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Abstract

Longitudinal neuroimaging data plays an important role in mapping the neural developmental 

profile of major neuropsychiatric and neurodegenerative disorders and normal brain. The 

development of such developmental maps is critical for the prevention, diagnosis, and treatment of 

many brain-related diseases. The aim of this paper is to develop a spatio-temporal Gaussian 

process (STGP) framework to accurately delineate the developmental trajectories of brain 

structure and function, while achieving better prediction by explicitly incorporating the spatial and 

temporal features of longitudinal neuroimaging data. Our STGP integrates a functional principal 

component model (FPCA) and a partition parametric space-time covariance model to capture the 

medium-to-large and small-to-medium spatio-temporal dependence structures, respectively. We 

develop a three-stage efficient estimation procedure as well as a predictive method based on a 

kriging technique. Two key novelties of STGP are that it can efficiently use a small number of 

parameters to capture complex non-stationary and non-separable spatio-temporal dependence 

structures and that it can accurately predict spatio-temporal changes. We illustrate STGP using 

simulated data sets and two real data analyses including longitudinal positron emission 
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tomography data from the Alzheimers Disease Neuroimaging Initiative (ADNI) and longitudinal 

lateral ventricle surface data from a longitudinal study of early brain development.

Keywords

Functional principal component analysis; Kriging; Neuroimaging; Prediction; Spatio-temporal 
modeling

1 Introduction

Large-scale longitudinal neuroimaging studies have collected a rich set of ultra-high 

dimensional imaging data, behavioral data, and clinical data in order to better understand the 

progress of neuropsychiatric disorders, neurological disorders and stroke, and normal brain 

development, among many others [Evans and Group., 2006, Almli et al., 2007, Skup et al., 

2011, Meltzer et al., 2009, Kim et al., 2010, Weiner et al., 2013]. Three primary goals of 

longitudinal neuroimaging studies are

• (i) to characterize individual change in brain structure and function over time;

• (ii) to characterize the effect of some covariates of interest, such as diagnostic 

status and gender, on the individual change; and

• (iii) to study the predictive value of early brain developmental trajectories for 

later brain and cognitive development and disease progression.

Moreover, the objective 2 of the recent National Institute of Mental Health (NIMH) Strategic 

Plan is to chart mental illness trajectories to determine when, where, and how to intervene 

by using novel techniques (e.g., imaging). To achieve these goals (i)-(iii), it requires the 

development of advanced image processing and statistical tools.

A distinctive feature of longitudinal neuroimaging data is that it contains both spatial and 

temporal dimensions. Specifically, imaging measurements of the same individual usually 

exhibit positive correlation and the strength of the correlation decreases with the time 

separation. Moreover, due to the inherent biological structure and function of brain, 

neuroimaging data are spatially correlated in nature and contain spatially contiguous 

regions. However, since longitudinal neuroimaging data usually has strong heterogeneity in 

longitudinal trajectories across space, their spatial and temporal dimensions are typically 

non-separable. Such non-separability has posed unprecedented challenges to most existing 

statistical methods for achieving goals (i)-(iii). As shown in Derado et al. [2010], 

appropriately accounting for correlation structure in statistical modeling and estimation can 

lead to substantial gains in statistical power. Furthermore, accurately modeling the spatial 

and temporal dependencies is even more critical for prediction [Cressie and Wikle, 2011, 

Derado et al., 2013, Demel and Du, 2015].

There are two major groups of spatio-temporal models for longitudinal neuroimaging data. 

The first one is to use temporal evolution models for non-linear image registration to 

estimate longitudinal spatial transformations that capture time-varying images [Ashburner 

and Ridgway, 2012, Singh et al., 2015, Hong et al., 2012]. Such temporal evolution models 
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are usually characterized by some regularizing term and identified either by fitting 

parametric progression models on geometric features of the transformation or by choosing 

an opportune metric in the space of transformations to characterize specific evolution 

models in the image space. These models usually cannot capture complex spatial-temporal 

correlation of longitudinal neuroimaging data. The second one, usually identified as voxel-

based analysis, is to fit some parametric or semi-parametric regression models (e.g., linear 

mixed effects and estimating equations) at each voxel of registered images [Bernal-Rusiel et 

al., 2013, Li et al., 2013, Yuan et al., 2013, Guillaume et al., 2014, Skup et al., 2012]. These 

models usually ignore the moderate-to-long range spatial correlation of imaging data, even 

though local spatial correlation is usually introduced by the use of Gaussian smoothing with 

some apriori kernel size.

Recently, there is a growing interest in modeling complex spatial-temporal correlation of 

longitudinal neuroimaging data [Marco et al., 2015, Lorenzi et al., 2015, Derado et al., 2013, 

Guo et al., 2008, Woolrich et al., 2004, Gössl et al., 2001, Brezger et al., 2007, Penny et al., 

2005]. Such models are important for using longitudinal neuroimaging to guide treatment 

selection for individual patients and predict the progression of disease. For instance, in Guo 

et al. [2008], a predictive statistical model for PET and fMRI data was proposed to forecast a 

patient's brain activity following a specified treatment regimen. In Derado et al. [2013], a 

Bayesian spatial hierarchical model was proposed for predicting follow-up neural activity 

based on an individual's baseline functional neuroimaging data. In Marco et al. [2015] and 

Lorenzi et al. [2015], two novel spatio-temporal generative models were proposed by using 

either the Kronecker product of spatial and temporal covariance matrices or the kernel 

convolutions of a white noise Gaussian process. In general, borrowing strength from the 

spatial correlations as well as capturing temporal correlations between brain activity can 

significantly improve predictive performance.

The aim of this paper is to develop a spatio-temporal Gaussian process (STGP) framework 

to efficiently and flexibly model the spatial and temporal correlation structure of 

longitudinal neuroimaging data. Compared with the existing literature [Marco et al., 2015, 

Lorenzi et al., 2015, Derado et al., 2013, Guo et al., 2008, Woolrich et al., 2004, Gössl et al., 

2001, Brezger et al., 2007, Penny et al., 2005], we make several novel contributions. (i) Our 

STGP uses a functional principal component model (FPCA) to capture a large portion of 

spatio-temporal dependence structure, while it uses a partition space-time covariance model 

to capture some local spatio-temporal correlations. In particular, the basis functions for 

FPCA are directly learnt from data and can capture some key features of longitudinal 

neuroimaging data, which may not be easily modeled by using specific parametric models 

(e.g., Markov random field). In contrast, most existing models either assume some specific 

parametric models (e.g., autoregressive and Markov random field) or use the kernel 

convolutions of a white noise Gaussian process for a fixed kernel function. (ii) We develop a 

three-stage efficient estimation procedure to estimate all parameters associated with the 

spatio-temporal dependence structure. (iii) We propose a prediction method that borrows 

strength from the spatial and temporal correlations to achieve much better prediction of 

spatio-temporal changes. (iv) We use two real data sets to illustrate that STGP is a powerful 

tool for quantifying and/or predicting the spatio-temporal changes of brain structure and 
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function. A more general software package is under development and will be made publicly 

available at the URL http://www.bios.unc.edu/research/bias/software.html.

2 Methods

2.1 Model formulation

Consider a longitudinal neuroimaging study with n subjects. We observe neuroimaging 

measures (e.g., cortical thickness), denoted by {yi(d, tij)}, at voxel d of a three-dimensional 

(3D) volume (or 2D surface), denoted by , and a p×1 vector of covariates (e.g., age, 

gender, and diagnostic status), denoted by xi(tij) = (xi,1 (tij), …, xi,p (tij))T, for the i–th 

subject at time tij ∈  for i = 1, …, n and j = 1, …, mi, where mi denotes the total number of 

time points for the i-th subject. Without loss of generality,  and  are assumed to be 

compact sets in ℝ3 and ℝ, respectively, and ND denotes the number of voxels in .

The measurement model of our spatio-temporal Gaussian process (STGP) is given by

(1)

where μ(d, xi(t)) is the mean structure for characterizing the effects of covariates xi(t) = 

(xi,1(t), …, xi,p(t))T on longitudinal neuroimaging data across (d,t). The ηi(d,t) are random 

functions that characterize both individual image variations from μ(d, xi(t)) and the medium-

to-long-range dependence of longitudinal imaging data. Moreover, εi(d, t) are measurement 

errors that capture the local spatio-temporal dependence structure of longitudinal imaging 

data. It is assumed that ηi(d,t) and εi(d,t) are mutually independent and ηi(d,t) and εi(d,t) are, 

respectively, independent and identical copies of GP(0, Ση) and GP(0, Σε), where GP(μ, Σ) 

denotes a Gaussian process with mean function μ(d, t) and covariance function Σ((d, t), (d′, t
′)).

We consider a functional principal component analysis (FPCA) model for the process ηi(d, t) 
or a spectral decomposition of Ση((d, t), (d′, t′)). Let λ1 ≥ λ2 ≥ … ≥ 0 be the ordered 

eigenvalues of the linear operator determined by Ση with  and the ψl(d,t)'s be the 

corresponding orthonormal eigenfunctions [Yao and Lee, 2006, Hall et al., 2006, Chiou et 

al., 2004]. Then the spectral decomposition of Ση((d, t), (d′, t′)) is given by

(2)

Then ηi(d,t) admits the Karhunen-Loeve expansion as follows:
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(3)

where ξi,l = ∫  ∫d∈  ηi(d,t)ψl(d,t)d (d)dt is referred to as the l-th functional principal 

component score of the i-th subject, in which d (s) denotes the Lebesgue measure. The ξi,l's 

are uncorrelated random variables with E(ξi,l) = 0 and . If λl ≈ 0 for l ≥ L0 + 1, 

then (3) can be approximated by

(4)

Compared with Lorenzi et al. [2015], a key advantage of using FPCA is that ψl(d,t) are 

directly estimated from the data.

To accurately characterize Σε, we consider a partition covariance model for the local spatio-

temporal dependence structure of imaging data. Specifically, we partition  into K mutually 

exclusive brain regions of interest, denoted as {Ck : k = 1, …, K}, and then fit a parametric 

spatio-temporal model for each Ck. Moreover, εi(d,t) are assumed to be independent across 

partitioned brain regions, while the spatial-temporal correlation is preserved within each 

subregion. If we set K to be 1, then it reduces to the use of a single parametric model to fit 

residuals across all voxels in . When K is relatively large, the partition covariance model 

can dramatically increase flexibility and robustness in capturing local correlations.

There are at least two approaches for determining exclusive brain regions of interest. The 

first one is to use some existing anatomical parcellations of brain regions [Derado et al., 

2013]. A major drawback is that residuals εi(d,t) within each of these pre-defined regions 

may not be spatially correlated. Instead, we use the second approach based on a Gaussian 

mixture model to cluster  into K homogeneous regions. We will describe such mixture 

model in Section 2.2.

We add a subscript k(d) to denote the functional cluster to which voxel d belongs. Finally, 

for the k–th region of interest, we obtain an approximation of model (1) given by

(5)

where εi,k(d)(d,t) satisfies
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(6)

in which θk is a vector of unknown parameters in Σε((d, t), (d′, t′);θk). If the observation 

indices are rearranged such that the observations within a cluster are grouped together, the 

covariance matrix Σε = (Σε((d, t), (d′, t′))) is block-diagonal.

2.2 Estimation procedure

We develop a three-stage estimation procedure as follows.

• Stage (I): Estimate the parametric (or nonparametric) regression function μ(·, 

·).

• Stage (II): Estimate the covariance function Ση((d, t), (d′, t′)) and its associated 

eigenvalues and eigenfunctions.

• Stage (III): Estimate the unknown parameters in the partition covariance model 

by using a restricted maximum likelihood estimation.

Stage (I) is to estimate the mean function μ(d, xi(t)) at voxel d by pooling the data from all 

subjects. There is a large literature on the estimation of μ(d, xi(t)). We need to distinguish 

two scenarios. The first one is the dense sampling design, in that the number of observations 

per subject is relatively larger, that is, mini mi → ∞. It often assumes that μ(d, xi(t)) is a 

nonparametric function of xi(t). In this case, we need to resort to some nonparametric 

methods (e.g., penalized spline or local polynomial) to approximate μ(d, xi(t))[Yao and Lee, 

2006, Ruppert et al., 2003, Fan and Gijbels, 1996]. The second one is the sparse sampling 

design, in that the number of observations per subject is relatively small, that is, maxi mi < 

∞. In this case, we may consider a parametric function of μ(d, xi(t)) based on either linear 

(or nonlinear) mixed effects models or generalized estimating equations μ(d, xi(t)) [Bernal-

Rusiel et al., 2013, Li et al., 2013, Guillaume et al., 2014, Skup et al., 2012]. Moreover, even 

under this scenario, if time points tij are randomly drawn, we may fit a nonparametric 

function of μ(d, xi(t)).

Stage (II) is to estimate Ση(·, ·) and its eigenvalues and eigenfunctions. Stage (II) consists of 

three steps as follows.

• Step (II.1) is to calculate all individual functions ηi(d,t) using nonparametric 

regression techniques. For the dense sampling design, we apply a local linear 

regression method to smooth ri(d,t) = yi(d,t) − μ̂(d, xi(t)) over (d,t). Let 

 be the rescaled kernel function with 

a bandwidth h, where K(·) is a univariate kernel function. For each i, we 

estimate ηi(d,t) by minimizing
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(7)

with respect to β0 and βl, where Kh1 (tij − t) = K((tij − t)/h1)/h1. The local linear 

estimator of ηi(d,t), denoted as η̂
i(d,t), is given by β̂

0. We pool the data from all 

n subjects, and the optimal bandwidth (h, h1) is selected by minimizing the 

generalized cross-validation (GCV) score.

However, for the sparse sampling design, we use the local linear regression 

method to smooth ri(d,t) = yi(d,t) − μ̂(d, xi(t)) over d ∈  at each time point tij, 
which leads to a local linear estimator of ηi(d,tij), denoted as η̃

i(d,tij). Then, at 

each voxel, we pool out all observations {η̃
i(d,tij) : i = 1, …, n; j = 1, …, mi} to 

estimate ηi(d,t) by using a random effects model given by

(8)

where zi(t) is a pz × 1 vector of components that depends on time and/or some 

covariates, γi(d) is a pz × 1 vector of random effects, and δi(d,t) are 

measurement errors. It is also assumed that γi(d) and δi(d,t) are independent 

and follow N(0, Σγ(d)) and , respectively. For instance, we may set 

zi(t) as (1, t, t2)T or a vector of spline basis functions. We can estimate Σγ(d) 

and  by using restricted maximum likelihood estimation and then 

calculate a prediction of γi(d), denoted as , 

where zi = (zi(ti1), …, zi(timi))
T, , and η̃

i(d) = 

(η̃
i(d,ti1), …, η̃

i(d,timi))
T. Finally, we set η̂

i(d, t) = zi(t)T γ̂
i(d) across (d, t).

• Step (II.2) is to estimate Ση((d, t), (d′, t′)) by using the empirical covariance 

matrix of η̂
i(d,t) as follows:

(9)

Then, we can use the singular value decomposition of (9) to estimate the 

eigenvalue-eigenfunction pairs of Ση((d,t), (d′, t′)) in (2). Let (t1, …, tNT)T be 

an NT × 1 vector of evenly spaced (or distributed) grid points in an interval 

[mini,j(tij), maxi,j(tij)] such that t1 = mini,j(tij) < t2 < … < tNT = maxi,j(tij). Let 

ηî(t) = (η̂
i(d1, t),…, η̂

i(dND, t))T and η̂
i = (η̂

i(t1)T, …, η̂
i(tNT)T)T be an ND × 1 
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vector and an NDNT × 1 vector, respectively. Then, we have an NDNT × n 
matrix V = [η̂

1, …, η̂
n]. Since n is much smaller than NDNT, it is easier to 

calculate the eigenvalue-eigenvector pairs of the n × n matrix VTV, denoted by 

{(λ̂
i, ψ̂

i) : i = 1, …, n}. It can be shown that {(λ̂
i, Vψî) : i = 1, …, n} are the 

eigenvalue-eigenvector pairs of the NDNT × NDNT matrix VVT. It is common 

to choose a value L0 in (4) based on the proportion of explained variance 

[Greven et al., 2010]. We chose the number of principal components so that the 

proportion of the cumulative eigenvalue is above a prefixed threshold.

• Step (II.3) is to compute the functional principal component scores ξi,l. it 

follows from (3) that estimating ξ̂
i,l is equivalent to solving a linear model 

given by

Let ψ̂
l(t) = (ψ̂

l(d1, t), …, ψ̂
l(dND, t))T and ψ̂

il = (ψl̂(ti1)T, …, ψ̂
l(timi)

T)T, 

respectively, be an ND × 1 vector and an miND × 1 vector of the estimated l-th 

eigenfunction. Then, we have an miND × L0 matrix Ψ̂i = [ψî1, …, ψ̂
iL0]. We 

consider an estimate of the functional principal component score for the i-th 

subject as follows:

(10)

Stage (III) is to estimate all parameters in the partition covariance model as follows. We can 

estimate εi(d,tij) by using  and 

concatenate them into a vector ε̂(d) = (ε̂
i(d, tij) : i = 1, …, n; j = 1, …, mi)T for each voxel. 

Specifically, we use a penalized likelihood approach with an L1 penalty function for a 

Gaussian mixture model to cluster all residual vectors {ε̂(d) : d ∈ } into K homogeneous 

regions [Pan and Shen, 2007, Huang et al., 2015].

Let ε̂
i,k(t) = (ε̂

i,k(d)(d,t) : d ∈ Ck) be a |Ck| × 1 vector for k = 1, …, K. Then we can write an 

mi|Ck| × 1 vector εî,k = (εî,k(ti1)T, …, ε̂
i,k(timi)

T)T and an miND × 1 vector ε̂
i = (ε̂

i,k : k = 1, 

…, K). We also define  and . Second, we calculate a 

restricted maximum likelihood (REML) estimate of θ by maximizing the REML log-

likelihood given by
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(11)

where Σi,ε(θk) is an mi|Ck| × mi|Ck| covariance matrix of εi,k = (εi,k(ti1)T, …, εi,k(timi)
T)T, 

where εi,k(t) = (εi,k(d)(d,t) : d ∈ Ck), and 1mi|Ck| is an mi|Ck| × 1 vector having all the entries 

1. Furthermore, μ̂(θk) is given by

2.3 Prediction procedure

We present a prediction procedure based on a kriging technique. We start with splitting the 

data set into a training set and a test set. We fit the proposed model to the training set to 

estimate the fixed main effect, denoted as μ̂, eigenvalue-eigenfunction pairs, denoted as {(λ̂
l, 

ψ̂l(d,t)) : l = 1, …, L0}, and the parameters in the partition covariance model, denoted as θ̂. 

Then we use the prediction procedure given below to predict the image at time t0 for the i0-

th subject in the test set, based on the images at time ti0j ≠ t0 and the fitted model.

Given μ̂ estimated from the training set, it is straightforward to calculate μ̂(d, xi0(t)). Then 

we obtain ri0(d, ti0j) = yi0(d,ti0j)−μ̂(d, xi0(ti0j)). Given {(λ̂
l, ψ̂

l(d,t)) : l = 1, …, L0}, we can 

follow Stage (II) in Section 2.2 to calculate {ξ̂
i0,l : l = 1, …, L0} for the i0-th subject in the 

test set. Thus we can calculate

across all voxels d at time ti0j ≠ t0. Then, we can use the spatio-temporal kriging to calculate 

ε̂
i0,k(d)(d, t0) for all voxels d as follows. Let Σε,k = Var(εi,k) and c0,k = Cov(εi,k(t0), εi,k). The 

kriging predictor is given by ε̂
i0,k(t0) = c0,k(Σε,k)−1ε̂

i0,k for k = 1, …, K. In practice, c0,k and 

Σε,k are estimated by plugging in the REML estimates, θ̂
k. Finally, we predict yi0,k(d)(d,t0) 

according to
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(12)

2.4 Model validation

For each subject in the test set, we apply the prediction procedure described in Section 2.3 to 

predict the measurements across all voxels at time tij. We evaluate the prediction accuracy of 

STGP by quantifying the prediction error at each voxel d and time tij. Specifically, the 

square root of the mean squared prediction error (rtMSPE) for each voxel d is given by

(13)

where TE denotes the index set of all the subjects in the test set and | TE| is the cardinality 

of STE. The overall rtMSPE is calculated as follows:

(14)

3 Simulation studies

In this section, we use simulations to evaluate the predictive performance of STGP. For the 

REML function optimization, we used the Matlab function fmincon, which implements a 

Quasi-Newton method (Broyden-Fletcher-Goldfarb-Shanno method). The computation was 

done on Intel Corei3-2120, CPU 3.30 GHz and 8 GB RAM.

3.1 Study I: local linear regression approach

We simulated imaging data at all 1,000 voxels of a 10 × 10 × 10 phantom for n = 80 subjects 

at three time points. At a given voxel d = (d1, d2, d3)T, the data were generated from a 

spatio-temporal Gaussian process model according to

(15)

The covariate vector xi(t) = (xi,1(t), xi,2(t), xi,3(t), xi,4(t))T was fixed at their values obtained 

from our clinical data in Section 4.1, and its components represent gender, diagnostic status 

(NC, MCI, AD), and age, respectively. The fixed main effect function μ(d, xi(t)) was 
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specified using the estimates calculated from our real imaging data in Section 4.1. We set 

, where ξi,1 ∼ N (0, 62), ξi,2 ∼ N (0, 2.52), and ξi,3 ∼ N(0, 1.52).

The eigenfunctions were chosen as follows:

Figure 2 (a)-(c) show the three eigenfunctions at baseline on the d2 × d1, d2 × d1, and d3 × d2 

planes, respectively. We also used the real data in Section 4.1 to cluster all voxels into five 

mutually exclusive regions. Then, for the k-th subregion, we simulated realizations of the 

zero-mean Gaussian process εi,k(d)(d, t) according to model (6). For the choice of the 

covariance function, we used a nonseparable space-time covariance function proposed by 

Gneiting [2002].

We applied the three-stage estimation procedure described in Section 2.2 to the simulated 

data. First, we estimated the fixed main effect function μ(d, xi(t)) using penalized smoothing 

spline implemented in the R package vows [Reiss et al., 2014]. Then we used a local linear 

regression to estimate ηi(d, t) based on the residuals yi(d, t)−μ̂(d,xi(t)). Following the method 

described in Section 2.2, we estimated the eigenvalues and eigenfunctions associated with 

the covariance function Ση((d, t), (d′, t′)). Figure 1 (a) shows the relative eigenvalues, where 

the relative eigenvalues are defined as the ratios of the eigenvalues over their sum. It is 

shown that the first three eigenvalues account for more than 90% of the total variation and 

the others quickly vanish to zero. We present some selected slices of the estimated 

eigenfunctions corresponding to the largest three eigenvalues along with the true 

eigenfunctions in Figure 2. It shows that the estimates are close to the true eigenfunctions, 

and η̂
i(d,t) can capture major variation in the true eigenfunctions. The parameters of the 

covariance model in Gneiting [2002] were estimated by following Stage (III) in Section 2.2.

To evaluate the prediction accuracy of STGP, we split the simulated data set into a training 

set of 50 subjects and a test set of 30 subjects. Then we followed the prediction procedure in 

Section 2.3 to predict the image at the last time point for each of the 30 subjects in the test 

set, based on the first two images and the fitted model from the training set. We compared 

the predictive performance of STGP with those of the semiparametric model, which 

assumed the mean structure and uncorrelated errors, and the semiparametric model+FPCA. 

Table 1 shows the overall rtMSPE (14) for each model. As can be seen in Table 1, STGP 

outperforms the other two methods.

3.2 Study II: random effects model approach

By mimicking the real imaging data in Section 4.2, we simulated data at all 900 pixels of a 

30 × 30 phantom image for n = 24 subjects at different measurement times per subject. At a 

given pixel d = (d1, d2)T, the data were generated from a spatio-temporal Gaussian process 

model according to
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(16)

We used the real data in Section 4.2 to specify xi(t) = (xi,1(t), xi,2(t))T and the fixed main 

effect function μ(d, xi(t)), where the components of xi(t) represent gender and age, 

respectively. We set , where ξi,l were independently generated 

according to ξi,1 ∼ N(0, 122), ξi,2 ∼ N(0, 72), and ξi,3 ∼ N(0, 42). The eigenfunctions were 

chosen as follows:

Figure 3 (a)-(c) show the three eigenfunctions at baseline. We arbitrarily clustered all voxels 

into five mutually exclusive regions and simulated realizations of the zero-mean Gaussian 

process εi,k(d)(d,t) according to model (6). For the choice of the covariance function, we used 

a spatio-temporal autoregressive model [Derado et al., 2010], which extends the 

simultaneous autoregressive model in Hyun et al. [2014] to the spatio-temporal process 

context.

Similarly to the simulation in Section 3.1, we applied almost the same estimation procedure 

in Section 2.2 to the simulated data except a minor difference. Specifically, since the 

simulated data are sparse with unequal number of repeated measurements and different 

measurement times per subject, we used the random effects model approach in Stage (II) of 

Section 2.2 to estimate ηi(d, t). Then, η̂
i(d, t) was used to obtain the estimates of eigenvalue-

eigenfunction pairs associated with the covariance function Ση((d, t), (d′, t′)). The relative 

eigenvalues are shown in Figure 1 (b). Figure 3 shows the estimated eigenfunctions 

corresponding to the largest three eigenvalues along with the true eigenfunctions. Inspecting 

Figure 3 reveals that η̂
i(d, t) can faithfully recover the true eigenfunctions.

To examine the predictive performance of STGP, we randomly split the simulated data set 

into a training set of 16 subjects and a test set of 8 subjects. Then, we predicted the image at 

the last time point for each of the 8 subjects in the test set. The prediction results are 

summarized in Table 2, which shows that STGP performs well even when the longitudinal 

data are sparse with unequal number of repeated measurements and different measurement 

times per subject.

4 Real data analysis

4.1 ADNI PET data

We applied our proposed method to PET scans obtained at baseline, 6 months, and 12 

months obtained from 159 subjects in the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) study. Among them, there are 50 Normal Controls (NC), 58 Mild Cognitive 

Impairments (MCI) and 51 Alzheimer's Disease (AD) subjects. There are 97 males, whose 
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mean baseline age is 77 years with standard deviation 6 years, and 62 females, whose mean 

baseline age is 75.5 years with standard deviation 6.7 years. FDG-PET images acquired 

30-60 minutes post-injection were processed by using a standard image processing pipeline. 

A detailed description of PET protocols and acquisition can be found at www.adni-info.org. 

Such pipeline consists of average, spatial alignment, interpolation to a standard voxel size, 

intensity normalization, and smoothing to a common resolution of 8-mm full width at half 

maximum. The dimension of the processed PET images is 79×95×69.

We applied the prediction procedure in Section 2.3 to the PET scans. We randomly selected 

80 subjects for a training set and used their data to train the prediction model. We included 

gender, diagnostic status (HC, MCI, AD), and age as covariates of interest. We first fitted the 

spatio-temporal Gaussian process model to the training data to estimate the fixed main effect 

μ(d, xi(t)), eigenvalue-eigenfunction pairs, and the model parameters in (6). Figure 4 

presents the estimated μ̂(d, xi(t)) as a function of age corresponding to six combinations of 

diagnostic status and gender in a randomly selected voxel. For subjects in each of the six 

combinations, PET measure linearly decreases as age increases. Moreover, we observe that 

PET measures have two interesting patterns with HC>MCI>AD and Male>Female.

The voxels were partitioned into 128 mutually exclusive brain regions by our clustering 

method. For smoothing of the mean function, we used penalized smoothing spline with 

smoothing parameters estimated by REML. In Figure 5 (a), we present the relative 

eigenvalues associated with the covariance function Ση((d, t), (d′, t′)), which decrease slowly 

to zero. We also show some selected slices of the estimated eigenfunctions corresponding to 

the largest four eigenvalues in Figure 6. We specified (6) using the nonseparable Gneiting's 

covariance model as in the simulated example and estimated the model parameters by 

optimizing (11).

The fitted model was then used to predict the PET scans at 12 months for each of the 79 

subjects in the test set, based on the images at baseline and 6 months. Figure 7 shows the 

individual PET images predicted at 12 months (bottom panel) along with the corresponding 

observed images (upper panel) for three selected subjects consisting of an NC, an MCI, and 

an AD subject. We find that there is a strong agreement between the observed and predicted 

images.

We evaluated the prediction accuracy of our proposed model by calculating the rtMSPE(d) 

(13) and compared the results for the proposed model with those for the semiparametric 

model and the semiparametric model+FPCA. Figure 8 shows the rtMSPE(d) maps for the 

three models. Inspecting Figure 8 reveals that STGP provided substantially better prediction 

performance than the other models. We also calculated the overall rtMSPE for each model 

and compared the results in Table 3. The overall rtMSPE was reduced by 49% using the 

proposed model compared with the semiparametric model, while it was reduced by 36% 

compared with the semiparametric model+FPCA. We find that STGP can substantially 

increase the prediction accuracy compared with the other two models.
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4.2 Lateral ventricle surface data

We considered a longitudinal lateral ventricle surface data set obtained from a study of early 

brain development [Bompard et al., 2014]. See Bompard et al. [2014] for detailed 

information on imaging acquisition and analysis. The surface data set includes 

measurements for 24 healthy full-term infants (12 males and 12 females) at months 0 (2 

weeks), 3, 6, 9, 12 approximately, with different infants having different visiting times and 

some infants missing a visit. Informed consent was obtained from the parents of all 

participants, and the experimental protocols were approved by the Institutional Review 

Board, University of North Carolina at Chapel Hill.

All subjects were scanned on a 3T MR scanner (Siemens Medical System, Erlangen, 

Germany) housed in the Biomedical Research Imaging Center. The T2-weighted images 

used in this study were acquired using a turbo spin-echo (TSE) sequence: TR = 7380 ms, TE 

= 119 ms, Flip Angle = 150u, and resolution = 1.256 × 1.256 × 1.95mm3. A total of 70 

slices were acquired to cover the entire brain. None of the subjects were sedated for MRI; all 

scans were performed with subjects during sleep. Subjects were fed before scanning, then 

swaddled, allowed to fall asleep, fitted with ear protection and their heads secured.

We applied a pre-processing pipeline to all T2-weighted images in order to segment lateral 

ventricles (LVs). Such pipeline includes removal of non-brain tissues such as the skull and 

dura using Brain Surface Extractor (BSE)[Shattuck and Leahy, 2001], bias correction using 

the non-parametric non-uniform intensity normalization (N3) method [Sled et al., 1998], and 

resampling to a resolution of 1 × 1 × 1mm3. Subsequently, we applied a longitudinal 

neonatal brain image segmentation algorithm [Shi et al., 2010] and then outlined the LV 

structures based on the segmented CSF maps. Finally, two observers performed manual 

correction of the lateral ventricle segmentation using the ITK-SNAP software [Yushkevich et 

al., 2006].

We applied the SPHARM-PDM [Styner et al., 2004] shape representation to establish 

surface correspondence and aligned the surface location vectors across all subjects. The 

sampled SPHARM-PDM is a smooth, accurate, fine-scale shape representation. The left 

lateral ventricle surface of each infant is represented by 1002 location vectors with each 

location vector consisting of the spatial x, y, and z coordinates of the corresponding vertex 

on the SPHARM-PDM surface.

We applied the prediction procedure in Section 2.3 to the spatial x, y, and z coordinates on 

the SPHARM-PDMs of the left lateral ventricle. Our analysis included the SPHARM-PDM 

representation of left lateral ventricle surfaces as responses and gender and age (in months) 

as covariates. We randomly selected 16 infants for a training set and fitted STGP to the 

training set. We estimated μ(d, xi(t)) by using penalized smoothing spline. Figure 9 presents 

observed individual trajectories of the surface location vectors and their corresponding 

estimated curves μ̂(d, xi(t)) as functions of age across gender on a randomly selected vertex. 

Overall, most of these estimated curves μ̂(d, xi(t)) increase initially and slow down around 

10 months.
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Since different subjects have different measurement times and unequal number of repeated 

measurements, we estimated eigenvalue-eigenfunction pairs by using the random effects 

model approach described in Section 2.2. The relative eigenvalues are shown in Figure 5 (b). 

To characterize the local correlation, we partitioned the voxels on the SPHARM-PDM 

surface into 5 mutually exclusive regions by using our clustering method based on a 

Gaussian mixture model and specified the covariance function (6) using a spatio-temporal 

autoregressive model as illustrated in Section 3.2. The unknown parameters in (6) were 

estimated by REML.

We used the fitted model to predict the x, y, and z coordinates at the last time point for each 

of the 8 infants in the test set, based on their spatial coordinates at earlier time points. We 

compare the individual predicted spatial coordinates with the observed coordinates for three 

randomly selected subjects in Figure 10. To evaluate the predictive performance, we 

calculated the rtMSPE(d) for the x, y, and z coordinates, respectively. The results are shown 

in Figure 11 for the proposed model along with those for the semiparametric model and the 

semiparametric model+FPCA. Figure 11 shows that STGP improves upon the other two 

models. We also calculated the overall rtMSPE for each model and present the results in 

Table 4. The overall rtMSPE was reduced by 19 to 32% using STGP compared with the 

semiparametric model, while it was also reduced by 9 to 11% compared with the 

semiparametric model+FPCA. With the limited number of subjects, the improvements 

decrease compared with the results in Section 4.1, but nevertheless STGP outperformed the 

other two models.

5 Discussion

We have proposed a spatio-temporal Gaussian process framework for modeling 

neuroimaging data from longitudinal studies. We have developed a three-stage estimation 

procedure and a predictive method based on STGP. We have applied the proposed model to 

two real data analyses including longitudinal positron emission tomography data and 

longitudinal lateral ventricle surface data to show that our approach can substantially 

improve predictive performance compared with some existing methods.

Our approach provides a computationally efficient framework for approximating the 

unstructured variance-covariance matrix of ultra-high dimensional data by explicitly 

modeling the long-to-medium-to-short-range spatio-temporal dependence. The 

computational cost for the estimation of the mean function and the FPCA model is relatively 

low while the optimization of the REML function takes most of the computing time. For the 

ADNI PET data in Section 4.1, it took about 4 hours to optimize the REML function for the 

largest brain region. The computing time for the optimization over the entire domain is 

significantly reduced when it is implemented in a parallel manner.

An important issue with our partition covariance model is that one needs to choose the 

number of partitioned brain regions. In our examples, the partition was created in a way that 

the number of voxels in each subregion is not too large in order to reduce the computational 

cost. More research on the selection of this tuning parameter is needed. It is also interesting 

to extend our FPCA model to incorporate covariates. Our proposed model incorporates the 
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effect of the covariates through the mean function, but the influence of the predictor can also 

be incorporated through the random components of a functional principal components 

expansion [Chiou et al., 2004]. It would be interesting to investigate the predictive abilities 

of various models with a covariate effect either on the mean function or on the residual 

process.

Another important issue is to check the key assumptions of the proposed spatio-temporal 

Gaussian process. Specifically, we may develop various diagnostic measures (e.g., residuals, 

local influence measure, residual process and test statistics) to systematically test the mean 

structure in (1) and examine potential outliers and influential points. Subsequently, we will 

examine the assumption of FPCA by examining whether FPCA is an efficient method for 

capturing major variation in longitudinal functional data. Finally, we can use local spectral 

frequency plots to investigate the short-range correlation structure of neuroimaging data.
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Figure 1. 
Simulation results: the first 10 relative eigenvalues of Σ̂

η((d, t), (d′, t′)) for (a) Study I and 

(b) Study II.
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Figure 2. 
Simulation results from Study I: a selected slice of (a) true ψ1(d, t); (b) true ψ2(d, t); (c) true 

ψ3(d, t); (d) ψ̂
1(d, t); (e) ψ2̂(d, t); and (f) ψ̂

3(d, t).
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Figure 3. 
Simulation results from Study II: a selected slice of (a) true ψ1(d, t); (b) true ψ2(d, t); (c) true 

ψ3(d, t); (d) ψ̂
1(d, t); (e) ψ2̂(d, t); and (f) ψ̂

3(d, t).
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Figure 4. 
Results from the ADNI PET data in a randomly selected voxel: the fitted mean curves for (a) 

male NC subjects; (b) male MCI subjects; (c) male AD subjects; (d) female NC subjects; (e) 

female MCI subjects; and (f) female AD subjects.
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Figure 5. 
(a) The first 50 relative eigenvalues of Σ̂

η((d, t), (d′, t′)) for the ADNI data; and (b) The first 

10 relative eigenvalues for the surface data.
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Figure 6. 
Results from the ADNI data: (a) ψ1̂(d, t); (b) ψ̂

2(d, t); (c) ψ̂
3(d, t); and (d) ψ̂

4(d, t). Selected 

slices are shown.
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Figure 7. 
Results from the ADNI data: (a) observed and (b) predicted PET images at 12 months for an 

NC, an MCI, and an AD subject (from left to right). One selected slice is shown.
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Figure 8. 
Results from the ADNI data: rtMSPE maps for predicting the PET scans at 12 months for 79 

subjects in the test set. Selected slices are shown for (a) the semiparametric model; (b) the 

semiparametric model+FPCA; and (c) STGP.
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Figure 9. 
Results from the surface data on a randomly selected vertex: Observed individual trajectories 

of the surface location vectors and the smooth estimates of the mean function for (a) x-

coordinate for male infants; (b) y-coordinate for male infants; (c) z-coordinate for male 

infants; (d) x-coordinate for female infants; (e) y-coordinate for female infants; and (f) z-

coordinate for female infants.
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Figure 10. 
Results from the surface data: (a) observed and (b) predicted coordinates for Subject 4; (c) 

observed and (d) predicted coordinates for Subject 5; (e) observed and (f) predicted 

coordinates for Subject 6. The x, y, and z coordinates are shown from left to right.
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Figure 11. 
Results from the surface data: rtMSPE maps for predicting the spatial coordinates at the last 

time points for 8 subjects in the test set. The x, y, and z coordinates are shown from left to 

right for (a) semiparametric model; (b) semiparametric model+FPCA; and (c) STGP.
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Table 1

Simulation results. The overall rtMSPE was obtained for the simulated data in Study I.

Model rtMSPE

Semiparametric model 0.0871

Semiparametric model+FPCA 0.0428

STGP 0.0395
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Table 2

Simulation results. The overall rtMSPE was obtained for the simulated data in Study II.

Model rtMSPE

Semiparametric model 0.4885

Semiparametric model+FPCA 0.4278

STGP 0.4256
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Table 3

Results from the ADNI data. The overall rtMSPE was obtained for predicting the PET scans at 12 months.

Model rtMSPE

Semiparametric model 0.0692

Semiparametric model+FPCA 0.0550

STGP 0.0354
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Table 4

Results from the surface data. The overall rtMSPE was obtained for predicting the spatial coordinates at the 

last time points.

Model rtMSPE

x-coordinate y-coordinate z-coordinate

Semiparametric model 1.6111 1.8847 1.5674

Semiparametric model+FPCA 1.3175 1.6999 1.1959

STGP 1.2022 1.5199 1.0730
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