperprior distributions

Following the standard Bayesian framework, all estimable parameters are assigned a prior 

distribution. We assume study effect, pi, follows distribution G1, which is generated from a 

Dirichlet process (DP), pi ~ G1 and G1 ~ DP(α1, G01) where α1 is a precision parameter and 

G01 is a base distribution. The precision parameter controls the aggregation of G1 around G0 

[17]. This setting results in a conditional prior for pi, 

, where p(i) represents all study effects 

except for study i and δpq (pi) denotes a unit point mass at pi = pq [17]. The base 

distribution, G01, is chosen as a 3-dimensional truncated multivariate normal distribution, 

TMV N3(μ, Σ1, a, b), where the hyper-prior distribution for μ is assumed to be multivariate 

normal,  with m0 = 0 and I3 being a 3-dimensional identity matrix. 

Parameter  can take small values, e.g., , assuming a apriori minimal study effect. 

Note that m0 can choose a different value based on prior knowledge on study effect. 

Parameters  and  follows an inverse gamma distribution with shape and scale 

parameters e and f, i.e., , a = ra(|Rx|, |Ry|, |Rz|)′ representing the lower limit and 

b = −rb(|Rx|, |Ry|, |Rz|)′ representing the upper limit, where ra and rb control the amount of 

truncation, set at 15%, and |Rd| represents the absolute value of the range of data for 

coordinate d. The truncation was selected based on the assumption of small study effects and 

can be adjusted based on prior beliefs. The shape and scale parameters (e and f) in the 

inverse gamma distributions are set at both of being 0.5, IG(0.5, 0.5), following the 

suggestion by Kass and Wasserman [18]. This prior, approximately centered at 1 and termed 

as “unit-information prior”, allows the conditional posterior distribution of  to be more 

influenced by data. On the other hand, when prior knowledge for study effect is clearer, an 

informative prior may be preferred. For θij, we follow similar choices for pi and assume θij ~ 

G2 and G2 ~ DP(α2, G02), with a base distribution of G02 = TMV N3(c0, Σ2, c, d) where c0 

takes the median of the observed data in each dimension,  with g = 

0.5 and h = 0.5, c = (min(x), min(y), min(z))′ and d = (max(x), max(y), max(z))′ where 

min(d) represents the minimum value for coordinate d and max(d) represents the maximum 

value to coordinate d. In both Dirichlet processes, we assume the precision parameters are 

known. We discuss their selection in Section 2.5. Lastly, the prior for multiplicative effect aij 

is conditional on identified clusters and  with  known and large.

2.3 Conditional posterior distributions and posterior computing

Posterior inference of pi, θij, and aij is obtained by successfully sampling values from their 

full conditional posterior distributions through the Markov Chain Monte Carlo (MCMC) 

simulations, specifically, the Gibbs sampling scheme. With s representing observed CBMA 

data, the joint posterior distribution of all the parameters is, up to a normalizing constant:
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from which full conditional posteriors for pi, θij, aij, along with their hyper-priors are 

obtained and listed below. In the following expressions, “·” represents all other parameters,
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Non-standard conditional posteriors, aij, are updated using the Metropolis-Hastings steps in 

the Gibbs sampler. The parameters pi and θij are sampled via using an algorithm introduced 

in [19] that is discussed below.

The algorithm, specifically algorithm 8, noted in [19], is appropriate for models with non-

conjugate priors. It introduces m auxiliary parameters to represent potential values for 

parameters of interest, i.e., pi or θij, that are not associated with any other observations [19]. 

The original algorithm for updating cluster assignments, c, is as follows:

• Let the state of the Markov chain consist of c = {c1, …, cn} and Φ = (ϕc; c ∈ c1, 

…, cn) with ϕc denoting cluster parameters, e.g. θc in our application. Repeatedly 

sample as follows:

• For i = 1, …, n: Let k− be the number of distinct cl for l ≠ i, and h = k− +m. Label 

these cl with values in {1, …, k−}. If ci = cl for some l ≠ i, draw values 

independently from base distribution G0 for those ϕc for which k− < c ≤ h. If ci ≠ 

cl for all l ≠ i, let ci have the label k−+1, and draw values independently from G0 

for those ϕc for which k−+1 < c ≤ h. Draw a new value for ci from {1, …, h} 

using the following probabilities:

where F(yi, θc) is the likelihood with θc and observation i, yi, involved. In our 

case, it is sij.

• Where n−i,c is the number of cl for l ≠ i that are equal to c, and b is the 

appropriate normalizing constant. Change the state to contain only those ϕc that 

are now associated with one or more observation.

• For all c ∈ {c1, …, cn}: Draw a new values from ϕc|yi such that ci = c, or perform 

some other update to ϕc that leaves this distribution invariant. [19]

To illustrate, F(yi, ϕc) and P(ϕc|yi) in our application are F(sij, θc) for θij and P(θc|sij, c, ·), 

respectively, with:

(1)

and
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(2)

where θc is the center for individual foci cluster c.

Similar expressions as in (1) and (2) are applied to pi. To accommodate the 3-D nature of our 

data and to improve sampling efficiency, we modified algorithm 8 by introducing auxiliary 

parameters into one, two, or three dimensions of the centers at the current MCMC iteration. 

Specifically, we allowed m=7 auxiliary parameters. For example, let 

be the current center for focus i assigned to cluster c. The 7 auxiliary parameters are every 

combination of the current cluster center and a newly generated center 

from G02:

• ( ) updating z-dimension only

• ( ) updating y-dimension only

• ( ) updating x-dimension only

• ( ) updating y and z-dimensions only

• ( ) updating x and y-dimensions only

• ( ) updating x and y-dimensions only

• ( ) updating all dimensions only.

By designing the auxiliary parameters as above, i.e., based on the current sampled values, 

the probability of making a movement is improved compared to randomly generating the 

auxiliary parameters from the base distribution. To further speed up the convergence, we 

limit the choice of auxiliary parameters within the defined brain space. All these efforts are 

aimed to improve MCMC sampling efficiency and achieve quick convergence.

2.4 Determining the clusters

To estimate cluster centers and infer cluster assignment, we implement the least-squared 

Euclidean distance method introduced in [20], and outline below.

1. After the MCMC burn-in, continue the MCMC simulations for an additional W 
iterations. Let A denote an n × n matrix. The (i, j)th entry of A is the proportion 

of iterations such that foci i and j (i, j = 1, …, n) are in the same cluster. The 

matrix A is referred to as an averaged clustering matrix.
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2. Continue to run an additional F iterations of the MCMC simulations. For each 

iteration,

a. form an n×n matrix composed of indicators of clustering for that 

particular iteration. For instance, if foci i and j are in one cluster, then 

the (i, j)th entry is 1; otherwise, it is zero.

b. calculate the Euclidean distance between the matrix formed above and 

the averaged clustering matrix A.

3. Sort the Euclidean distances obtained from the F iterations, and the final 

selection on the number of clusters is in favor of simpler clusters and relatively 

small Euclidean distances. The parameters will then be inferred accordingly 

based on the identified clusters.

Determining the clusters in this way enable us to incorporate information collected in all the 

iterations after burn-in [20]. The cluster patterns to be inferred and summarized will focus 

on individual foci clusters as they are our primary interest.

2.5 Selection of α

The specification of α can have a potentially significant effect on the number of clusters 

identified due to its direct impact on the aggregation of G about G0. A smaller choice of α 
places less weight upon the base distribution, resulting in a smaller number of clusters. The 

extent of this sensitivity and various ways to estimate α have been discussed rigorously in 

the literature [21], [22], [23], but so far an objective and efficient method for determining α 
is not available. Instead, given the importance of α, we decide to select α based on 

information in the data, i.e., posterior joint likelihood of the parameters. Specifically, the 

choice of α1 for pi and α2 for θij were selected iteratively based on a grid search on a set of 

possible values for α1 and α2 that minimize and stabilize the deviance information criterion 

(DIC) [24].

3 Inference

3.1 Simulation designs

Simulations were performed to demonstrate and assess the proposed method. In total, we 

considered 50 studies each with 10 foci or sub-studies. Three individual foci clusters are 

simulated centered at (1,1,1), (2,2,2), and (4,4,4) covering 150, 150, and 200 foci, 

respectively. Two study centers are assumed with centers held at (0.1, 0.1, 0.1) and (0.4, 0.4, 

0.4) with each including 25 studies. We considered the following four scenarios:

1. The first scenario is used to demonstrate the proposed method. We simulate data 

via multivariate normal with mean at the individual foci centers and variance 

small Σ = 0.002I3 (i.e., the standard deviation is 0.045). In the fourth scenario 

below, we assess the robustness of the method with respect to variations in data.

2. The second scenario is to demonstrate its ability to cluster outliers. We follow the 

same setting as in scenario 1) but added an additional focus in the third 
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individual foci cluster located in the right 5% tail of a multivariate normal with 

mean (4, 4, 4) and variance as in scenario 1.

3. It is important to examine the robustness of the method with respect to abnormal 

patterns. We follow the same scenarios as in 1) to simulate clusters 1 and 2. 

Cluster 3 is simulated using truncated normal distribution with mean c(4, 4, 4) 

and variance 0.002I3. The lower bound is set at c(1, 1, 1) and upper bound at ∞.

4. It is often that the boundaries between clusters are not clear due to large variance. 

The last scenario is aimed to assess the sensitivity of the method when the 

variance increases. Besides Σ = 0.002I3, we considered additional four levels of 

Σ: Σ = 0.01I3, 0.05I3, 0.1I3, and 0.2I3. Other settings are as in scenario 1).

In total, 100 Monte Carlo (MC) replicates are generated under each scenario. For each 

setting, the values of α1 and α2 are determined using the method discussed in Section 2.5 

based on one randomly selected MC replicate. In total, 3,500 converged MCMC iterations 

are used for this purpose. After α1 and α2 are determined, for each data set, we used 1,500 

as burn in iterations, 2,500 iterations to determine the average clustering matrix, and 1,000 

additional iterations to infer the clusters and individual foci cluster centers.

Three statistics are used to assess the method: sensitivity, specificity, and percentage of 

correct clustering. Sensitivity is defined per cluster as the proportion of foci that are 

correctly assigned to that given cluster, Se=TP/(TP+FN) and specificity is defined per cluster 

as the proportion of foci that are correctly not assigned to a cluster, Sp=TN/(TN+FP). In 

these definitions, true positive (TP) denotes that a focus in a respective cluster is also 

assigned to that cluster, false negative (FN) denotes that a focus is in a respective cluster but 

not assigned to that cluster, true negative (TN) is a focus that is not in the respective cluster 

and not assigned to that cluster, and false positive (FP) denotes a focus that is not in the 

respective cluster but assigned to that cluster. Percentage of correct clustering is an overall 

measure defined as the proportion of foci that are correctly clustered. Note that the definition 

of correctness takes into account both TP and TN. The program to implement the method 

was written in R and the authors will gladly provide the programs to researchers upon 

request.

3.2 Results

To illustrate the choice of α1 and α2 via grid search, we use data generated from scenario 1). 

As indicated in Figure 1, DIC is stabilized in all situations, and the optimal choice for α1 

and α2 is α1 = 0.1 and α2 = 3. These two precision parameters are then utilized in all 

simulated data generated under scenario 1) to infer the individual foci clusters. Our further 

simulations indicate that neighboring values of the selected α1 and α2 in general give 

consistent findings.

Table 1 summaries the findings on individual foci cluster identification and the quality of the 

identified clusters. Overall, the method is robust with resect to outliers, skewness, and large 

variation in each foci clusters. Among the 100 MC replicates, the proposed method correctly 

identified clusters in at least 89% of the replicates across all scenarios except for the 

situation of the largest variance (0.2I3), in which case the percentage of correct identification 
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is still high enough, 80%. As variances increase, the sensitivity and correctness decrease. 

This is expected given the potential that two clusters may overlap as variances get large. 

Unlike variances, outliers and skew foci cluster patterns do not impact the quality of 

identified foci clusters; sensitivity, specificity, and percentage of correct foci cluster 

identification are all high (Table 1).

The scenarios we chose represent important facets of variability that a spatial models need to 

be able to handle and overcome in order to accurately perform. Based on our simulations, it 

can be inferred that across all the scenarios, our proposed model in general performed well 

in correctly identifying individual foci clusters.

3.3 Further simulations for comparison

To further assess the proposed method, we designed additional simulation scenarios to 

examine how sensitive the method is with respect to the choice of prior distributions of 

variance parameters and the choice of abnormal distributions of foci, as well as to compare 

with existing methods for clustering such as the K-means approach.

Scenarios—For each of the following scenarios, we simulate 10 MC replicates and, as 

before, the statistics to evaluate the quality of identified clusters include means and standard 

deviations of sensitivity, specificity, and correctness rate.

1. Sensitivity to the choice of prior distribution of variance parameters in the base 

distributions. In the earlier setting, we took IG(0.5, 0.5) as the prior distribution 

following the suggestion by Kass and Wasserman [18]. We considered an 

additional prior distribution, IG(0.001, 0.001), a vague prior commonly chosen 

for variance parameters. Each MC replicates is generated based on the first 

simulation scenario discussed previously.

2. Sensitivity to skewness pattern of foci distribution. The truncated multivariate 

normal distribution utilized to simulate foci with skew pattern (the third 

simulation scenario) has a short tail and is still closely related to normal 

distribution. To generate data with much longer tail, we revised simulation 

scenario 3 by using a chi-square distribution with mean of 4 and a degrees of 

freedom being 0.5 for each dimension. Other settings were remained the same as 

in the original scenario 3.

3. Comparison with existing clustering methods. The proposed method has the 

potential to cluster foci abnormally distributed and has the ability to adjust other 

factor effects, e.g., study effect, when clustering individual foci. We expect it 

outperforms existing clustering methods; here, we use the commonly used K-

means approach as a representative. To perform the comparison, each MC 

replicate is simulated based on the first simulation scenario with study effects 

centered at 1 and 2. In the clustering process, for the proposed method, prior 

knowledge of study effects is incorporated into the clustering process.

Results—Table 2 summarizes the results for these further simulation scenarios. The 

findings demonstrate that the method is reasonably insensitive to the choice of prior 
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distributions for variance parameters in the Dirichlet process, as seen by the statistics of 

sensitivity, specificity, and accuracy, which are comparable to the results when using IG(0.5, 

0.5) as the prior distribution. Nevertheless, it is worth noting that posterior inferences can be 

influenced by the choice of prior distributions, especially when the priors are informative 

[25]. When data generated from a chi-square distribution, although the data are severely 

right skewed, the proposed method is still able to correctly cluster individual foci 90% of the 

time. Lastly, when comparing our method with the K-means approach, our method showed 

much higher sensitivity, specificity, and accuracy, compared to the K-means approach, 

which is lack of the ability of incorporating prior knowledge into the clustering process.

4 Data Application

We applied the proposed model to the meta analysis data set implemented in [8] and [5] 

(Figure 2). This meta data were constructed from 164 different neuroimaging publications. 

Each publication had a number of statistical comparisons or contrasts within it, totaling 437 

contrasts. We identify these contrasts as “studies”. In terms of individual foci, 2,478 were 

reported ([5], [8]). As seen in Table 3, on average there were 15.11 foci per publication and 

5.67 foci per study. Additionally there was an average of 2.67 studies per publication. 

Affective (Table 4) was the most frequent emotion found in 175 studies and surprise the least 

frequent emotion found in only 2 studies.

Clustering across anatomical structures or other specific regions of interest are important 

issues in the neuroscience field. Therefore, the Automated Anatomical Labeling [26] system 

was utilized and identified 116 brain regions of interest (ROI). Not all foci fell within these 

regions of interest, 498 did not fall within a ROI; however, they were included within the 

analysis due to their potential influence on cluster centers.

We were advised by researchers familiar with the data construction that the study effects 

were likely to be quite small. Introducing this prior knowledge into the application of the 

prior distributions for μ (the mean in the base distribution for study effect) and for , we set 

 (standard deviation is 0.063) and took . Accordingly, the amount of 

truncation for the base distribution in modeling study effects was set at 10% (ra = rb = 10%). 

Other prior assumptions were as those proposed in the simulations. To avoid computational 

overflow, the data was re-scaled down by 10.

4.1 Results

As in the simulations, α1 and α2 were determined by use of grid search, which resulted in 

α1 = 0.1 and α2 = 3. We then ran 8,000 iterations with 4,000 for burn-in. Trace plots were 

used to monitor the convergence of the MCMC chains. To illustrate, trace plots for posterior 

samples of  and  were included in Figure 3, showing reasonable convergence of the 

chains after 4,000 iterations.

The proposed method identified 46 study clusters and 44 individual clusters, of which 34 

individual clusters were located in a ROI (Table 5) and were included in our following 

discussions. The break down of each cluster by its foci frequency and emotion frequency can 
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be seen in Table 6. The largest cluster is cluster 1 centered at (26.89, −0.2, −10.10). It was 

located in the right amygdala region of the brain and contained foci from all 8 emotions. The 

next two largest clusters identified were clusters 2 and 5. Cluster 2 had 122 foci; it was 

related to 7 emotions and located in the left frontal inferior triangularis. Cluster 5 (101 foci) 

was located in the left amygdala and also related to 7 emotions.

We identified cluster centers located in 18 different regions of the brain, 25 if differentiating 

between left and right hemispheres. The functionality of the majority of these regions have 

been associated with emotions or emotional response, task performance, or consciousness/

self-awareness. For example, two of the largest clusters are located in the amygdala, a region 

typically activated when subjects are emotional provoked [27]. These regions are also 

identified by studies elsewhere as areas of high activation [8]. Other regions that have been 

found associated with emotions due to brain activation are cingulum, insula, thalamus, and 

inferior frontal orbitofrontal [27] and these regions are also included in the clusters 

identified by the proposed method. Given the agreement of the findings with the literature, 

the clustering results have the potential to inform the centers of those activation regions.

We next compared the results with those from the K-means approach. By maximizing 

between cluster variations and minimizing the within cluster variation, the K-means 

approach identified 20 clusters, centered in 19 different brain regions, 20 if hemisphere is 

differentiated. With the exception of the cerebelum 6 (left and right), cerebelum 4 5, and the 

rolandic operculum region, all brain regions were consistent with those identified by the 

purposed method. The two largest clusters identified by the K-means approach are located in 

the amygdala and hippocampus, respectively. Given the small study effects, the proposed 

method and the K-means approach showed certain agreement in this application. However, 

as seen in Figure 2, the foci tends to be skew distributed. Many existing clustering methods 

including the K-means approach are sensitive to non-spherical patterns, which may explain 

the difficulty of the K-means approach in differentiating between different clusters, and 

consequently the result of smaller number of clusters.

5 Discussion

The proposed spatial Cox point process model with a Gaussian kernel driven intensity 

function was motivated by the need to spatially cluster coordinate-based meta analysis data 

to identify activated regions with the brain. The Gaussian kernel incorporated a study and 

sub-study effects that were estimated using a Dirichlet process (DP). The advantage of the 

proposed method exists in its ability to adjust for study effect (or other factor effects) and to 

fit irregular spatial patterns.

Findings from simulations indicated that the method is robust with respect to outliers and 

skewed distributions. For clusters with wide variations, the method still performed well 

enough as long as the overlaps between clusters are not substantial. The model was further 

applied to an emotion meta data set. In total, 34 clusters located in regions of interest were 

identified, and 14 of the 34 were in the regions known to be associated with emotion. 

Several regions of interest appear in multiple clusters suggest potential overlapping over 

clusters. It also stands to mention the natural limitation of this meta-data as it contains 

Ray et al. Page 13

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2017 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies from both fMRI and positron emission tomography (PET) scans. FMRI and PET 

scans have different resolutions and time constraints. Thus, brain activations identified in 

one may not be consistent in the other.

Multiple future research directions exist. First, when the study effect is large and we do not 

have any prior knowledge regarding its strength, the estimates on the number of clusters will 

be unbiased but the estimates of the centers can be biased. This issue of identifiability can be 

solved by constructing parameter constraints in the clustering process, but given the dynamic 

feature of the clustering process, a great effort is needed to ensure that the same constraint is 

implemented from one MCMC iteration to the next. Additionally, due to the nature of the 

Dirichlet process for estimating distribution functions, using DP to perform cluster analysis 

can possibly produce redundant clusters, e.g., two clusters identified but their centers are so 

close that they should be viewed as one cluster. There is a need to design an approach which 

has the ability to merge clusters with centers close to each other. One possible direction is to 

consider mixtures of Dirichlet process to describe foci distribution patterns. In this case, two 

groups of foci with close centers will likely be included in one cluster. However, by use of 

mixtures of Dirichlet process, the modeling will be more complicated compared to the 

proposed method and techniques to simplify the sampling process are necessary.
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Fig. 1. 
Example of grid search for selection of α1 and α2 based on deviance information criterion.
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Fig. 2. 
The fMRI meta-data implemented in Kang et al. [8]
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Fig. 3. 

Convergence plots for the conditional sampling of  and .
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TABLE 4

Frequency of Emotions (Meta Data).

Emotions Frequency of studies (% of total studies) Frequency of foci (% of total foci)

aff* 175 (40.05%) 881 (35.55%)

anger 26 (5.95%) 166 (6.7%)

disgust 44 (10.07%) 337 (13.6%)

fear 68 (15.56%) 367 (14.81%)

happy 36 (8.24%) 178 (7.18%)

mixed 41 (9.38%) 195 (7.87%)

sad 45 (10.3%) 348 (14.04%)

surprise 2 (0.46%) 6 (0.24%)

Total 437 2478

*
aff:affective.
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TABLE 7

Meta-data cluster results using K-means.

Individual Foci Clusters

Cluster Centers Brain Regions Cluster Index # of foci per cluster (% of total 
foci)

# of studies per cluster (% of all 
studies)

(−27.28,−0.19,−19.05) Amygdala L 1 192 (7.75) 93 (21.28)

(22.77,−5.71,−11.72) Hippocampus R 2 187 (7.55) 81 (18.54)

(0.25,40.41,29.08) Frontal Sup Medial L 3 169 (6.82) 82 (18.76)

(−1.63,−12.42,6.01) Thalamus L 4 150 (6.05) 61 (13.96)

(−36.33,32.16,−3.46) Frontal Inf Orb L 5 145 (5.85) 77 (17.62)

(5.35,35.91,−5.57) Cingulum Ant R 6 134 (5.41) 60 (13.73)

(32.09,−56.43,−21.02) Cerebelum 6 R 7 132 (5.33) 65 (14.87)

(42.2,13.91,−17.98) Temporal Pole Sup R 8 131 (5.29) 65 (14.87)

(43.25,25.94,13.5) Frontal Inf Tri R 9 131 (5.29) 61 (13.96)

(−2.38,−85.17,−3.49) Calcarine L 10 123 (4.96) 54 (12.36)

(47.22,−61.42,7.4) Temporal Mid R 11 121 (4.88) 56 (12.81)

(−36.22,−66,−19.17) Cerebelum 6 L 12 108 (4.36) 52 (11.9)

(0.48,3.82,52.69) Supp Motor Area L 13 105 (4.24) 57 (13.04)

(44.82,−11.83,22.29) Rolandic Oper R 14 102 (4.12) 43 (9.84)

(4.57,−58.63,33.8) Precuneus L 15 101 (4.08) 46 (10.53)

(−39.73,0.6,3.34) Insula L 16 99 (4) 50 (11.44)

(−6.12,−40.69,−16.93) Cerebelum 4 5 L 17 94 (3.79) 44 (10.07)

(−37.37,−67.84,22.79) Temporal Mid L 18 86 (3.47) 45 (10.3)

(−49.48,−31.56,11.59) Temporal Sup L 19 85 (3.43) 42 (9.61)

(−40.82,7.34,38.09) Precentral L 20 83 (3.35) 45 (10.3)

R: right hemisphere, L: left hemisphere.
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