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Abstract

It is important to characterize the temporal trajectories of disease-related biomarkers in order to 

monitor progression and identify potential points of intervention. These are especially important 

for neurodegenerative diseases, as therapeutic intervention is most likely to be effective in the 

preclinical disease stages prior to significant neuronal damage. Neuroimaging allows for the 

measurement of structural, functional, and metabolic integrity of the brain at the level of voxels, 

whose volumes are on the order of mm3. These voxelwise measurements provide a rich collection 

of disease indicators. Longitudinal neuroimaging studies enable the analysis of changes in these 

voxelwise measures. However, commonly used longitudinal analysis approaches, such as linear 

mixed effects models, do not account for the fact that individuals enter a study at various disease 

stages and progress at different rates, and generally consider each voxelwise measure 

independently. We propose a multivariate nonlinear mixed effects model for estimating the 

trajectories of voxelwise neuroimaging biomarkers from longitudinal data that accounts for such 

differences across individuals. The method involves the prediction of a progression score for each 

visit based on a collective analysis of voxelwise biomarker data within an expectation-

maximization framework that efficiently handles large amounts of measurements and variable 
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number of visits per individual, and accounts for spatial correlations among voxels. This score 

allows individuals with similar progressions to be aligned and analyzed together, which enables 

the construction of a trajectory of brain changes as a function of an underlying progression or 

disease stage. We apply our method to studying cortical β-amyloid deposition, a hallmark of 

preclinical Alzheimer's disease, as measured using positron emission tomography. Results on 104 

individuals with a total of 300 visits suggest that precuneus is the earliest cortical region to 

accumulate amyloid, closely followed by the cingulate and frontal cortices, then by the lateral 

parietal cortex. The extracted progression scores reveal a pattern similar to mean cortical 

distribution volume ratio (DVR), an index of global brain amyloid levels. The proposed method 

can be applied to other types of longitudinal imaging data, including metabolism, blood flow, tau, 

and structural imaging-derived measures, to extract individualized summary scores indicating 

disease progression and to provide voxelwise trajectories that can be compared between brain 

regions.
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1. Introduction

It is important to characterize the temporal trajectories of disease-related biomarkers in order 

to monitor progression and to identify potential points of intervention. Such a 

characterization is especially important for neurodegenerative diseases, as therapeutic 

intervention is most likely to be effective in the preclinical disease stages prior to significant 

neuronal damage. For example, in Alzheimer's disease, brain changes evident in structural, 

functional, and metabolic imaging may occur more than a decade before the onset of 

cognitive symptoms (Bateman et al., 2012), with cortical amyloid-β (Aβ) accumulation 

being one of the earliest changes (Jack et al., 2013; Sperling et al., 2014a; Villemagne et al., 

2013). Such brain changes can be measured using neuroimaging techniques and can be 

tracked over time at the individual level via longitudinal studies.

Given the focus on preventing and delaying the onset of incurable neurodegenerative 

diseases, the emphasis of clinical trials has shifted to studying clinically normal individuals 

with positive biomarkers, for example those exhibiting brain amyloid in the case of AD, in 

order to identify early intervention opportunities in the preclinical stages of disease 

(Sperling et al., 2014b). It is important to determine the temporal trajectories of 

hypothesized biomarkers in the early disease stages in order to better understand their 

associations with disease progression. Current neuroimaging methods allow for the 

characterization of the brain at the mm3 level, generating hundreds of thousands of 

measurements that can be used as potential biomarkers of neurodegenerative diseases. 

Understanding the temporal trajectories of these voxelwise measurements can provide clues 

into disease mechanisms by identifying the earliest and fastest changing brain regions.

Changes in voxelwise neuroimaging measurements over time are commonly studied using 

linear mixed effects models (Bernal-Rusiel et al., 2012, 2013; Ziegler et al., 2015). 
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Univariate linear mixed effects models use time or age to characterize changes in a single 

imaging measure. However, time or age may not be the appropriate metric for measuring 

disease progression due to variability across individuals. While covariates can be included in 

linear mixed effects models to account for this variability, choosing the correct set of 

covariates is difficult and covariates generally have a more complicated association with 

disease progression than the assumed linear relationship of linear mixed effects models. 

Instead, this variability can be accounted for by aligning individuals in time based on their 

longitudinal biomarker profiles within a multivariate framework. This is the premise of the 

Disease Progression Score method, which has been applied to studying changes in cognitive 

and biological markers related to Alzheimer's disease (Jedynak et al., 2012, 2014; Bilgel et 

al., 2014). It is assumed that there is an underlying progression score (PS) for each subject 

visit that is an affine transform of the subject's age, and given this PS, it is possible to place 

biomarker measurements across a group of subjects onto a common timeline. The affine 

transformation of age removes across-subject variability in baseline biomarker measures as 

well as in their rates of longitudinal progression. Each biomarker is associated with a 

parametric trajectory as a function of PS, whose parameters are estimated along with the PS 

for each subject. This allows one to “stitch” data across subjects to obtain temporal 

biomarker trajectories that fit an underlying model (Fig. 1).

Previous approaches have used certain cognitive measures, such as ADAS-Cog (Caroli and 

Frisoni, 2010; Yang et al., 2011), MMSE (Doody et al., 2010) or CDR-SB (Delor et al., 

2013) as a surrogate for disease progression to delineate the trajectories of other AD-related 

cognitive measurements. These methods operate with the assumption that disease 

progression is reflected by a single cognitive measurement rather than a profile of multiple 

measurements, and therefore are inherently limited in their characterization of disease 

evolution. Younes et al. (2014) fitted a piecewise linear model to longitudinal data assuming 

that each biomarker becomes abnormal a certain number of years before clinical diagnosis, 

and this duration was estimated for each biomarker to yield longitudinal trajectories as a 

function of time to diagnosis. A quantile regression approach was employed by Schmidt-

Richberg et al. (2015) to align a sample of cognitively normals and mild cognitively 

impaired (MCI) with a sample of MCI and AD, and then to estimate biomarker trajectories. 

These approaches assume that all individuals are on a path to disease and require knowledge 

of clinical diagnosis. Therefore, they are not suitable for studying the earliest changes in 

individuals who have not converted to a clinical diagnosis. Donohue et al. (2014) applied a 

self-modeling regression model within a multivariate framework to characterize the 

longitudinal trajectories of a set of cognitive, CSF, and neuroimaging-based biomarkers. 

This approach allows for across-subject variability only in the age of onset, not in 

progression speed. Models incorporating fixed effects as well as individual-level random 

effects have been proposed to study ADAS-Cog (Ito et al., 2011; Schiratti et al., 2015b) and 

regional cortical atrophy (Schiratti et al., 2015b), and Schulam et al. (2015) used a spline 

model that incorporates longitudinal clustering and modeling of individual-level effects to 

study trajectories of scleroderma markers. These mixed effects models take into 

consideration each measure separately rather than using them within a unifying framework. 

Others have used event-based probabilistic frameworks to determine the ordering of changes 

in longitudinal biomarker measures as well as the appropriate thresholds for separating 
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normal from abnormal measures (Fonteijn et al., 2012; Young et al., 2014). These methods 

characterize longitudinal biomarker trajectories in a discrete framework rather than a 

continuous one. Schiratti et al. (2015a) proposed an extension to their earlier approach to 

model multiple measures together. Biomarker trajectories are assumed to be identical except 

for a shift along the disease timeline, and this assumption prevents hypothesis testing 

regarding rate of change across biomarkers. Furthermore, biomarkers are assumed to be 

conditionally independent given the subject-level random effects, but this assumption is not 

realistic when biomarkers are voxel-based neuroimaging measurements.

Here, we adapt the disease progression score principle to studying longitudinal 

neuroimaging data by making substantial innovations to the progression score model and 

parameter estimation procedure. First, voxelwise imaging measures constitute the 

biomarkers in the model, and are analyzed together in a multivariate framework. Studying 

progression at the voxel level rather than using region of interest (ROI)-based measures 

allows for the discovery of patterns that may not be confined within any given ROI. Second, 

since voxelwise imaging measures have an underlying spatial correlation, we incorporate the 

modeling of the spatial correlations among the biomarker error terms. Modeling spatial 

correlations makes the inference of the subject-specific progression scores less susceptible to 

the inherent correlations among the voxels. Third, we incorporate a bivariate normal prior on 

the subject-specific variables that define the relationship between age and PS. The prior 

allows a better modeling of the variance within individuals and enables the incorporation of 

individuals with a single visit into the model fitting procedure. Fourth, instead of using an 

alternating least-squares approach for parameter estimation as presented by Jedynak et al. 

(2012), we formulate the model fitting as an expectation-maximization (EM) algorithm, 

which guarantees convergence to a local maximum and allows for an efficient model fitting 

framework for a large number of biomarkers. Finally, we present a statistical framework for 

comparing the onset and rate of progression across different regions. This paper extends our 

previous approach for analyzing longitudinal voxelwise imaging measures using the 

progression score framework by incorporating a prior on the subject-specific variables, 

presenting a hypothesis testing framework for determining biomarker ordering, and 

performing an extensive validation of the method (Bilgel et al., 2015c).

We first show using simulated data that the model parameters are estimated accurately and 

that modeling spatial correlations improves parameter estimation. We then apply the method 

to distribution volume ratio (DVR) images derived from Pittsburgh compound B (PiB) PET 

imaging, which show the distribution of cerebral fibrillar amyloid. Models fitted using data 

for 104 participants with a total of 300 PiB-PET visits reveal that the precuneus and frontal 

cortex show the greatest longitudinal increases in fibrillar amyloid, with smaller increases in 

lateral temporal and temporoparietal regions, and minimal increases in the occipital cortex 

and the sensorimotor strip. Our results suggest that the precuneus is the earliest cortical 

region to accumulate amyloid. The results are consistent across the two hemispheres, and the 

estimated PS agrees with a widely used PET-based global index of brain amyloid known as 

mean cortical DVR. The presented method can be applied to other types of longitudinal 

imaging data to understand voxelwise trajectories and to quantify each individual scan 

against the estimated progression pattern.

Bilgel et al. Page 4

Neuroimage. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Method

2.1. Model

Our goal is to characterize the progression of disease or an underlying process as measured 

using a collection of relevant biomarkers. Disease or process stage, as indicated by a 

progression score (PS), s, is intrinsically related to time t, measured as the age of a subject. 

Since individuals differ in their onset and rate of progression, the relationship between s and 

t varies across individuals. We model the progression s as a linear function of time t for each 

individual and allow for the prediction of separate slopes and intercepts to account for this 

variability across individuals.

Generally, there is a particular presentation of symptoms and biomarker measurements at a 

given progression stage. Furthermore, as the disease or process progresses, there is a 

particular temporal progression of the biomarkers. In this work, we consider voxelwise PET 

measures as biomarkers and model the temporal trajectory of each biomarker, or voxel, as a 

linear function of the progression s. Considering voxelwise neuroimaging measures as 

biomarkers may appear unusual; however, these measures fit the NIH definition of a 

biomarker: “a characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes, or pharmacologic responses to a 

therapeutic intervention” (Biomarkers Definitions Working Group, 2001). As illustrated in 

Figure 1, PS aligns longitudinal biomarker measures better than age since it accounts for 

differences across individuals in rates as well as baseline levels of progression. After this 

alignment in time, the estimated biomarker trajectories can be compared on the common PS 

scale.

In the following subsections, we describe the progression score model in detail.

2.1.1. Subject-specific model—The progression score sij for subject i at visit j is 

assumed to be an affine transformation of the subject's age tij:

(1)

where , and . The subject-specific variables, αi and βi contained in the 

vector ui, are assumed to follow a bivariate normal distribution, i.e., , which 

are independent and identically distributed across subjects. This model accounts for 

differences between subjects in the rate of progression via α, and in the baseline levels of 

disease progression via β.

2.1.2. Subject-specific prior covariance model—The prior covariance V is modeled 

as a 2×2 unstructured covariance matrix. Log-Cholesky parametrization of V, given by ν, 

ensures that V ≡ V (ν) is positive definite (Pinheiro and Bates, 1996). Let 
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be an upper triangular matrix such that V = UTU. If the diagonal elements of U are 

constrained to be positive, then this Cholesky decomposition is unique. To ensure that the 

diagonal elements of U are positive in an unconstrained optimization framework, we use the 

natural logarithm of the diagonal elements of U as parameters. We then vectorize the upper 

triangular elements (including the diagonal) of U to obtain the parameter vector ν = [log U11 

U12 log U22]T, which uniquely parameterizes V and ensures its positive definiteness.

2.1.3. Biomarker trajectory model—The collection of K biomarker measurements form 

the K × 1 vector yij for subject i at visit j. Longitudinal trajectories associated with these 

biomarkers are assumed to be linear and parameterized by K × 1 vectors a and b:

(2)

Here, a = [a1, a2, …, aK]T, b = [b1, b2, …, bK]T, and  is the observation noise. 

ϵij are assumed to be independent and identically distributed across subjects and visits.

2.1.4. Noise covariance model—The matrix R is assumed to have the form R = ΛCΛ, 

where Λ is a diagonal matrix with positive diagonal elements λ and C is a correlation matrix 

parameterized by ρ. This parameterization guarantees that R is a positive definite matrix 

(Galecki and Burzykowski, 2013). For ease of notation, we let Λ ≡ Λ(λ), C ≡ C(ρ), and R ≡ 

R(λ, ρ).

When the biomarkers under consideration have a spatial organization, i.e., if they are 

voxelwise measurements from medical images, then the correlation matrix C can be 

described as a function of the spatial distance d ≡ d(k, k′) between pairs of voxels indexed 

by k and k′ as well as the spatial correlation parameter ρ. Possible univariate 

parameterizations (i.e., ) of C are presented in Table 1. All of these spatial 

correlation functions ensure that C is a valid correlation matrix (Galecki and Burzykowski, 

2013).

2.1.5. Overall model—The overall model, diagrammatically summarized using plate 

notation in Fig. 2, is described by the following equations:

(3)

(4)

(5)
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(6)

While this model is a mixed effects model since it incorporates the fixed effects a, b as well 

as the individual-level random effects ui, and is nonlinear in the parameters, it departs from 

the form of the nonlinear mixed effects model described by Lindstrom and Bates (1990). 

Therefore, instead of pursuing a restricted maximum likelihood approach, we use an 

expectation-maximization (EM) approach, as described below.

Let θ be the collection of model parameters m, ν, a, b, λ, ρ. The complete log-likelihood for 

the model is

(7)

(8)

(9)

where . yi is a vector of all biomarker measures stacked across all visits of 

individual i, and yij is a vector of all biomarker measures for individual i at visit j. Given n 

individuals, we use the summation notation Σi,j as a shorthand for , where vi is 

the number of visits for individual i.

Since the marginal likelihood f(y; θ) involves an integral over all possible values of ui, 

maximizing it directly is difficult. Therefore, we use the expectation-maximization (EM) 

approach, where we consider the subject-specific variables {ui} as hidden. EM allows us to 

reformulate the maximization problem in terms of the complete log-likelihood ℓ(y, u; θ). 

The observations y include biomarker measurements {yij} at each visit. The unknown 

parameters are the subject-specific variable distribution parameters m and ν, the trajectory 

parameters a and b, and the noise covariance parameters λ and ρ.

2.2. E-step

(y, u) are the complete data. Let θ′ = {m′, ν′, a′, b′, λ′, ρ′} be the previous parameter 

estimates. By Proposition A.1, the E-step integral is proportional to 

, where Φ is the multivariate normal probability density 

function with mean
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(10)

and covariance . Note that for individuals with a single visit, 

 is a singular matrix. Considering ui as parameters, as in Jedynak et al. (2012) 

or Bilgel et al. (2015c), is equivalent to assuming that V has infinitely large diagonal 

elements (i.e., an uninformative uniform prior) such that its inverse disappears. Therefore, it 

is not possible to compute  for individuals having only one visit using this approach. On 

the other hand, incorporation of a bivariate normal prior on the subject-specific variables ui 

allows Eq. 10 to be computed for individuals with a single visit.

Evaluation of the E-step integral involves second moments of a Gaussian random variable. 

We ignore the terms that do not depend on θ as they will not be relevant in the maximization 

step and obtain:

(11)

2.3. M-step

Here, we provide the update equations for the EM algorithm obtained by maximizing Q(θ, θ

′) with respect to each parameter, and provide derivations for these update equations in the 

Appendix. The update equations depend on previous parameter estimates θ′ = {m′, ν′, a′, b′, 

λ′, ρ′} as well as the progression score estimates , where  is as given in Eq. 10:

(12)
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(13)

(14)

(15)

(16)

Note that if C is fixed to be the identity matrix, a closed form solution for λ exists, as given 

in Equation A.15. Once the optimal parameters are found, the subject-specific variables are 

predicted using Eq. (10).

2.4. Parameter standardization

As described in Proposition A.2, there are certain reparameterizations that yield identical 

models. For example, one can multiply the trajectory slope parameters by 2 and divide all 

progression scores by 2 (which is achieved by dividing all α and β values by 2) without 

altering the model. This is the scaling degree of freedom. There is also a translation degree 

of freedom. We account for these degrees of freedom and anchor the model by calibrating 

the progression score scale. We calibrate such that baseline PS has a mean of 0 and a 

standard deviation of 1. This involves replacing the model parameters {m, V (ν), a, b, R(λ, 

ρ)} with , where  is the mean 

progression score at baseline, and  is the standard deviation of 

baseline progression scores. We standardize the subject-specific estimates αi, βi, and sij 

accordingly: , , and . This reparametrization yields a PS 

scale where 0 corresponds to the sample average at baseline and the variance of PS at 

baseline is 1.
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2.5. Implementation details

We first fit the model assuming that C = IK×K and Λ is a diagonal matrix with positive 

elements λ. We denote the estimated Λ in this model as . The estimates obtained from this 

model for the parameters a, b, m, V are used as initializations in the model where C = C(ρ). 

In this model where correlations are taken into account, we assume that , where λ is 

an unknown parameter to be estimated. The spatial correlation function among those 

presented in Table 1 that results in the highest log-likelihood value is chosen for the final 

model.

The EM algorithm is implemented in MATLAB 8.1 and Statistics Toolbox 8.2 (The 

MathWorks Inc., Natick, MA). Our code is freely available online.1

2.6. Confidence intervals

We use bootstrapping via Monte Carlo resampling to estimate confidence intervals for each 

model parameter. We sample with replacement from the original collection of subjects to 

generate a new dataset containing an equal number of subjects and fit the model on this 

generated sample. This sampling and fitting procedure is repeated to generate bootstrap 

estimates. We then compute 95% confidence intervals for each parameter across the 

bootstrap estimates. In the bootstrap experiments, we fix the value of ρ at its estimate on the 

whole sample to enable faster computation.

2.7. Comparison to linear mixed effects model

We compared our model to a linear mixed effects (LME) model that included random 

intercepts and slopes at each voxel. The LME model for subject i, visit j and voxel k is given 

by

(17)

where  are the fixed effects,  are the random effects and 

 is the observation noise. We used the LME implementation in MATLAB 

Statistics Toolbox 8.2.

2.8. Simulated data set

We simulated visits such that the sample was similar to our PET data in terms of number of 

visits per subjects and age range. We generated a data set with 100 individuals, each with up 

to 7 visits with 5 × 5 × 5 images with 4 mm isotropic voxels. We fixed the ground truth 

values of the model parameters θ = {m, ν, a, b, λ, ρ} at values close to those we observed in 

exploratory models fitted to DVR data. We generated ui from a bivariate normal distribution 

with mean m and variance V (ν). The progression score for each visit was then computed as 

1https://www.iacl.ece.jhu.edu/Resources
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, and observations were generated using the PS model. We performed 1000 

bootstrap iterations to obtain 95% confidence intervals for each parameter and subject-

specific variable. We computed the cosine similarity for each variable for each bootstrap 

experiment using

(18)

where  is the estimate of the variable of interest (a, b, α, β, or s) and ϕ is the corresponding 

ground truth value. A value of 1 indicates a perfect estimate.

2.9. Amyloid imaging data set

We used longitudinal positron emission tomography (PET) data for participants from the 

Baltimore Longitudinal Study of Aging (Shock et al., 1984) neuroimaging substudy 

(Resnick et al., 2000). Participant demographics are presented in Table 2. Starting in 2005, 

amyloid-beta (Aβ) PET scans were acquired on a GE Advance scanner over 70 minutes 

following an intravenous bolus injection of Pittsburgh compound B (PiB), yielding dynamic 

PET scans with 33 time frames. PET images were reconstructed using filtered 

backprojection with a ramp filter, yielding a spatial resolution of approximately 4.5 mm full 

width at half max at the center of the field of view (image matrix = 128 × 128, 35 slices, 

pixel size = 2 × 2 mm, slice thickness = 4.25 mm).

The frames of each dynamic PiB-PET scan were aligned to the average of the first two 

minutes to remove motion (Jenkinson et al., 2002). For registration purposes, we obtained 

static images by averaging the first 20 minutes of the dynamic PiB-PET scan. Follow-up 

PiB-PET scans were rigidly registered onto the baseline PiB-PET within each participant 

using the 20-minute average images. Baseline magnetic resonance images (MRIs) were 

rigidly registered onto their corresponding 20-minute PiB-PET average, and their FreeSurfer 

segmentations (Dale et al., 1999; Desikan et al., 2006) were transformed accordingly. 

Distribution volume ratio (DVR) images were calculated in the native space of each PiB-

PET image using the simplified reference tissue model with the cerebellar gray matter as 

reference tissue (Zhou et al., 2003). The MRIs coregistered with the PET were deformably 

registered (Avants et al., 2008) onto a study-specific template (Avants et al., 2010; Bilgel et 

al., 2015b) and transformed to 4 mm isotropic MNI space using a pre-calculated affine 

transformation. The resulting mappings were applied to the DVR images that have been 

registered to baseline to bring them into the MNI space. We used all voxels within the brain 

mask in the MNI space to fit the PS model.

Mean cortical DVR is a widely used measure obtained from PiB-PET images for 

quantifying the level of brain amyloid. We computed mean cortical DVR for each PiB-PET 

image by averaging the voxelwise DVR values across cingulate, frontal, parietal, lateral 

temporal, and lateral occipital cortices, excluding the sensorimotor strip. We used a mean 

cortical DVR threshold of 1.06, which was computed from a two-class Gaussian mixture 
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model fitted on baseline measures, to separate individuals into PiB- and PiB+ groups, as 

described in Bilgel et al. (2015a).

2.10. Hypothesis testing

The confidence intervals obtained via bootstrapping allow for hypothesis testing. For the 

amyloid images, we focus on studying the precuneus, since previous cross-sectional amyloid 

imaging studies have suggested that precuneus has the highest deposition levels (Mintun et 

al., 2006) and provided preliminary evidence that it may be the most rapid accumulator 

(Rodrigue et al., 2012) among cortical regions. Our specific hypotheses are as follows:

1. The precuneus has the highest amyloid load along stages of amyloid 

accumulation.

2. The precuneus accumulates amyloid faster than other cortical regions.

We refer to the progression scores calculated using the DVR images as Aβ-PS. To test the 

first hypothesis, we compare the amyloid levels in the precuneus with other regions at 

various Aβ-PS values spanning the range observed in our data set. Our purpose in 

performing these comparisons is to shed light onto the temporal ordering of changes in di 

erent cortical regions. For each bootstrap experiment, we average the predicted DVR levels 

 within each ROI to obtain

(19)

where k is the voxel index and r is the ROI index. We then compute the following statistic 

for each bootstrap:

(20)

We reject the null hypothesis that the amyloid load in the precuneus at Aβ-PS = s is not 

different from other regions at significance level γ if the two-sided 100(1−γ) confidence 

interval of the test statistic T, computed using the bootstrap estimates of T, does not contain 

0. The smallest value of γ such that the two-sided 100(1−γ) confidence interval of the test 

statistic T contains 0 is the p-value of the test.

To test the second hypothesis, we pursue a similar approach using the trajectory slope 

parameter a. For each bootstrap experiment, we obtain the average ak per cortical ROI to 

obtain ar, where r the ROI index. We then compute the following statistic for each bootstrap:

(21)

The condition for the rejection of the null hypothesis that the rate of amyloid accumulation 

in the precuneus is not different from that of other regions is as described previously.
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3. Results

3.1. Simulation

The Akaike information criterion (AIC) was 39.0 × 103 for the LME model, 32.0 × 103 for 

the PS model where C = IK×K, and −1.6 × 103 for the PS model where C = C(ρ), indicating 

that the PS model where spatial correlations are modeled fits the data the best. We computed 

the percentage of variables that are “correct” by counting the variables whose ground truth 

values fell within the 95% confidence interval computed via bootstrapping. For example, for 

a and b, a value of 10% indicates that 10% of the biomarkers had a correct estimate for ak 

and bk. For α and β, 10% indicates that 10% of the individuals had a correct estimate for αi 

and βi. For s, 10% indicates that 10% of the visits had a correct estimate for sij. Simulation 

results are presented in Table 3. When there are correlations in the data, not modeling them 

yields inaccurate estimates for the trajectory slope parameter a, the subject-specific variables 

αi, βi, and the progression scores sij. Using the correlation model improves these estimates 

significantly.

3.2. Amyloid images

In our preliminary analysis of the noise spatial correlation structure using the semivariogram 

(Cressie and Hawkins, 1980; Bilgel et al., 2015c), we observed that the rational quadratic 

had the best fit to the empirical semivariogram (Inline Supplementary Fig. 1). Rational 

quadratic also yielded the fit with largest log-likelihood, and thus was selected as the 

correlation function for the model. AIC was −1.2 × 107 for the LME model, −1.1 × 107 for 

the model where C = IK×K, and −2.0 × 107 for the model where C = C(ρ), indicating that the 

PS model where spatial correlations are modeled fits the data the best. The spatial 

correlation parameter ρ for the rational quadratic correlation model was estimated to be 4.5 

mm, and λ was estimated to be 0.929. A comparison of the PS values obtained from the di 

erent correlation models are presented in the Supplementary Material (Inline Supplementary 

Fig. 2). Model fitting using 104 subjects with a total of 300 visits each having about 30, 000 

brain voxels took approximately 5 seconds on an Intel Xeon 8-core 3.1 GHz machine with 

128 GB RAM for the case where voxels are assumed to be independent (i.e., C = IK×K). The 

following model fitting with C = C(ρ) took approximately 30 minutes per EM iteration, with 

convergence achieved in 2 to 6 iterations depending on the correlation structure.

3.2.1. Comparison of Aβ-PS to mean cortical DVR—We compared the subject-

specific variables obtained from model fitting to empirical values obtained from mean 

cortical DVR, which is the widely used measure for quantifying levels of brain amyloid (Fig. 

5). For each individual with at least two visits, we fit a line to the mean cortical DVR data to 

estimate the slope of amyloid accumulation as well as the intercept. The subject-specific 

variable αi, which represents the rate of amyloid progression, explained 62% of the 

variability in the empirical slope of amyloid accumulation computed from longitudinal mean 

cortical DVR. We observed a much higher correlation between mean cortical DVR and Aβ-

PS (R2 = 0.95 at baseline and 0.96 at last visit).
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When plotted against age, mean cortical DVR and Aβ-PS revealed similar patterns (Fig. 6). 

The progression as measured using voxelwise DVR data is not linearly associated with age, 

and the Aβ-PS was able to capture this.

3.2.2. Amyloid trajectories—The trajectory slope parameters ak obtained from the PS 

model (Fig. 7) revealed symmetric patterns across the cerebral hemispheres. The precuneus 

and frontal lobe showed the greatest increases in DVR with Aβ-PS, smaller increases in 

lateral temporal and temporoparietal regions, and minimal increases in the occipital lobe and 

the sensorimotor strip. Voxelwise trajectories are further illustrated in Fig. 8, which shows 

the predicted DVR values on the cortical surface at three Aβ-PS levels.

In order to better investigate regional trends, we averaged the PS model results within each 

cortical ROI and plotted these ROI averages as a function of Aβ-PS (Fig. 9). We used 

bootstrap results to compute 95% confidence bands for these ROI averages. Based on the 

95% confidence band of the precuneus illustrated in Fig. 9, precuneus appears to be the 

earliest accumulator and has the highest amyloid levels through late stages of amyloid 

accumulation (Aβ-PS≥ 2). We present confidence bands for other cortical regions in Fig. 10.

Based on our hypothesis testing procedure, we found that precuneus had the highest amyloid 

levels at Aβ-PS values of −0.5, 0, 1, 2, and 3 (all p < 0.01). On the other hand, while the 

estimated rate of amyloid accumulation was highest in the precuneus, this was not 

statistically significant (p = 0.33). A comparison of the levels of amyloid at Aβ-PS= 0 and 

rates of accumulation across ROIs is presented in Fig. 11.

3.2.3. Comparison to LME results—The trajectories we obtained using the PS model 

were consistent with the results of the LME model (Inline Supplementary Figs. 3, 4). 

However, the fixed effects obtained from the LME model did not describe the observed data 

as well as the trajectory slopes obtained from the PS model (Inline Supplementary Fig. 5). 

Using the LME model estimates and a bootstrapping procedure similar to the one we applied 

for the PS model, we found that the precuneus had the highest regional amyloid levels 

compared to other cortical regions at ages 70, 80, and 90 (all p < 0.01), but not at age 65 (p = 

0.12). Similar to our findings based on the PS model, the rate of amyloid accumulation was 

highest in the precuneus, but this was not statistically significant (p = 0.75). A comparison of 

the levels of amyloid at the mean baseline age of the sample and rates of accumulation 

across ROIs is presented in Inline Supplementary Fig. 6.

4. Discussion

We presented a statistical model for estimating longitudinal trajectories of voxelwise 

neuroimaging data. Our model is based on the concept that age is not a good metric for 

disease progression since each individual has his or her own onset and rate of progression of 

disease. We accounted for these inter-individual di erences to temporally align individuals 

based on their collection of voxelwise measurements. As a result of this temporal alignment, 

we obtained a metric of disease or underlying biological process stage as reflected in the 

neuroimaging data, and we call this metric “progression score”. By analyzing voxelwise 
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neuroimaging data as a function of progression score rather than time, we constructed 

trajectories that better represent changes occurring with disease stage.

Simulation results showed that the progression score model fits the data better than the linear 

mixed effects model, as evidenced by AIC. Furthermore, the results showed that modeling 

spatial correlations is important for extracting accurate summary scores from data with 

underlying correlations. In the absence of correlation modeling when the underlying data are 

correlated, estimates of the trajectory slopes a as well as subject-specific variables α, β, and s 
were adversely affected. The difference in the subject-specific variables was mainly due to 

inaccurate estimates of the prior covariance V. Note that

(22)

which explains why both a and V are affected when correlations are not modeled through 

the covariance matrix R. This highlights the importance of modeling spatial correlations in 

data where such effects are evident, especially in order to estimate correct trajectory slopes 

and individualized progression scores. To further understand this phenomenon, we 

conducted simulations (data not presented) where we duplicated biomarkers with lower 

signal-to-noise ratios and repeated model fitting including these duplicate biomarkers. We 

observed that the parameter estimates as well as the PS values were biased if we assumed 

independence across biomarkers. This might be because the model interprets each of the 

duplicated biomarkers as a separate piece of evidence towards the computation of individual 

progression scores. However, when we included a proper noise correlation model, we were 

able to recover our original results on the collection of unique biomarkers.

The proposed EM framework simplifies the estimation of spatial correlation parameters, and 

accurately estimates the trajectory parameters a and b as well as predicting the progression 

scores s. The performance of the fitting procedure in predicting α and β is worse than for s. 

This may be due to the modeling of α and β as random variables that do not directly 

contribute to the observations y. We observed a similar pattern in the amyloid data: the 

agreement between estimated Aβ-PS and mean cortical DVR was greater than the agreement 

between estimated α and the rate of change of mean cortical DVR per individual. This 

suggests that the progression scores are more reliable than the subject-specific variables. Aβ-

PS was highly correlated with mean cortical DVR, a widely used measure for quantifying 

PiB-PET scans and assessing longitudinal change. This indicates that Aβ-PS is a meaningful 

score extracted from voxelwise imaging data. Unlike mean cortical DVR, there are no a 
priori assumptions regarding which regions or voxels should be included in the computation 

of Aβ-PS. This property of PS allows for the discovery of new patterns in longitudinal data.

Trajectories obtained from the PS model captured a wider dynamic range of DVR values and 

had a better fit to the observed data compared to the trajectories obtained using the LME 

model fixed effects. This difference between the PS and LME models underscores the fact 

that age is not an appropriate metric for staging amyloid accumulation. By aligning 

individuals based on their amyloid scans, the PS model enables a better temporal metric of 

amyloid staging.
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Aβ-PS allows for the exploration of longitudinal voxelwise trajectories within a hypothesis 

testing framework due to its underlying statistical model. Our results suggest that the 

precuneus exhibits the earliest cortical amyloid changes, but that its rate of amyloid 

accumulation does not differ significantly from other cortical regions. Based on a qualitative 

evaluation of our estimated trajectories, we found that amyloid accumulation in the 

precuneus is followed by cingulate and frontal cortices, then by lateral parietal cortex, 

followed by insula and lateral temporal cortex. We observed minimal amyloid accumulation 

in visual cortex, hippocampal formation and the sensorimotor strip, which agrees with 

previous reports that these regions accumulate amyloid in later stages of AD (Braak and 

Braak, 1991). Previous reports have highlighted precuneus as an early amyloid accumulator 

(Mintun et al., 2006; Rodrigue et al., 2012) as well as frontal, cingulate, and parietal regions 

(Jack et al., 2008). Contrary to our finding highlighting precuneus as the earliest cortical 

accumulator, a study of cognitively normal adults found that the right medial frontal cortex 

accumulates amyloid the earliest, closely followed by bilateral precuneus based on cross-

sectional voxelwise analyses (Villeneuve et al., 2015). We presented regional trajectories 

averaged bilaterally in this work; however, hemisphere-specific trajectories were consistent 

with our bilaterally-averaged trajectories and we did not observe that medial frontal cortex 

precedes precuneus. Further studies with larger samples will be instrumental in elucidating 

the regional progression of amyloid accumulation.

One of the strengths of our model for the progression scores s is that there are no a priori 
assumptions on the global form of s(t), which can be thought of as an underlying function 

that describes the evolution of progression score over time. Instead, the model makes linear 

local approximations to s(t) per individual. The linear form we use makes the EM approach 

analytically tractable and enables the discovery of the global form of s(t). On the other hand, 

the linear relationship we assume between s and t is also a limitation since it may be an 

oversimplification over long follow-up durations. In order to capture dynamics over longer 

periods more accurately, it is necessary to investigate the relationship between the 

progression scores s and time t, and select an appropriate function to link these variables.

Another limitation of our model is the assumption of linear biomarker trajectories. This 

assumption is not reflective of the fact that voxelwise DVR has a theoretical minimum of 1 

(while in practice, there are DVR values lower than 1 due to noise). Furthermore, several 

studies of longitudinal amyloid deposition have found evidence for a ceiling effect in 

amyloid deposition in late AD, suggesting a sigmoid trajectory for amyloid levels 

(Villemagne et al., 2013; Villain et al., 2012). Our use of a linear rather than sigmoid 

trajectory inevitably results in inaccuracies in PS calculation for individuals whose 

voxelwise data lie along the plateaus of the sigmoid in reality. The linear trajectory 

assumption may also prevent us from characterizing subtler differences in the temporal 

ordering of the onset of amyloid accumulation across different regions. However, linear 

trajectories, unlike sigmoid trajectories, yield closed-form update equations for trajectory 

parameters, greatly facilitating the model fitting procedure.

The spatial covariance functions we used in our analyses are covariance functions of strictly 

stationary isotropic processes. The underlying spatial noise process is affected by the PET 

scanner, image reconstruction algorithm, radiotracer delivery and binding in different brain 
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regions, kinetic parameter estimation algorithm, and registration methods used to bring all 

scans in alignment. To accurately model these influences on noise, complex noise spatial 

covariance models are needed. In this work, we made simplifying assumptions on the noise 

properties to facilitate the study of longitudinal trajectories of amyloid images. As a result of 

these simplifications, our model does not accurately capture noise properties; however, by 

eliminating the inaccurate assumption of independence across voxels, our approach 

improves the accuracy of the estimated trajectories and progression scores. Refined spatial 

noise models incorporating non-stationarity and anisotropy may further improve the 

estimation accuracy.

Our model can be applied to studying higher resolution images. To reduce computational 

memory burden, it may be necessary to impose sparsity on the spatial correlation matrix, 

which can be done by imposing a correlation value of 0 at large distances. The sparsity 

property of the correlation matrix can be taken advantage of to yield Cholesky 

decompositions using less memory and time.

In conclusion, the progression score model allows for extracting summary scores from 

longitudinal data for each scan. In this work, we have extended the progression score model 

proposed by Jedynak et al. (2012) to voxelwise imaging data by accounting for spatial 

correlations and enabling efficient handling of the large number of voxels through the EM 

framework. The incorporation of a prior on subject-specific variables allowed for the 

inclusion of individuals with a single visit in the model. Our method can be extended to the 

analysis of other types of imaging data, and in cases where a summary score such as mean 

cortical DVR is not available, the progression score estimates can be highly informative for 

progression staging.
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Appendix A

Proposition A.1.

(A.1)

where Φ(·;μ, Σ) denotes the probability density function of a multivariate normal with mean 

μ and covariance matrix Σ,
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(A.2)

and  is a covariance matrix.

Proof. Independence across visits allows us to write

(A.3)

where we have ignored the terms that do not depend on .

By Bayes' rule,

(A.4)

(A.5)

(A.6)

Below we derive the EM algorithm update equations given in Section 2.3:

Solving for the intercept parameter b

The value of b that solves  is given by
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(A.7)

Plugging in the expression for a from Equation A.9 yields

(A.8)

Solving for the slope parameter a

The value of a that solves  is 

given by

(A.9)

Plugging in the expression for b from Equation A.7 yields

(A.10)

Solving for the subject-specific variable variance parameter m

The value of m that solves  is given by

(A.11)

Solving for the subject-specific variable variance parameter ν

We use numerical optimization to estimate ν:
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(A.12)

(A.13)

We can reconstruct V by undoing the log-Cholesky parametrization steps using the 

estimated parameter vector ν = [ν1, ν2, ν3]T as

(A.14)

Solving for the noise covariance parameters λ and ρ

If C = IK×K (i.e. ρ = 0 and fixed), then the diagonal elements λk of Λ can be estimated as:

(A.15)

If C is not fixed to be the identity matrix, then in general it is not possible to obtain closed-

form solutions for λ and ρ and we must use numerical optimization over Q. When λ is a 

high-dimensional vector, this is not feasible. Therefore, we simplify the parametrization of 

the noise covariance matrix R as , where we now consider  as a fixed 

diagonal matrix with positive diagonal entries. We fix  at the estimate of Λ from the model 

with C = IK×K. ρ is the correlation matrix parameter as defined previously, and λ > 0 is a 

scaling parameter. Now we need to perform numerical optimization over Q to estimate only 

two parameters:

(A.16)

Note that since the EM algorithm does not require the maximization of Q(θ, θ′) but simply 

requires an increase in this function with each iteration, performing numerical optimization 

until convergence is not necessary.

Proposition A.2. Consider the model given in Section 2.1.5 with θ = {m, V, a, b, R}. The 

reparametrization , where w, , w ≠ 0 yields 
an equivalent model.
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Proof. The incomplete log-likelihood is

(A.17)

Here, we consider the case where z = 0 for algebraic simplicity. For the reparameterized 

model, we obtain  and . Therefore, each of the terms in log f(y; θ*) remain 

the same as those in log f(y; θ), yielding log f(y; θ*) = log f(y; θ).
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HIGHLIGHTS

• We present a method to estimate trajectories of voxelwise imaging 

biomarkers

• Method accounts for differences in rate of progression and onset across 

subjects

• Scores extracted from imaging data at each longitudinal visit represent 

disease stage

• Application on amyloid imaging reveals precuneus as the earliest cortical 

accumulator
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Figure 1. 
Illustration of the biomarker alignment concept in the progression score model. The 

biomarkers we consider in this work are PET measures of cerebral amyloid across a total of 

K ≈ 30, 000 voxels. Top: Progression score (PS) aligns longitudinal measures better than 

age, and allows for the estimation of a trajectory for each biomarker/voxel (in gray). Bottom: 
Estimated biomarker trajectories can be compared on the common PS scale. For references 

to color, the reader is referred to the web version of this article.
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Figure 2. 
Probabilistic model of the progression score using plate notation. The progression score sij 

establishes the link between age tij and the voxelwise observations yij. Circles indicate 

variables, and known measures are shaded. Rectangles indicate that the same model applies 

across visits (inner rectangle) and individuals (outer rectangle). Arrows indicate 

dependencies between variables and parameters.
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Figure 3. 
Estimated trajectory slope parameters αk vs ground truth. Dashed line indicates x = y. Gray 

band corresponds to the 95% confidence intervals obtained from bootstrapping. Estimates 

are shown in blue if their 95% confidence interval intersects the x = y line, and in red 

otherwise. Results from the model where (a) C = IK×K and (b) C = C(ρ).
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Figure 4. 
Predicted progression scores sij vs ground truth. Dashed line indicates x = y. Gray band 

corresponds to the 95% confidence intervals obtained from bootstrapping. Estimates are 

shown in blue if their 95% confidence interval intersects the x = y line, and in red otherwise. 

Results from the model where (a) C = IK×K and (b) C = C(ρ).
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Figure 5. 
Correlation of estimated subject-specific variables with mean cortical DVR measures. The 

line of best fit is shown in blue, and its 95% confidence band in gray. (a) Rate of annual 

change in mean cortical DVR vs. α, the predicted rate of change in amyloid progression 

score (R2 = 0.62). (b) Intercept of mean cortical DVR vs. β, the progression score intercept 

(R2 = 0.48). (c) Mean cortical DVR vs. Aβ-PS at baseline (R2 = 0.95). (d) Mean cortical 

DVR vs. Aβ-PS at last visit (R2 = 0.96).
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Figure 6. 
(a) Mean cortical DVR and (b) Aβ-PS plotted against age. Longitudinal data points are 

connected by lines within each subject. Different colors indicate different subjects.

Bilgel et al. Page 30

Neuroimage. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Slope parameters ak obtained from voxelwise PS model projected onto the cortical surface. 

For each unit increase in Aβ-PS, the DVR value at voxel k increases by ak.
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Figure 8. 
Predicted DVR levels at Aβ-PS = −0.6 (top), 0.4 (middle row), and 1.5 (bottom).
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Figure 9. 
Regional trajectories as function of Aβ-PS. The PS model was used to make voxelwise 

predictions at a range of Aβ-PS values, and these predictions were averaged within each ROI 

to obtain regional trajectories. The dashed lines indicate the 95% confidence band obtained 

using bootstrap results for the precuneus.
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Figure 10. 
Regional trajectories as function of Aβ-PS. The PS model was used to make voxelwise 

predictions at a range of Aβ-PS values, and these predictions were averaged within each ROI 

to obtain regional trajectories. The dashed lines indicate the 95% confidence bands for the 

cortical regions. Estimated trajectories with their 95% confidence bands are superimposed 

on observed longitudinal data (in gray).
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Figure 11. 
Comparison of levels of amyloid at Aβ-PS= 0 and rates of amyloid accumulation across 

cortical regions. The intercept parameter b obtained from the PS model was averaged within 

each ROI to obtain the regional amyloid levels at Aβ-PS= 0, and the trajectory slope 

parameter a was averaged within each ROI to obtain regional rates.
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Table 1

Spatial correlation functions.

Exponential Ckk′ = e−d/ρ

Gaussian Ckk′ = e−(d/ρ)2

Rational quadratic

Spherical

d ≡ d(k, k′) is the spatial distance between voxels indexed by k and k′.
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Table 2

Participant demographics.

Characteristic N = 104

Baseline age in years, mean (SD) 77.0 (7.9)

Range 55.7–93.4

Female, n (%) 48 (46%)

PiB-PET scans, n 300

PiB-PET per subject, n 2.9 (1.8)

Range 1–7

Years between first and last scan, mean (SD) 3.3 (2.9)

Range 0.0–9.0

Mean cortical DVR at last visit (SD) 1.12 (0.19)

PiB+ at last visit, n (%) 42 (40%)

MCI diagnosis at last visit, n (%) 3 (3%)

Dementia diagnosis at last visit, n (%) 4 (4%)

MCI = mild cognitive impairment, SD = standard deviation.
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Table 3

Simulation results. Mean cosine similarity values across 1000 bootstrap experiments (with standard deviation) 

and percentage of variable elements that are correct based on 95% confidence intervals are presented.

C = IK×K C = C(ρ)

Variable Cosine similarity % correct Cosine similarity % correct

a 0.9514 ± 0.0154 24 0.9821 ± 0.0073 98

b 0.9998 ± 0.0001 99 0.9998 ± 0.0001 98

α 0.1587 ± 0.0812 18 0.7922 ± 0.0332 40

β 0.1250 ± 0.0794 19 0.7835 ± 0.0339 38

s 0.8017 ± 0.0443 23 0.9881 ± 0.0053 85
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