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The hot pick-up technique for batch assembly
of van der Waals heterostructures
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Peter Bøggild1 & Timothy J. Booth1

The assembly of individual two-dimensional materials into van der Waals heterostructures

enables the construction of layered three-dimensional materials with desirable electronic and

optical properties. A core problem in the fabrication of these structures is the formation of

clean interfaces between the individual two-dimensional materials which would affect device

performance. We present here a technique for the rapid batch fabrication of van der Waals

heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer

graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the

monolayer devices, we found semiclassical mean-free paths up to 0.9 mm, with the narrowest

samples showing clear indications of the transport being affected by boundary scattering.

The presented method readily lends itself to fabrication of van der Waals heterostructures in

both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers

paves the way for complex three-dimensional architectures.
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T
he controlled isolation and assembly of single- and
few-layer sheets of two-dimensional (2D) materials into
van der Waals (vdW) heterostructures has thrown open

the doors for the design and fabrication of new devices and
functionalities based on 2D materials with an unprecedented
flexibility and atomic precision. The perspectives are astounding,
with applications ranging from electronics1,2, photovoltaics3,4

and sensing5,6 through to memory storage7 with the intriguing
possibility of increased performance and a wide range of
functionalities on flexible, transparent substrates8,9.

Clean interfaces between 2D materials result in the best device
performance10–15 – any contaminants present between interfaces
usually gather up as ‘blisters’ between layers, leading to
deterioration of transport properties16 as well as compromising
the perfect vdWs interlayer adhesion between the layers.
Devices can be produced in controlled atmospheres such as
in gloveboxes17 but without special cleaning steps to remove
ad-layers and careful monitoring, contamination and decreased
interlayer adhesion may still be an issue. Oxygen plasma
pre-treatment increases the number and area of individual
flakes of 2D materials produced by micromechanical exfoliation
on oxidized silicon substrates18, but results in increased substrate
interaction, which dopes graphene and is manifested as a reduced
Raman I(2D)/I(G) peak ratio19.

We present here room temperature mobility measurements
from a batch-fabricated set of 22 mono-, bi and trilayer
blister-free encapsulated graphene field effect devices – assembled
in ambient atmosphere–with over 280 individual metal-graphene
contacts. We find that blisters of trapped interfacial contamina-
tion commonly observed in such samples by optical and atomic
force microscopy can be completely eliminated by stacking
individual 2D crystals into vdWs heterostructures at temperatures
of 110 �C, even in ambient atmosphere. We prove that the
reduction of the I(2D)/I(G) ratio in graphene due to plasma
treatment of the cleavage substrate is fully reversed when the
crystals are lifted from this substrate, meaning that plasma pre-
treatment is a viable way to obtain large and pristine 2D material
flakes for integration into vdWs heterostructures. By actively
tuning the interfacial adhesion and cleanliness through tempera-
ture whilst completely avoiding any contact with liquids in the
stacking procedure, we are able to controllably pick up and drop-
down 2D materials, including single-layer crystals that have been
pre-patterned using electron-beam lithography (EBL).
This method enables us to produce a statistically significant data
set of field effect mobility measurements from 22 mono-, bi- and
trilayer encapsulated graphene devices with 4280 contacts.
Seven of the 16 monolayer devices and 55% of the measurements
display carrier mean-free paths comparable or exceeding the
channel width, with carrier mean-free paths limited by boundary
scattering.20 Bi- and trilayer devices show diffusive behaviour
with average mobilities above 20,000 and 15,000 cm2 V� 1 s� 1,
respectively. No annealing at high temperatures is necessary to
obtain this high performance13,21,22.

Results
Exfoliation of 2D materials and Raman precharacterisation.
Mono-, bi- and trilayer graphene and thin (thickness in the range
20±10 nm) hexagonal boron nitride (hBN) flakes, all with areas
of over 2,000 mm2, are produced on oxidized silicon substrates
by micromechanical cleavage. A combination of oxygen plasma
pre-treatment of the substrate and thermal release of the adhesive
tape18 is employed to increase the size and number of the crystals
produced - exfoliation on non-plasma-treated substrates yields
smaller and fewer crystals (Fig. 1a). Plasma treatment is known to
introduce trapped charges in oxidized silicon, while heating

increases substrate conformity and induces roughness in
graphene23. Both of these effects can potentially impact device
performance. The Raman I(2D)/I(G) peak ratios of graphene
flakes cleaved on plasma-treated oxide show a noticeably higher
doping than for graphene on untreated oxide (I(2D)/I(G) peak
ratio¼ 1.1 on plasma-treated versus 1.8 on untreated–Fig. 1b).
This trend is not present in the same graphene flakes when lifted
from the substrate using hBN crystals. For such samples, the
I(2D)/I(G) peak ratio increases from o2 to 4.2 and 3.3
for graphene from plasma-treated and untreated SiO2,
respectively – Fig. 1b. This shows that plasma cleaning of the
substrate can be used to produce more and larger 2D crystals, and
has no permanent impact on those crystals after lifting them from
the production substrate.

Heterostructure assembly. We use a polypropylene carbonate
(PPC) coated polydimethylsiloxane (PDMS) block mounted on a
glass slide to capture (pick-up) and release (drop-down) 2D
materials (Fig. 1d,e). For full details of the described techniques,
see Supplementary Methods. The slide and polymer block is
positioned in x, y and z using a micromanipulator (Fig. 1c) fixed
to a heated microscope stage. By tuning the temperature
above the boiling point of water and the glass transition
temperature of the polymer, flakes can be reproducibly picked up
or dropped down at desired positions (Figs 1f, 2a–c). Higher
temperatures during transfer are enabled by the use of oxygen
plasma treatment of the PDMS before application of the PPC
layer, which increases the adhesion between the PPC and the
PDMS, and prevents delamination at high temperatures.

Temperatures above 110 �C favour the vdWs adhesion between
hBN and graphene, whereas a temperature of 40 �C is sufficient
to lift hBN from oxidized silicon cleavage substrates using the
PPC/PDMS block. We note that assembly at high temperatures
produces adhesion forces between graphene and hBN which are
strong enough to tear the graphene flake, leaving behind
graphene regions which are not covered by hBN adhering to
the oxidized silicon substrate (Fig. 2a–d). Such high-adhesion
forces lead to a pick-up yield of close to 100%. It is always
possible to pick up hBN from SiO2 using PPC, regardless of the
temperature, but we are unable to pick up graphene using PPC in
the same way – graphene adheres more strongly to the oxidized
silicon surface than the PPC, leading to the tearing of edges that
can be seen in Fig. 2d. Such structures are a result of the reported
preferred tearing directions in monocrystalline graphene24.
A temperature of 110 �C is required to pick up graphene
from plasma-treated oxidized silicon using an hBN crystal on
PPC – at 40 �C the graphene adhesion to the plasma-treated SiO2

surface dominates. For graphene on SiO2 surfaces that have not
been plasma treated, hBN can be used to pick up the graphene
flakes regardless of temperature, as previously reported10.
Lithographically pre-patterned 2D materials can also be reliably
picked up for subsequent encapsulation in this way (Fig. 1e–h),
which allows a greater flexibility in device architecture.

A key feature of this technique is the ability to produce large
numbers of encapsulated graphene samples in parallel, by covering
many graphene flakes on their production substrate with dropped
down hBN flakes (Fig. 1f (i–iii)), subsequently picking these hBN/
graphene stacks up, and finally dropping them down on new hBN
flakes produced on oxidized silicon substrates (Fig. 1f (iv–vii)). This
enables the rapid batch fabrication of many heterostructure stacks
such as those shown here, and the parallelization of subsequent
processing steps of lithography and etching to define devices.

Avoidance of blisters during assembly. We compare the number
and size of blisters formed during stacking at 110 versus 40 �C
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using optical and atomic force microscopy, and find that the
cleanliness of the interface critically depends on both the speed of
the approach of the flakes and the temperature. One point of the
PPC/PDMS block touches the target substrate first, due to the
slide being tilted by a few degrees in the micromanipulator.
Full contact between these two surfaces is made controllably in all
cases, limiting the speed of the contact area front to o1mm s� 1

by controlling the z-height of the stage.
Stacking at 40 �C results in apparently blister-free hetero-

structures, but on heating above 70 �C these blisters become
visible and mobile, increase in size, agglomerate and then stabilize
within a few seconds (Supplementary Movies 1, 2 and 3). These
blisters are also afterwards apparent between the graphene and
hBN (Fig. 3a–c), and in the finished fully encapsulated graphene
sample (Fig. 3d–f). The blisters are up to 100 nm tall and 10 mm
across, and evenly distributed over the sample, and account
for an area fraction of 20% or more of the total stack area
(Fig. 3e). In contrast, assembling at the higher temperature of
110 �C results in a complete absence of such blisters (Fig. 3g–l),
leading to vdWs heterostructure devices with greatly reduced
interfacial contamination. The surface height variation of the
stack is much reduced (Fig. 3i), and no blisters of contamination
are visible optically or by atomic force microscope (AFM)

(Fig. 3h,i,k,l). We note that the encapsulated graphene flakes are
visible in Fig. 3e,k–any trapped interfacial contamination in the
stack must therefore either consist of a continuous and
homogeneous layer, or be entirely absent.

In attempt to detect the presence of trapped contamination
within stacks, we transferred graphene adhered to hBN to silicon
nitride transmission electron microscopy (TEM) aperture
grids using the same drop-down methods described above. An
optical image of the hBN-graphene heterostructure adhered to
PPC/PDMS is shown in Fig. 4a. We then performed tilted beam
dark-field TEM imaging of the samples by selecting one of the
first-order graphene reflections. This causes the graphene and
any materials with a similar lattice spacing to appear bright in the
image. Figure 4b shows enhanced contrast of graphene with
respect to hBN, in addition to an incomplete layer of amorphous
carbon which is usually present on 2D materials25,26, and
commonly observed in TEM experiments. While we are unable
to strictly exclude the possibility that this amorphous carbon is
trapped between the layers, we note that it is present everywhere
in the dark-field image in Fig. 4b, and has not segregated
into blisters (which would cause enhanced dark-field contrast) as
has been observed previously in vdWs heterostructures. Figure 4c
shows a selected area diffraction pattern of the region indicated in
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Figure 1 | Assembly and precharacterization of heterostructures. (a) Monolayer graphene flakes produced on oxygen plasma-treated SiO2. Inset

(white square): typical graphene flake size on non-plasma-treated SiO2. To scale with (a). (b) Graphene Raman 2D peak dependence on substrate –

the Raman I(2D)/I(G) ratio increases for graphene picked up with hBN from SiO2 irrespective of the oxygen plasma pre-treatment of the substrate.

(c) Micromanipulator with slide assembly used for assembly of heterostructures. (d,e) Polymer stack on glass slide used for pick-up and drop-down.

(f) Schematic process flow for assembly of 2D heterostructures by pick-up and drop-down.
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Fig. 4b, where both hBN and monolayer graphene reflections
are visible. The lattices have a relative rotation of B7.5� for
this sample, showing that the hBN and graphene lattices
have not displayed the self-rotation or ‘snap-in’ behaviour
recently reported in hBN-encapsulated graphene
heterostructures.21

Raman data for a representative hBN-encapsulated graphene
sample in Fig. 4d is shown in Fig. 4e, with an enhanced contrast
optical image of the heterostructure inset showing the collection
region. We find a consistent I(2D)/I(G) ratio of 45, approaching
6, as previously shown for hBN-encapsulated graphene
heterostructures, and a G peak full width at half maximum of
14±0.5 cm� 1 over 5–10 mm areas of the heterostructures.
Raman maps showing the spatial variation of these values are
provided in the Supplementary Information.

Carrier mobility measurements. We batch fabricate
hBN-encapsulated graphene field effect devices with edge
contacts in both Hall bar and van der Pauw geometries from
blister-free vdWs heterostructures stacks via EBL, plasma etching
and metal deposition (Fig. 5a). SF6 plasma is used to etch,
which we find shows significantly improved selectivity for hBN
relative to Poly(methyl methacrylate) (PMMA; 445:1), graphene
(490:1) and SiO2 (490:1), rather than the more commonly used
CHF3 etch10,11.

Gated pairwise direct current two-point measurements of 284
contacts gives 251 working connections with contact resistances
of a few kO � mm at the charge neutrality point, decreasing
to a few hundreds of Omm away from the charge neutrality
point (Supplementary Fig. 3), with residual carrier densities
o1012 cm� 2 at zero gate voltage for all monolayer, bilayer and
trilayer graphene devices (Fig. 5b,c and Supplementary Fig. 4).

All our measurements are performed at room temperature with a
constant source-drain bias of 5 mV. The total yield of
contacts – over 88% – is to our knowledge the largest reported
to date in vdWs heterostructures devices considering the number
of contacts produced.

As a result, we are able to present a statistical ensemble of
electrical measurements for encapsulated graphene Hall bar devices.
Figure 6a shows room temperature electron and hole mobilities
extracted from 55 transconductance measurements of hBN-
encapsulated mono-, bi- and trilayer graphene devices. The values
of the mobility for bi- and trilayer samples are extracted at
saturation, while at the local maximum (induced carrier density of
B0.5 – 1� 1012 cm� 2) for single-layer devices (Fig. 5b). For single-
layer devices, nominal mobilities of up to 117,000 cm2 V� 1 s� 1

were measured, with averages of 44,500±26,000 and
42,000±24,000 cm2 V� 1 s� 1 for holes and electrons, respectively.
All of the field effect mobility values for any pair of monolayer
device contacts devices are above 10,000 cm2 V� 1 s� 1, with more
than 86% above 20,000 cm2 V� 1 s� 1.

In the diffusive limit the mean-free path lmfp can be found from
the semiclassical conductivity22,23 s¼ (2e2/h)kF lmfp, where kF¼
ffiffiffiffiffiffi

pn
p

is the Fermi wave number, n is the carrier density, e is the
elemental charge and h is Planck’s constant. The high mobilities we
calculate indicate that in the majority of cases in our monolayer
devices the transport is limited by boundary scattering since the
calculated mean-free path is comparable to or larger than w, the
device width20 – in particular 70% of devices show lmfpZw/2
(Fig. 6b,d). Furthermore 16% of the measurements are strictly
quasiballistic with the estimated mean-free paths exceeding the
device width27,28.

Three bilayer and three trilayer graphene samples produced in
the same way display field effect mobilities as high as 37,000 and
23,000 cm2 V� 1 s� 1, respectively. The mean field effect hole and
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Figure 2 | Adhesion between pristine and patterned 2D materials. (a) hBN flakes are dropped down onto (b) graphene flakes (single and bilayer shown)

to produce (c) a stack. (d) Interlayer adhesion between the hBN and graphene is sufficient to selectively tear the graphene away from the substrate. The

dashed line indicates the previous extent of the hBN flake before pick-up. (e) A graphene monolayer which has been pre-patterned into eight rectangles
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areas inside the dashed lines. Panels g,h same as e,f with a rectangular graphene frame. This approach allows multiple stacking of laterally patterned two-

dimensional layers into complex three-dimensional heterostructures.
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electron mobilities are 17,000±4,000 and 24,500±7,000 cm2 V� 1

s� 1 for the bilayer devices, and 13,000±3,000 and
19,000±2,500 cm2 V� 1 s� 1 for the trilayer devices, respectively.

In addition to the Hall bar devices, we fabricated six
encapsulated monolayer devices in van der Pauw (square)
geometries of 3, 5 and 10 mm side length with four contacts

placed at the corners of the device edges. For such devices we
find hole and electron mobilities of 38,000±15,000 cm2 V� 1 s� 1

and 36,000±12,000 cm2 V� 1 s� 1 respectively. The average
mean-free path for carriers in all such devices is 450±170 and
420±140 nm at room temperature. A representative gate sweep is
available in the Supplementary Fig. 7 while the mean-free path of

Distance (μm)
2 4 6 8 10 12 14 16 18 200

hBN

G/hBN

5 μm

0 1 2 3 4

Height (nm)

hBN
G/hBN

15 μm 2 μm

20 μm 20 μm

0

50

100

150

200

2 4 6 8 10 12 14 16 18 200
–50

H
ei

gh
t (

nm
)

Distance (μm)

0 10 3020 40 50 60 70

5 μm

Height (nm)

a b

d e

f

g h

j k

l

0

25

75

50

100

125

150

H
ei

gh
t (

nm
)

0

0.25

0.75

0.5

1

1.25

1.5

H
ei

gh
t (

nm
)

1 μm 1 μm

c i

0 25 37.5 500 15050 100
Height (nm) Height (nm)

15 μm 2 μm

Figure 3 | Atomic force microscopy characterization of blister formation at different assembly temperatures. (a) Optical image of graphene/hBN stack

on PPC (after step iv in Fig. 1f), picked up from pristine SiO2 at 40 �C. (b) AFM topography image of region indicated in (a) – blisters are visible across the

stacked region in AFM with heights of E50 nm. (c) The marked region in b with periodic colourscale to emphasize height variations across blisters.

(d) Optical image of G/hBN stack dropped down onto a second hBN flake after approaching at 40 �C on SiO2 (step vii in Fig. 1f). Many hemispherical
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sample 2 is shown to reach 0.9 mm at a carrier density of
1012 cm� 2 in Supplementary Fig. 8.

To prove the versatility of our technique, top-gated samples
were fabricated by the drop-down of an additional hBN flake to

cover the entire device area (Supplementary Fig. 5). This flake
prevents short-circuiting during subsequent deposition of a
metallic top-gate and contacts. The transconductance of the
devices was compared (Supplementary Fig. 5) suggesting that top
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gates fabricated by drop-down are comparable in performance
and quality to hBN and oxidized silicon bottom gates, which we
attribute to the absence of trapped contamination.

Discussion
The presented method for stacking 2D materials allows the
preparation of clean heterostructures with a high throughput
due to a higher yield of large exfoliated single-layer crystals, the
parallelization of the different fabrication steps enabling batch
production and with close to 100% pick-up yield.

The fact that the observed reduction of I(2D)/I(G) peak ratio in
graphene flakes micromechanically cleaved on plasma-treated
oxidized silicon is fully reversed on subsequent pick-up with hBN
shows that oxygen plasma treatment of the substrate does not
introduce point defects or charged contaminants attached to the
exfoliated graphene. As a result, oxygen plasma pre-treatment is a
suitable means of producing large numbers of appropriately sized
exfoliated 2D materials on oxidized silicon for the fabrication of
prototype vdWs heterostructures, which consistently exhibit clean
interfaces and high carrier mobilities.

The complete elimination of blisters of contamination formed
between flakes assembled at 110 �C versus the large number and
size of blisters formed between flakes assembled at 40 �C or less,
suggests that at low temperatures the surfaces of the flakes are
covered by largely immobile adsorbants, which become more
mobile at higher temperatures. This leads to the observed

segregation of this layer into blisters during stacking at 40 �C
and on subsequent heating above 70 �C. We find it extremely
difficult to pick up crystals cleaved on plasma-treated substrates
at 40 �C, despite an extended contact time of several hours,
indicating that the adsorbants are effectively immobile in this case
and interfere critically with the adhesion between flakes. The
higher adsorbant mobility at 110 �C on the graphene surface
allows them to diffuse across the surface of the 2D materials, away
from the vdWs contact front which proceeds in a controlled way
across the surface of the flakes during assembly, and appears to
gather at the edges of flakes (Supplementary Movie 4)22. We
infrequently observe inconsistent behaviour during drop-down in
some samples (Supplementary Movie 5) that can lead to
variation in the Raman I(2D)/I(G) ratio and G peak full width
at half maximum of the encapsulated graphene in limited areas of
the surface (Supplementary Fig. 6) – this highlights the
importance of control of the drop-down step in making good
contact between the layers of vdW heterostructures, here
minimizing doping variations. Reduction in the viscosity of
PPC at higher temperature may also allow a more conformal
contact to be made between the 2D materials during stacking. It is
interesting to note that the adhesion force between graphene and
hBN resulting from stacking at temperatures above 110 �C is
sufficient to overcome the adhesion of graphene to silicon oxide,
but that adhesion between the PPC and the exposed graphene
outside the hBN area is not strong enough to delaminate the
graphene from the oxidized silicon. This points to the gradual
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exclusion of adsorbants or contaminants at the contact front
between two 2D materials as the determining factor for
optimization of adhesion forces and for establishing a good
interlayer contact. This also raises the question of what materials
the contaminants and adsorbants consist of. Since the process is
performed in ambient atmosphere the three most likely sources of
contamination are adsorbed water and/or trapped air, deposited
ambient airborne hydrocarbon contamination25 or residues from
the tape used for micromechanical cleavage produced during
thermal release of the flakes on the substrate. The temperature of
110 �C needed to render these contaminants sufficiently mobile to
be excluded from the advancing vdWs contact interface suggests
adsorbed water as the most likely candidate. This would account
for the observation of blister formation from apparently clean vdW
heterostructures during heating to 70 �C – the adsorbed water
coalesces as the vdW interface area increases, and vaporization of
water causes the large volume blisters to be produced.

Atomic force microscopy shows that any residual
contamination between layers in bubble-free regions must be
either uniform or completely absent, since we are able to detect

changes in thickness of the graphene encapsulated in hBN even
down to a single monolayer (Fig. 3i,k). Dark field and selected
area diffraction patterns from TEM studies (Fig. 4b,c) provide
further evidence that the interface between the hBN and graphene
does not include any contamination, along with providing
evidence that the pick-up technique as described here does not
result in self-aligning rotation of 2D materials21. Finally the
Raman spectroscopy of graphene encapsulated in hBN (Fig. 4d,e),
and Supplementary Fig. 6) shows a I(2D)/I(G) ratio approaching
6 and a G peak FWHM of 14 cm� 1, which serve as evidence of a
lack of doping of the graphene within the stack – results which
are also confirmed by our electrical measurements of the low
doping of our samples: all show residual carrier densities
o1012 cm� 2 at zero gate bias.

The presented techniques also enable us to pick up
pre-patterned 2D materials, despite the presence of PMMA
residues on top of the patterned flakes, an inevitable by-product
of EBL. This means both that PMMA residues are largely
excluded from the surface via this technique, and also that it is
not a prerequisite of this technique to have atomically flat and
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clean surfaces before carrying out the stacking procedure, as
presented previously10. This removes the limitation of
simultaneous, through-stack lithography as the only option for
the construction of vdWs heterostructures devices, allowing
more complex and flexible architectures to be realised by enabling
the clean stacking of separate, differently shaped 2D materials
analogous to modern integrated circuits with two or more
layers of active electronic components or interconnects in a
single circuit29.

The devices produced using this hot stacking technique
display very high room temperature mobilities, with 55% of the
measurements in monolayer devices exhibiting mean-free paths
larger than the half of the device width as well as uniformly low
contact resistance. This high consistency is achieved without any
annealing10,12,16,21 or further cleaning step of the stacks.

While little data is available in literature concerning the yield of
heterostructure device fabrication, we believe that our stacking
yield of nearly 100% and contact fabrication yield of 88%
represent significant progress towards consistent, reproducible
device fabrication of vdWs heterostructures. We find that
statistically significant figures for these yields is unfeasible to
obtain without batch fabrication, and that the high yield across
many samples is a direct consequence of the complete exclusion
of interfacial contamination during stacking at high temperatures.
In comparison, stacking at lower temperatures lead to blisters
occurring over an interface area fraction of 20% or more which
strongly decreases the fabrication yield.

The mean carrier mobilities measured in bilayer and
trilayer graphene devices of 21,000±7,000 and
16,000±4,000 cm2 V� 1 s� 1, with peak values of 37,000
and 23,000 cm2 V� 1 s� 1, are consistent with the highest values
reported at room temperature in the literature for bilayers30 and
are the highest reported for trilayers at room temperature31.

We note that in all but one instance, the electron mobility
exceeds the hole mobility for bilayer and trilayer samples
(Fig. 6a). This trend is largely reversed in monolayer samples,
and is consistent with published observations32.

In 16% of the measurements the calculated room temperature
mean-free path exceeds the sample width10,20,33 (Fig. 6b,d). In
this limit, however, the semiclassical transport model used to
estimate the mean-free path is no longer strictly valid, implying
that both the highest values of mean-free path and the
carrier mobility should be regarded with caution20. We
speculate that the higher mobility and thus stronger tendency
of ballistic transport behaviour for the monolayer samples is
responsible for the larger spread in carrier mobility as compared
with bi- and trilayers (Fig. 6a). The spread in carrier mobility is a
consequence of transport in ballistic samples being more sensitive
to boundary effects such as possible edge disorder and the exact
device geometry10,20,27. The mean-free paths for the van der
Pauw geometry samples (B0.5 mm) are consistent with the onset
of large variation in the calculated mobilities for the narrowest
channel Hall bar samples (Fig. 6b–e), which supports the
conclusion that boundary effects have a strong influence at
such scales and lead to the observed large variations in the
calculated mobilities here.

In conclusion, we have presented a facile and robust technique
for the batch fabrication of vdWs heterostructures, demonstrated
by the controlled production of 22 mono-, bi- and trilayer
encapsulated graphene devices. Stacking at elevated temperatures
(higher than 110 �C) results in high mean carrier mobilities
for bilayer and trilayer samples of 21,000±7,000 and
16,000±4,000 cm2 V� 1 s� 1. The majority of monolayer Hall-
bar devices exhibit transport limited by the edges, with mean-free
paths exceeding half of the channel width. This stacking
technique enables the pick-up and drop-down of flakes of 2D

materials at desired locations with nearly 100% yield, and with a
yield of 88% for subsequently fabricated electrical contacts with
uniformly low contact resistance.

The absence of trapped contamination in our samples,
manifesting as blisters between the stacked flakes, indicates that
adsorbants are largely or completely excluded from between the
flakes during the drop-down procedure, being pushed out in front
of the proceeding vdWs contact region. In addition, the high
temperature used for drop-down may also allow a more conformal
contact between 2D materials during stacking as a result of
reduction of viscosity of the PPC. The presented method readily
lends itself to fabrication of any desired vdWs heterostructures,
completely avoiding contact with liquids, whether in ambient
conditions or in controlled atmospheres. The technique even
permits the pick-up of lithographically patterned 2D materials and
integration into vdWs heterostructures, or for additional layers to
be dropped down onto pre-existing devices. By picking up device
layers such as graphene with encapsulating layers such as hBN, the
need for multiple separate encapsulation steps is avoided allowing
efficient batch fabrication of heterostructure devices.

The ability to produce a large number of devices with high
yield is a key advantage of this process, and paves the way for the
statistical studies of device performance. Such studies are essential
to gain an understanding of vdWs heterostructure based device
performance in a technological perspective, for fundamental
research and for further progress towards real-world device
applications of 2D materials.

Methods
Cleaving of graphene and hBN. Graphene and hBN are cleaved on 100 nm Si
oxide thermally grown on standard 4 inch Si wafers. Natural graphite crystals
(NaturGrafit GmbH) and hBN bulk crystals (HQgraphene) were mechanically
exfoliated with Nitto Denko SWT 20þ die sawing tape. Oxidized silicon is treated
in oxygen plasma for 3 min (PlasmaEtch PE-50, 300 mbar O2, 120 W), and the 2D
material loaded tape is immediately applied to the silicon oxide surface. The tape is
subsequently released from the surface by heating to 85 �C on a hot plate.

Preparation of the glass slide for pick-up and drop-down. The PDMS is
prepared from SYLGARD 184 by mixing 10 parts base and 1 part curing agent and
cured at 70 �C overnight, leading to a 1-mm-thick layer. The PDMS is treated with
oxygen plasma as above for 10 min and then a PPC layer is spun on top of it (15%
in anisole, 50 K, 1,500 r.p.m.), resulting in a thickness of 5 mm. Double-sided tape is
used to attach a 1� 1 mm2) piece of PPC coated PDMS to a glass microscope slide.

Raman spectroscopy. Raman spectra are taken with a Thermo Fisher DXR
Raman spectrometer using a 455-nm laser source with a power of 1 mW and 20 s
duration multiple exposures. Raman spectra and maps for encapsulated graphene
were acquired in a Thermo Fisher DXRxi Raman spectrometer using a 455-nm
source, with a power of 10 mW and 20 s duration to provide adequate signal to
noise ratio from the graphene within the heterostructure.

Atomic force microscopy (AFM). The AFM scans are done in a NTEGRA
scanning probe microscope from NT-MDT with a Smena measuring head. The scans
are performed in tapping mode with typical parameters of a driven frequency of
340 Hz, a magnitude of 10 nA, a set point of 5 nA and scan speed of 10–30mm s� 1.

Transmission electron microscopy (TEM). Tilted beam dark-field images were
acquired in a Tecnai T20 G2 operated at 200 kV by selecting a first-order graphene
reflection with an objective aperture with a diameter of 2 nm� 1 in the diffraction
plane. Selected area diffraction (SAD) patterns were taken in the same instrument
with a 200-nm-diameter SAD aperture.

Device fabrication. The EBL is performed in a JEOL JBX-9500FS, with an
acceleration voltage of 100 kV. PMMA is used as resist in the EBL process, a 4-wt%
PMMA 996K in anisole solution is spun on the chips (1 min at 1,500 r.p.m.,
acceleration 500 r.p.m. s� 1) , followed by a post-bake (10 min at 150 �C).

Etching. The etching of the stack is performed in a SPTS ICP Etch, O2 is used to
etch the graphene and SF6 is used to etch the top and bottom hBN. Metal contacts of
2 nm Cr, 15 nm Pd and 30 nm Au are deposited by Physimeca FSES250 electron-
beam evaporation with low rates (B1 Å s� 1 for Cr and Pd and B3 Å s� 1 for Au).
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Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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