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Abstract

Metal nanoparticles, particularly silver nanoparticles (AgNPs), are developing more important roles as diagnostic and
therapeutic agents for cancers with the improvement of eco-friendly synthesis methods. This study demonstrates
the biosynthesis, antibacterial activity, and anticancer effects of silver nanoparticles using Dimocarpus Longan Lour.
peel aqueous extract. The AgNPs were characterized by UV-vis absorption spectroscopy, X-ray diffraction (XRD),
high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and Fourier
transform infrared spectroscope (FTIR). The bactericidal properties of the synthesized AgNPs were observed via the
agar dilution method and the growth inhibition test. The cytotoxicity effect was explored on human prostate
cancer PC-3 cells in vitro by trypan blue assay. The expressions of phosphorylated stat 3, bcl-2, survivin, and
caspase-3 were examined by Western blot analysis. The longan peel extract acted as a strong reducing and
stabilizing agent during the synthesis. Water-soluble AgNPs of size 9–32 nm was gathered with a face-centered
cubic structure. The AgNPs had potent bactericidal activities against gram-positive and gram-negative bacteria with
a dose-related effect. AgNPs also showed dose-dependent cytotoxicity against PC-3 cells through a decrease of stat
3, bcl-2, and survivin, as well as an increase in caspase-3. These findings confirm the bactericidal properties and
explored a potential anticancer application of AgNPs for prostate cancer therapy. Further research should be
focused on the comprehensive study of molecular mechanism and in vivo effects on the prostate cancer.
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Background
Metal nanoparticles are most promising for their long use
for medicinal purposes since ancient time and have
attracted more attentions for potential applications in can-
cers [1, 2]. Among silver nanoparticles (AgNPs) are one of
the significant members due to their unique physical-
chemical properties, biological compatibility, relative
lower toxicity, and biological activities such as antimicro-
bial, inflammatory, and anticancer activities [3–5].

AgNPs have been synthesized by various physical,
chemical, electrochemical, photochemical, irradiative,
and recently improved biological methods. Most of the
ways are quite expensive or potentially dangerous to the
environment [6]. While greener biological synthesis has
better eco-friendly, cost-effective, and easily large-scaled
properties and are motivating a research upsurge in ex-
ploring the plants as reducing and protecting agents [7],
such as Pulicaria glutinosa [8], P. glutinosa [9], and
Moringa oleifera [10]. Plant extracts are rich of func-
tional molecules such as phenolic compounds, which
have been regarded as potent natural reducers with high
antioxidant activity [11, 12]. Longan (Dimocarpus
Longan Lour.), an edible fruit, is cultivated widely in
southern China and south-east Asia. With rich bioactive
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polysaccharides, phenolic acids, and flavonoids [13, 14],
its flesh or seed is a good source of functional ingredi-
ents for antioxidant, immunity-modulatory, insomnia re-
lief, and memory-enhancing effects [15–19]. Whereas
peels, regarded as a waste usually, have an untapped po-
tential in the resource utilization and might be available
for potential green synthesis purposes.
The improvement of biosynthesized AgNPs has

allowed better control of shape and size more suitable
for the increasing biomedical applications, such as im-
plantable biomaterials, tumor radiotherapy sensitization
agent, molecular imaging agents, biological markers, and
drug delivery [20, 21]. Silver is now extending its appli-
cations in cancer treatment as antitumor molecules, and
many attempts turned up meaningful and positive [22,
23]. It was reported that AgNPs had antitumor effects
against the cervical carcinoma cells [10], embryo fibro-
blast 3T3 cells [24], lung cancer H1299 cells [25], breast
cancer MCF-7 cells [26], and glioblastoma multiforme
U-87 cells [27]. AgNPs could be delivered into the cell
by the Trojan effect and inhibit the RNA polymerase ac-
tivity and the gene transcription via a direct reciprocal
interaction [28]. The tumor cells were more sensitive to
AgNPs damage than normal cells [29]. The particle size
and surface features of AgNPs are very important for
biomedical considerations. AgNPs with smaller particle
size seemed to have a stronger penetration ability and
greater toxicity for cancer cells [30]. The biochemical
molecular mechanisms have not been fully revealed so
far and more efforts should be tried.
Eco-friendly green synthesis with plant extracts to ob-

tain ideal AgNPs for bactericidal and anticancer applica-
tions attracted our attentions. The present work
investigated the synthesis of the AgNPs with a smaller
size by peel extract of longan for the first time and fur-
ther tested the antibacterial and in vitro anticancer ef-
fects against prostate cancer cells.

Methods
Materials
Silver nitrate (AgNO3) and 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) were sourced
from Sigma-Aldrich (St Louis, MO, USA). Dried longan
was obtained from Chinese Herbal Medicine Market in
Guangzhou. Escherichia coli (ATCC25922), Staphylococcus
aureus (ATCC 6538), Bacillus subtilis (ATCC6633),
Pseudomonas aeruginosa (ATCC15442), and Candida
albicans (ATCC10231) were offered by Guangdong Insti-
tute of Microbiology (Guangzhou, China). Prostate cancer
PC-3 cells were from the ATCC (Rockville, MD, USA).
RPMI-1640 medium, fetal bovine serum (FBS), L-
glutamine, and penicillin-streptomycin were purchased
from Gibco (Grand Island, NY, USA). Trypan blue stain
was bought from Cambrex (Walkersville, MD, USA).

Antibodies of β-actin, p-stat 3, survivin, and caspase-3
were purchased from Millipore Corporation (Billerica,
MA, USA). Bcl-2 antibody and all secondary antibodies
were provided by Santa Cruz Biotechnology (Dallas, TX,
USA). Thermo assay kit with SuperSignal West Femto
Luminol/Enhancer solution was from Thermo Scientific
(Rockford, IL, USA).

Synthesis of AgNPs
Longan peel was selected as the plant reducer for the
synthesis of AgNPs. The peels were immersed in dis-
tilled water (10 g/250 mL) at 50 °C for 1 h. The extract
filtrates were cooled and centrifuged at 3000 rpm for
5 min. Then, the filtrates were added drop by drop to
AgNO3 (2 mM) aqueous solution at the ratio of 1:1.
After the reaction at 80 °C for 5 h under stirring, the Ag
colloid was then precipitated by the centrifugation
(12,000 rpm, 20 min) and washed thrice with distilled
water to make sure of the complete removal of extracts.
The purified AgNPs were obtained after drying at 50 °C
under vacuum oven for 24 h.
The effects of key factors such as (i) amount of longan

peel extract, (ii) concentration of silver nitrate, and (iii)
reaction temperature were explored to determine their
effect on the synthesized nanoparticles. Different
amounts of the aqueous extract (10, 20, 30, 40, and
50 mL) were added to a fixed concentration of AgNO3

(2.0 mM) at 80 °C. Different concentrations (0.5, 1.0, 2.0,
3.0, and 5.0 mM) of silver nitrate were also assessed
when reacting with a 50 mL of the extract at 80 °C. Dif-
ferent reaction temperatures (room temperature and
80 °C) were explored with 50 mL of extract and 2.0 mM
of silver nitrate. The experiment was continuously ob-
served via color change with naked eye as well as UV-vis
spectrophotometer [31].

Characterization of AgNPs
The optimum AgNPs were further characterized by UV-vis
absorption spectroscopy, X-ray diffraction (XRD), high-
resolution transmission electron microscopy (HRTEM),
scanning electron microscopy (SEM), and Fourier trans-
form infrared spectroscope (FTIR). The stability of silver
nanoparticles in aqueous solution was evaluated of the size
distribution and plasmonic properties for 6 months at
room temperature (RT) by TEM and UV-vis measure-
ments. The optical property of synthesized AgNPs was ob-
served by UV-vis double-beam spectrophotometer (UV-
2450, Shimadzu, Kyoto, Japan) with a deuterium and tung-
sten iodine lamp in the range of 200–800 nm at RT. The
size, shape, and surface morphology were under observa-
tion of HRTEM (H7100, Hitachi, Japan) and SEM
(QUANTA400, FEI, Oregon, USA). The functional group
and composition of AgNPs were characterized by FTIR
(Nicolet 380, Thermo Electron, MA, USA) in the region of
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4000–500 cm−1. Phase formation was analyzed XRD
Analyzer (Ultima III, Rigaku, Tokyo, Japan) with Cukα radi-
ation (λ = 1.5406 Å) in the 2θ range from 10° to 80° at the
scanning rate of 4°/min. Mean crystallite diameter of the
powder was determined by Debye-Scherrer equation from
half width of diffraction peaks:

D ¼ kλð Þ= β cos θð Þ ð1Þ

where D is the mean crystallite diameter, k is a constant,
λ is the wavelength of Cukα, θ is the Bragg diffraction
angle, and β is the full width at half-maximum.

Antibacterical Activity of AgNPs
The bactericidal activities of AgNPs were tested against
the gram-positive bacteria (B. subtilis and S. aureus),
gram-negative bacteria (E. coli and P. aeruginosa), and
the fungus (C. albicans), via agar dilution method and
growth inhibition test assay [11]. For the agar dilution
method, the 6-mm sterile plates were loaded with 20 μL
of test samples of the biosynthesized AgNPs (2.0 mM),
AgNO3 (2.0 mM), aqueous longan peel extract, or the
penicillin solution (200 μg/mL). Each plate was inocu-
lated with 1.0 × 107 CFU of bacteria. Plates without
AgNPs or with penicillin were used as a blank and posi-
tive control separately. The bacteria were cultured in
Muller-Hinton agar (Luogang, Guangzhou, China) at 37 °C
for 24 h and the fungus in Sabouraud’s dextrose agar
(Luogang, Guangzhou, China) at 28 °C for 36 h. After in-
cubation, the bactericidal activities were measured by the
inhibition zones. For bacteria growth inhibition test,
100 μL of bacteria or fungus suspension with 1.0 × 108

CFU were inoculated into 45 mL fresh LB media and
treated series concentrations of AgNPs at 37 °C. The op-
tical densities of the cultures were determined at 600 nm
(OD600) by a UV-vis spectrophotometer.

Cell Culture and Trypan Blue Exclusion Assay
PC-3 cells were cultured in RPMI-1640 medium with
10 % FBS, 100 units/mL streptomycin, 100 units/mL peni-
cillin, and 300 μg/mL L-glutamine; 2 mL of cells were
seeded at the density of 2 × 104 cells/mL in the 35-mm
dishes and cultured for 24 h at 37 °C in a humidified at-
mosphere of 5 % CO2. Then, the cells were exposed to dif-
ferent concentrations of AgNPs (2–30 μg/mL). After 72 h
of treatment, 80 μL of the cell suspension was mixed with
20 μL of 0.4 % trypan blue stain solution for 2 min at RT.
The cells were determined using a hemocytometer under
a light microscope (Nikon Optiphot, Japan). The cells that
did not absorb dye were regarded as live cells, and blue
cells were counted as dead cells.

Western Blot Analysis
The role of AgNPs for prostate cancer was further ex-
amined on the level of phosphorylated stat 3, bcl-2, sur-
vivin, and caspase-3 in PC-3 cells at the concentration of
10 μg/mL by Western blot according to our protocol
[32, 33]. PC-3 cells were seeded at a density of 1 × 105

cells/mL and incubated for 24 h. The cells were treated
with 10 μg/mL of AgNPs. After 24 h treatment, the cells
were washed with ice-cold PBS and lysed with 200 μL of
lysis buffer (1 mM phenylmethylsulfonyl fluoride,
100 μM sodium orthovandate, 30 mM sodium pyro-
phosphate, 50 mM sodium chloride, 50 mM sodium
fluoride, 5 mM ZnCl2, 2 mM iodoacetic acid, 10 mM
Tris–HCl, and 0.5 % Triton X-100). Cell homogenates
were centrifuged at 12,000g for 15 min at 4 °C. The pro-
tein concentrations were determined by the Bio-Rad
protein assay kit. The β-actin protein was used as a load-
ing control. Equal amounts of protein (50 μg) were
loaded on a Bio-Rad Precast Gel (10 %) and then trans-
ferred to a PVDF membrane. The membranes were sub-
sequently incubated with phosphor-stat 3, bcl-2,
survivin, or caspase-3 primary antibodies (Millipore) at
4 °C overnight, respectively. At the end of incubation, all
membranes were washed with 0.05 % Tween 20 Tris-
buffered saline (TBST, 15 min) four times, then treated
by the secondary antibody (Santa Cruz Biotechnology)
for 1 h at RT. After washing the membranes again four
times with TBST, immunoreactivity was detected by
Thermo assay kit and analyzed by the Quantity One
software (Bio-Rad).

Results and Discussion
Synthesis and Characterization of AgNPs
Eco-friendly green synthesis with plant extracts plays a
very important role in nanotechnology without any
harmful chemicals. Many natural plants extracts with a
rich source of functional molecules has been verified as
the capping and reducing agents for the synthesis of
AgNPs [16]. We have before screened some edible
plants, such as Chrysanthemum morifolium Ramat and
Shaddock [11]. In this study, the synthesis reaction was
started with the introduction of peel extract into aque-
ous silver nitrate solution. Silver nanoparticles exhibit
yellowish brown color due to excitation of surface plas-
mon resonance (SPR) vibrations, so the color from col-
orless to dark brown confirmed the form of colloidal
AgNPs from silver nitrate after incubation (Fig. 1). The
AgNPs have the SFR absorption band with free elec-
trons, due to the combined vibration of electrons of
AgNPs in resonance with a light wave. AgNPs contribute
to the absorption bands around 380–450 nm, among
which there is no absorption for the extracts as shown
in Fig. 3. The reduction of pure Ag+ ions to Ag0 could
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also be monitored by the UV-vis spectrum with the
broad SFR at 425 nm (Figs. 2 and 3) [31].
We have obtained the well-synthesized AgNPs using

longan extracts by exploring the effects of extract, silver
nitrate, and reaction temperature. The reactions were
observed under the UV-vis spectroscopy to examine the
bioreduction of AgNPs from aqueous AgNO3 solution.
Some small changes in synthetic factors lead to dramatic
modifications in nanoparticle structure, size, morph-
ology, stability, and self-assembly patterns [30], which
could be indicated by the SPR band [34, 35]. The narrow
peaks observed in the Fig. 2 give indirect evidence to the
ability of the reductant to function as a stabilizer of the
nanoparticles against aggregation. Figure 2a shows the
effects of amount of plant extracts on the reaction
process of AgNPs. No significant shift change of absorp-
tion peak appeared indicating no difference in the
morphology and size of the formed silver particles. More
stable samples could be collected with amount of the ex-
tract, while 50 mL above of the extract solutions could
promote the agglomeration of nanosilver and stimulate
the particle size larger. The spectra in Fig. 2b shows the
influence of AgNO3 on the reaction. There was a wave-
length shift following the concentration changes with

absorption peak of 412, 427, 438, and 440 nm when
reacted with 0.5, 1.0, 3, and 5.0 mM of AgNO3, respect-
ively. The SPR wavelength shifts towards long-
wavelength region which indicated larger particle size.
The reaction with 20 mM and above of AgNO3 showed
an obvious increase of yield. There are no significant dif-
ference between the peak absorption values between 20,
30, and 50 mM of AgNO3. To obtain the AgNPs with
ideal size for the future investigation, 20 mM was finally
decided for the synthesis. The UV-vis absorption
spectrum of the obtained AgNPs was compared under
room temperature (Fig. 2c) with 80 °C (Fig. 2d) at differ-
ent time intervals. The process under 80 °C is more ad-
vantageous as it results in the formation of nanoparticles
at a faster rate, higher yield, and slightly smaller size
when compared with room temperature. Finally, we have
developed an optimum green synthesis method for
AgNPs by treating 2.0 mM AgNO3 with 50 mL of nat-
ural longan peel extract at 80 °C for 3 h without any
harmful reducing, capping, or dispersing agents. The
optimum AgNPs were further characterized and deter-
mined the antibacterial and anticancer effects.
Figure 3a shows the UV-vis absorption spectrum of

the CM extract and synthesized AgNPs. A broad

Fig. 1 The photograph of longan peel (a) and the powder of longan peel (b), longan peel extracts (c), AgNO3 aqueous solution (d), reaction solution
for 30 min (e), and the synthesized AgNPs solution (f)
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Fig. 2 UV-vis absorption spectra of AgNPs during synthesis process, with various amount of extract at 80 °C for 3 h (a), with various concentrations of
AgNO3 at 80 °C for 3 h (b), at RT (c), and at 80 °C (d)

Fig. 3 UV-vis absorption (a) and FTIR (b) spectrums of extracts and synthesized AgNPs
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absorption peak was observed at 425 nm, which is a
characteristic band for the Ag, arising from the excita-
tion of longitudinal plasmon vibrations of AgNPs in the
solution. FTIR measurements were performed to identify
the potential biomolecules in longan peel extract respon-
sible for capping and stabilizing the silver nanoparticles.
The FTIR spectrum of silver nanoparticles in Fig. 3b
showed very strong peak at 3427 cm−1 which is assigned
as −OH stretching in alcohols and phenolic compounds
[36]. The medium intense band 1632 cm−1 is assigned to
the C=C aromatic vibrations [37]. The band at 2925 cm−1

ascribes to the C–H stretching vibration of methyl, methy-
lene, and methoxy groups. The peak 1079 cm−1 indicates
the presence of C–O stretching of alcohols, amide, ester,
and ether groups. There represented some similar absorp-
tion peaks at 3431, 2925, 1631, and 1073 cm−1 in the ex-
tract spectrum. The peak at 1717 cm−1 could be
attributed to the C=O aromatic vibrations. The broad
band at 1518 and 1449 cm−1 assigned for the presence
stretching vibrations of C=C in aromatic ring. The con-
sistent vibrational bands such as –O–H, –C–H, –C=C,

and –C=O are derived from the compounds such as flavo-
noids and terpenoids in longan peel. These functional
groups may play an important role in the synthesis as the
capping and reducing agent. Fully understanding of the
underlying mechanism demands further exploration.
The morphology of the well-designed AgNPs was

characterized by XRD, HRTEM, and SEM micrographs
(Fig. 4). Figure 4c depicted four main characteristic
diffraction peaks for Ag observed at 2θ of 38.2, 44.3,
64.4, and 77.6, which correspond to the (111), (200),
(220), and (311) based on the band for face-centered
cubic structures of silver, respectively (JCPDS Card No.
04-0783). No peaks from any other phase were observed
showing that single-phase Ag with cubic structure nano-
particles has been obtained directly. The (111) plane was
chosen to calculate crystalline size, and the average size
of the synthesized AgNPs is 15 nm from the Debye-
Scherrer equation. The HRTEM and SEM image pre-
sented that AgNPs were spherical and single crystalline
with a narrow size range 9–32 nm and the average size
20.35 nm, which is in good agreement with the shape of

Fig. 4 HRTEM images (a), SEM images (b), XRD images (c), and particle size distribution (d) of AgNPs
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the SPR band in the UV-vis spectrum and the particle
size calculated from XRD analysis. The well-controlled
AgNPs, especially their sizes, is of critical importance to
the activities and toxicity [38]. The AgNPs with smaller
particle size have a stronger penetration ability and
greater toxicity [39]. The cancer cells are different in
pore size compared to other cells, and so a size-
controlled targeting of AgNPs can prove effective in the
case of cancer treatment [34]. Our synthesized AgNPs
was spherical with such a size which is wildly recognized
among a good range for anticancer drug delivery appli-
cations and medical purposes [40].

Stability of AgNPs in Aqueous Solution
As to the stability of silver nanoparticles in aqueous so-
lution, we evaluated the size distribution and plasmonic
properties for 6 months at RT by TEM and UV-vis mea-
surements (Fig. 5). It was found from TEM images that
AgNPs are well-dispersed without any aggregation, as
well as with no significant change in particle size and
shape. There was also stable in plasmonic properties, in-
dicating good stability of AgNPs for 6 months. This is
corresponding to the previous study [41]. Good stability
of nano-silver in many researches is discussed under dif-
ferent standard cell incubation conditions [42, 43].
Foldbjerg et al. studied the cytotoxicity and genotoxicity
of silver nanoparticles in the human lung cancer A549
cell, which indicated that the size and stability of the
AgNPs remain the same in DMEM and RPMI also used
as the exposure medium in our study [44].

Antimicrobial Activity of AgNPs
As indicated in Table 1, the inhibition zones of AgNPs
were 15, 20, 16, 19, and 13 mm for S. aureus, B. subtilis, E.
coli, P. aeruginosa, and C. albicans, respectively. The

extract tested had no bactericidal activity. The synthesized
AgNPs shows a higher inhibitory effect compared with
AgNO3 and could compete commercial antimicrobial
agents penicillin used for the treatment of bacterial infec-
tions. Figure 6 shows the good growth inhibition of
AgNPs on E. coli and S. aureus. The growth of E. coli was
completely inhibited in 35 h at 100, 24 h at 50, and 16 h at
20 μg/mL. Meanwhile, the growth of S. aureus was totally
suppressed in 35 h at 100, 20 h at 50, and 16 h at 20 μg/mL.
AgNPs had better effects on bacteria than fungi, as well as
greater impacts on gram-negative bacteria than gram-
positive bacteria in this study, which is corresponded with
the previous researches [45]. The strong bactericidal activity
of silver nanoparticles is verified because they can easily
enter the pathogen with a unique small size and surface ef-
fects [46]. The cell membrane of the bacteria might be
destroyed due to the reaction of amino (−NH), −SH,
−COOH, and other functional groups in the cell [47].
AgNPs could also depress the synthesis of bacterial metab-
olism enzyme, destroy the genetic factor, and eventually lead
to death [48]. The presence of peptidoglycan layer in the cell
wall of gram-positive bacteria could attribute to less activity,
and it can prevent the nanoparticles from penetrating into
bacteria [49].

Fig. 5 Stability of AgNPs in aqueous solution for 6 months at RT. Photographs of a UV-vis and b TEM images

Table 1 Antibacterial activity of the biosynthesized AgNPs

Microorganisms Zone of inhibition(mm in diameter)

Penicillin AgNPs AgNO3 Extract

S. aureus 24 15 10 –

B. subtilis 23 20 12 –

E. coli 21 16 10 –

P. aeruginosa 25 19 9 –

C. albicans 16 13 8 –
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Anticancer Effects of AgNPs on PC-3 Cells
Cancers figure among the leading causes of morbidity and
mortality worldwide, with approximately 14 million new
cases and 8.2 million cancer-related deaths in 2012 [50].
Prostate cancer is the second most common cancer and
the fifth leading cause of cancer death in men in 2012
[51]. AgNPs have been shown to have important bacteri-
cidal and antiangiogenic activities, which are attractive for
the research of their potent anticancer effects. The effect
and the underlying mechanism of our AgNPs with a
smaller size range on prostate cancer attracted our curios-
ity. In this study, the cytotoxicity was evaluated on PC-3
cells in vitro by the trypan blue exclusion assay. As shown
in Fig. 7a, the synthesized AgNPs of size 9–32 nm had
dose-dependent cytotoxic effects on prostate cancer PC-3
cells in vitro. About 50 % of PC-3 cells died when treated
with AgNPs at the concentrations between 5 and
10 μg/mL. The IC50 was less than 10 μg/mL, which is
consistent with the previous findings [52]. The pro-
tein expressions were explored by Western blot to
clarify the mechanism by which AgNPs exert a cyto-
toxic effect on PC-3 cells. The antitumor activities

were mediated by a decrease of stat 3, bcl-2, and sur-
vivin, as well as an increase in caspase-3 shown in
Fig. 7b.
The cytotoxic effect of AgNPs on cell viability has a

major role in antitumor activity, thereby reducing dis-
ease progression. Cellular internalization of silver might
provide the basis for the cytotoxicity of AgNPs [39, 53].
Sriram et al. found that AgNPs could enter the cell
through endocytosis, acted on the nucleus to interfere
with chromosome stability, and interrupt the mitosis
[29]. Active anticancer components are known to exhibit
a consistent antitumor effect by blocking abnormal ex-
pression alterations of multiple signaling proteins, such
as VEGF, p53, JAK-STAT, and CDC14A [45, 54, 55]. The
antitumor activity of AgNPs was also shown to be medi-
ated by induction of proliferation and apoptosis by active
caspase 9 and active caspase 3 in a GBM tumor system
in vitro [56]. These biological responses eventually lead
to the survival or apoptosis of the cancer cells and
prompt a promising way of AgNPs for prostate cancer.
The molecular mechanism of targeting has not fully
understood for the inhibitory effects of AgNPs on the

Fig. 6 Growth curves of E. coli (a), S. aureus (b) and C. albicans (c) in LB media with different concentrations of AgNPs

Fig. 7 The anticancer effects of AgNPs on the PC-3 cells, a cytotoxic effects and b effects of the level of phosphorylated stat 3, bcl-2, survivin,
and caspase-3
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prostate cancer cells. Further research efforts are de-
served to elucidate the latent mechanism and then lead
to more effective measures for prostate cancer.

Conclusions
With better developments of the green synthesis
methods and understanding of the molecular mechan-
ism, the applications of AgNPs are likely to expand fur-
ther in the cancer therapy fields. In the present work, we
have proposed first time a simple, high efficiency, eco-
friendly green synthesis method for AgNPs using longan
peel extract as reducing and stabilizing agent demon-
strated. The biosynthezied AgNPs are spherical and sin-
gle crystalline, with a narrow particle size range from 9
to 32 nm. The synthesized AgNPs showed good bacteri-
cidal activities against gram-positive and gram-negative
bacteria and fungus with a dose-dependent effect.
AgNPs exhibited a strong inhibitory effect on the pros-
tatic cancer PC-3 cells, which might be associated with a
decrease of stat 3, bcl-2, and survivin, as well as an in-
crease in caspase-3. AgNPs might be a potential active
candidate for prostate cancer treatments. Further re-
search should be focused on the comprehensive study of
molecular mechanism and in vivo effects of AgNPs on
prostate cancer.
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