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Summary

Introduction—The discovery of disease-associated loci through genome-wide association
studies (GWAS) is the leading approach to the identification of novel biological pathways for
human disease. To date, GWAS have had been limited by relatively small sample sizes and yielded
relatively few loci associated with ischemic stroke The National Institute of Neurological
Disorders Stroke Genetics Network (NINDS-SiGN) is an international consortium that has taken a
systematic approach to phenotyping and produced the largest ischemic stroke GWAS to date.

Methods—In order to identify genetic loci associated with ischemic stroke, we performed a two-
stage genome-wide association study. The first stage consisted of 16,851 cases with state-of-the-
art phenotyping and 32,473 stroke-free controls. Cases were aged 16 to 104 years, recruited
between 1989 and 2012, and subtyped by centrally trained and certified investigators using the
web-based protocol, Causative Classification of Stroke (CCS). We constructed case-control strata
by identify samples genotyped on (nearly) identical arrays and of similar genetic ancestral
background. Data was cleaned and imputed using dense imputation reference panels generated
from whole-genome sequence data. Genome-wide testing was performed within each stratum for
each available phenotype, and summary level results were combined using inverse variance-
weighted fixed effects meta-analysis. The second stage consisted of 7 sifico look-ups of 1,372
SNPs in 20,941 cases and 364,736 stroke-free controls, with cases previously subtyped using the
TOAST classification system according to local standards. The two stages were then jointly
analyzed in a final meta-analysis.

Findings—We identified a novel locus at 1p13.2 near 7SPANZ associated with large artery
atherosclerosis (LAA)-related stroke (stage | OR for the G allele at rs12122341 = 1.21, p = 4.50 %
1078; stage Il OR = 1.19, p = 1-30 x 1079). We also confirmed four loci robustly associated with
ischemic stroke and reported in prior studies, including P/7.X2and ZFHX3 for cardioembolic
stroke, and HDAC9for LAA stroke. The 12924 locus near ALDH2Z, originally associated with all
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ischemic stroke but not with any specific subtype, exceeded genome-wide significance in the
meta-analysis of small artery stroke. Other loci, including NV/NJ2, were not confirmed.

Interpretation—Our results identify a novel LAA-stroke susceptibility gene and now indicate
that all loci implicated by GWAS to date are subtype specific. Follow-up studies will be necessary
to determine whether the locus near 7SPANZyields a novel therapeutic approach to stroke
prevention. Given the subtype-specificity of these associations, the rich phenotyping available in
SiGN is likely to prove vital for further genetic discovery in ischemic stroke.

Funding—National Institute of Neurological Disorders and Stroke (NINDS), National Institutes
of Health (NIH).

Introduction

Methods

Worldwide, stroke is the second leading cause of death and a major contributor to dementia
and age-related cognitive decline. Globally, approximately 15 million people suffer a stroke
each year, with an increasing number of stroke deaths annually.> Most survivors are left with
permanent disability, making stroke the world’s leading cause of adult incapacity as well.2
Strokes result from the sudden occlusion or rupture of a blood vessel supplying the brain,
and are accordingly categorized as ischemic (vessel occlusion) or hemorrhagic (vessel
rupture) on the basis of neuroimaging. Ischemic cases account for up to 85% of all strokes.

Although hypertension, atrial fibrillation, diabetes mellitus, and cigarette smoking are
known risk factors for stroke, a substantial proportion of risk remains unexplained and may
be due to inherited genetic variation. Discovering genetic variants predisposing to stroke is a
vital first step toward the development of improved diagnostics and novel therapies that offer
the hope of reducing the disease burden. Genome-wide association studies (GWAS) have
thus far yielded only a handful of confirmed loci,*~7 which together account for a small
proportion of the heritable risk.8

Ischemic stroke occurs when blood flow to a brain region is interrupted due to blockage of a
blood vessel. Because vessel occlusion can occur through a variety of mechanisms, ischemic
stroke can be classified based on presumed mechanism into specific subtypes: large artery
atherosclerosis (LAA), cardioembolism (CE) and small artery occlusion (SAO). All but one
GWAS association for ischemic stroke have been subtype-specific, indicating the need for
studies better powered to detect subtype-specific associations. The National Institute of
Neurological Disorders and Stroke (NINDS) Stroke Genetics Network (NINDS-SiGN)? is
the largest and most comprehensive GWAS of stroke and its subtypes to date. We sought to
detect newly associated polymorphisms and to confirm previously reported associations with
risk of ischemic stroke and its subtypes.

We performed a two-stage joint association analysis of ischemic stroke and its subtypes.
Stage | consisted of a GWAS, followed by an /n silico association analysis of top SNPs in
independent samples in stage I1; both stages were then jointly analyzed to identify loci
exceeding genome-wide significance. Compared to separate discovery and replication
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analyses, this approach improves power for discovery while maintaining equivalent type |
10
error.

Study sample

For stage I, ischemic stroke cases with consistent neuroimaging and adequate clinical data to
allow phenotypic classification were included from 31 existing collections. The ischemic
stroke cases in stage Il met similar requirements except existing TOAST subtyping was used
for phenotypic classification. Details for each collection, including funding information and
study design, can be found in the Supplementary Note.

For each collection, approval for inclusion in the SiGN analysis complied with local ethical
standards and with local institutional review board/ethics committee oversight. All cases and
controls provided informed consent for genetic studies either directly or through surrogate
authorization.

Stroke subtype classification

The NINDS-SiGN? utilized two subtyping systems: the recently developed Causative
Classification of Stroke (CCS) system, a standardized web-based subtype classification
system, 1! and the more widely used Trial of Org 10172 in Acute Stroke Treatment (TOAST)
subtype classification system12.13, Both of these subtyping systems are based on a similar
conceptual framework but are operationalized differently. The TOAST subtyping system is
based on application of written rules requiring clinician judgment, and patients with
conflicting potential etiologies are placed into an undetermined category. The CCS
subtyping system classifies patients algorithmically based on inputs to a web-based form and
has two different approaches to classifying patients with conflicting potential etiologies. The
CCS system generates both causative (CCSc) and phenotypic (CCSp) subtype categories.
CCSc categorization utilizes historical, examination, and test data from each ischemic stroke
subject to assign the most probable cause in the presence of competing etiologies; CCSp
categorization utilizes abnormal test findings to assign each case into one or more major
etiologic groups without using rules to determine the most likely etiology.

For stage I, each site assigned stroke subtypes using the CCS system (Supplementary Note).
For stage I, we identified additional sites having subtyped stroke cases with GWAS data.
Since all available CCS cases were included in stage I, we used the corresponding subtype
categories from TOAST in stage Il.

For both CCS and TOAST, each case was categorized according to five ischemic stroke
subtypes: cardioembolic (CE), large artery atherosclerosis (LAA), small artery occlusion
(SAO), undetermined (UNDETER), and other. The “other” classification was also available
but ultimately not analyzed due to low sample counts and limited power. For semantic
convenience, we use the term “undetermined” in this manuscript to describe similar
categories in both CCS and TOAST. However, in CCS we are referring to cryptogenic cases
in which no cause was identified after adequate evaluation, while TOAST undetermined
cases included those with incomplete evaluation, multiple causes, and the truly cryptogenic.
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Quiality control

The full details of genotyping and quality control (QC) are provided in the Supplementary
Note and outlined in Supplementary Figure 1. Briefly, newly-genotyped cases and a small
number of controls were genotyped on the Illumina 5M array for inclusion in stage |
analyses. All other cases had been previously genotyped on various Illumina platforms
(Supplementary Note). Publicly-available external controls were selected to match cases
based on ancestral background and genotyping array.

Cases and controls newly genotyped together formed separate analysis groups (Krakow and
Leuven, Table 1). The remaining cases and controls were matched based on genotyping
platform to maximize SNP content and pool samples from the same cohort or geographic
region (Table 1). Merged cases and controls were assigned ancestry-specific analysis strata
in two steps (Supplementary Note). Samples were projected onto HapMap 314 data using
PCA to establish a group of European-ancestry samples (EUR). Then, a hyperellipsoid
clustering technique was implemented on the basis of PCs within self-reported groups of
non-Hispanic black and Asian participants. The hyperellipsoid analysis established a group
of non-Hispanic black (AFR) and one of Asian participants. Samples not grouped as EUR,
AFR, or Asian, formed the Hispanic (HIS) stratum. Asian-ancestry samples were excluded
from further analysis due to small sample size. After establishing the ancestry-based
composite groups, we performed PCA again to confirm ancestral homogeneity within each
case-control strata. Case-control strata then underwent extensive QC (Supplementary Note).
Finally, each stratum was prephased’® and imputed. EUR samples were imputed using a
merged reference panel comprised of the 1000 Genomes Project (1KG) Phase 116 and the
Genome of the Netherlands!’; AFR and HIS samples were imputed using the 1KG Phase |
reference panel only. Summary-level imputed data from one additional cohort (VISP) was
added to the stage | meta-analysis.

Stage | genome-wide association analysis

After QC and imputation, 16,851 cases and 32,473 controls across 15 ancestry-specific
groups were available for genome-wide testing (Table 1, Supplementary Note). Within each
stratum, we analyzed the all ischemic stroke phenotype, as well as four primary subtypes
(CE, LAA, SAO and UNDETER) as determined by CCSc, CCSp, and TOAST, which was
available in 12,612 (74.8%) cases. All GWAS were adjusted for sex and the top ten principal
components; genome-wide testing was uncorrected for age, as age information was missing
for the bulk of controls.

Post GWAS, SNPs with frequency < 1% showed excessive genomic inflation and were
consequently removed. Imputed SNPs were checked for consistent frequency with the
continental populations represented in 1KG Phase I; SNPs with a frequency difference
>30% were removed. After post-GWAS QC, 9-:3M — 15.4M SNPs were available across the
study strata for meta-analysis. We performed inverse variance-weighted fixed effects meta-
analysis using MANTEL18 in each of the 15 traits. Lambda of the 15 meta-analyses ranged
from 0-936 — 1-005 (Supplementary Figure 2).
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The first stage GWAS revealed 1,372 SNPs in 268 loci associated with ischemic stroke or a
specific subtype in any of the CCS or TOAST traits at p < 1 x 1075,

Genetic correlation among CCSc, CCSp, and TOAST subtypes

We then extracted the z-scores (SNP betas divided by their respective standard error) from
each of the stage | GWAS phenotypes and calculated correlation (Pearson’s r) between
pairings of z-scores, calculating the correlation for all possible trait pairings. The analysis
revealed moderate to strong genetic correlation (Figure 1) between the standardized SNP
effects in CCSc, CCSp, and TOAST, despite previously noted modest phenotypic
correlation.19 The observed genetic correlation indicated that TOAST subtyping was
appropriate for inclusion in the second stage of analysis.

Stage Il analysis

Stage 1l consisted of an /n silico look-up of association results for the stage | nominally
significant in 18 independent studies, totaling 20,941 TOAST-subtyped cases and 364,736
controls (Table 1 and Supplementary Table 1). The SNPs selected for stage 11 for each
subtype were aggregated such that, e.g., SNPs with p < 1 x 1076 from the three CE GWAS
(CCsSc, CCSp, and TOAST) were all selected for lookup in the independent CE TOAST
cases and matched controls. This process was repeated for the other subtypes.

Joint analysis

Results

Results from the /n silico lookups from stage 11 were meta-analyzed with the results from
stage . Genome-wide significance in joint analysis was set at p < 1 x 1078, after correcting
for testing five subtypes. Lambda in the ischemic stroke joint analysis was 1-:005 and ranged
from 0-936 — 0-998 in the subtype analyses (Supplementary Figure 3).

The SiGN study was a cooperative agreement with the United States National Institute of
Neurological Disorders and Stroke (NINDS). Although the NINDS participated in the
design of the study, the study investigators were solely responsible for the data collection,
analysis, and interpretation. The analysis team had full access to all data included in the
study.

After extensive data QC (Supplementary Figure 1, Supplementary Note), 16,851 stroke
cases and 32,473 controls comprised the stage | sample; an additional independent set of
20,941 cases and 364,736 controls comprised stage I, enabling joint analysis of a combined
37,893 cases and 400,315 controls across five primary (independent) traits (1S, and the
subtypes CE, LAA, SAO, and UNDETER).

In the joint analysis of CCS (stage 1) and TOAST (stage I1) results, SNPs in two novel loci
exceeded genome-wide significance (p < 1 x 1078 after correcting for five independent
traits). Four common SNPs in LD (r2 > 0-57, 1KG European-ancestry (EUR) samples) near
TSPANZ were genome-wide significant for LAA (rs12122341, CCSp (stage I) and TOAST
(stage 11): OR for the G allele = 1.19, p = 1.30 x 1079; Figure 2a, Table 2).
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A second locus emerged as genome-wide significant, but only in samples of African
ancestry, and thus must be interpreted with marked caution given the small sample sizes in
which it was found. Rs74475935 in ABCCZ on chromosome 16 was associated with the
undetermined phenotype (Table 2, Supplementary Figure 5), driven by a variant with rare
frequency (MAF ~0-01%) in European-ancestry samples and low frequency (MAF ~1.-5%)
in African-ancestry samples. This result requires further replication in larger samples.

We also confirmed previously published loci A/7.X2* and ZFHX3P for CE stroke, and
HDACS for LAA stroke, all exceeding genome-wide significance in these samples (Table
2). The 12g24-12 locus near ALDH2Z, previously shown to be associated with all ischemic
stroke but not with any specific subtype,” exceeded genome-wide significance in the joint
analysis of all ischemic stroke (OR for the T allele = 1.07, p = 4-20 x 1079). However, the
association was even stronger for SAO in CCSp (stage 1) and TOAST (stage II) (OR = 1.17,
p = 2:92 x 1079) and was nearly genome-wide significant for SAO in the joint analysis of
CCSc (stage 1) and TOAST (stage I1) (OR = 1-16, p = 2:77 x 1078). Evidence for association
was markedly reduced with other subtypes in our study (OR < 1.1 and p > 4 x 1073 for CE,
LAA, and undetermined in the combined CCSp and TOAST analysis. Systematic testing
accounting for shared controls (Supplementary Note) revealed a nominally significant
difference in the magnitude of the OR between SAO and the combined non-SAQ subtypes (p
= 0-048, Supplementary Figure 6), suggesting that the effect of 12q24-12 may be specific for
SAO.

In contrast, we failed to show even nominal evidence for association to AV/NJZ, previously
implicated in ischemic stroke (rs34166160, OR for the A allele = 1-20, p = 0-106), though
we had 100% power in our sample size to detect a nominal association (p < 0.05) at the
locus. In the full stage I analysis, nominal evidence for association was observed for both the
6p2120 and CDKNZ2B-AS1?Y loci in LAA, and for the ABO?2 locus in IS, LAA, and CE
(Table 2). When restricting our analysis to only those samples not used for initial discovery,
CDKNZB-AS1 was nominally associated with LAA (OR for the G allele = 1-09, p = 0-009)
and ABOwas nominally associated to ischemic stroke (OR for the C allele = 1.07, p = 2:5 x
1074, LAA (OR = 1-15, p = 2:5 x 107#) and CE (OR = 1.09, p = 0-007; Supplementary
Table 2). For 6p21, however, we observed no evidence for association (OR for the T allele =
1.04, p = 0-304).

Discussion

We performed the largest GWAS of ischemic stroke and stroke subtypes to date. Our results
reveal a novel association with LAA. The lead SNP, rs12122341, is located in an intergenic
region 23.6kb upstream of 7SPANZ, the gene encoding tetraspanin-2 (Figure 2b). The lead
SNP is in LD with intronic and UTR variants in 7SPAN2 (r2 > 0-3, 1KG EUR) but it is
located in a DNA sequence immediately adjacent to 7SPAN2that can be bound by several
transcription factor proteins, including CTCF. In fact, this sequence is a promotor and
enhancer site that is marked by histone modification and DNase hypersensitivity according
to ENDCODE and ROADMAP Epigenomics experimental data (Supplementary Figure
7)23:24 suggesting a potential role for this SNP in gene regulation. An intergenic SNP near

Lancet Neurol. Author manuscript; available in PMC 2017 May 02.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

etal.

Page 7

rs12122341 was recently reported to be associated with migraine2®, but the two SNPs are
not in LD (r2 = 0-03, 1KG EUR).

TSPANZ, the gene closest to rs12122341, is a member of the transmembrane 4 (tetraspanin)
superfamily. It mediates signal transduction to regulate cell development, activation, growth
and motility. 7SPANZknock-out mice exhibit increased neuroinflammation, indicated by
activation of microglia and astrocytes with no effect on myelination and axon integrity.28
Notably, TSPAN is highly expressed in artery and whole blood cells (Supplementary Figure
7), which aligns with our observed association of 7SPANZwith LAA stroke.

Whether the association of rs12122341 arises to the locus’ regulation of 7SPANZ or other
nearby genes will require further functional evaluation.

The additional association in undetermined stroke (rs74475935) is in a gene-rich region with
LD-paired SNPs (r2 > 0-1, 1KG African-ancestry samples) stretching up to 4 Mb. Due to the
low sample size for rs74475935 (610 cases) and the dearth of African-ancestry samples
available, studies that explicitly interrogate large samples of African descent are necessary to
fully evaluate the robustness of this signal.

Thus far, only four loci — PITXZ2*, ZFHX3, HDAC®, and 12q24-127 — have been
repeatedly identified in GWAS of ischemic stroke, all subtype specific except for 12q24-12.
Although the 12q locus association was originally discovered for IS, our analysis indicates it
is likely specific to SAQ. These findings suggest that ischemic stroke subtypes carry distinct
genetic signatures. Our analysis of genetic correlation across the traits, however, also
revealed that the subtypes share subtle genetic relationships (Supplementary Figure 8,
Supplementary Table 3a), an observation supported by a recent study that identified genetic
overlap between the LAA and SAO subtypes.2’ Future efforts will help dissect both the
shared and unique genetic architectures within and between subtypes.

To date, GWAS of ischemic stroke, subtypes (all associations thus far have been subtype-
specific), have utilized far smaller sample sizes than studies performed in other complex
traits. The SiGN study, the largest to date, was well powered (75-1%) to find common SNP
subtype-specific associations of larger effect (MAF = 25%, OR = 1.2, in 3,000 cases and
30,000 controls) but markedly less well powered to find lower-frequency or lower-effect
SNPs (MAF 10% and OR 1-2: 13-8% power; MAF 25% and OR 1.1: 1-1% power). Because
of the quasi-linear relationship between sample size and discovered loci,28 and because
large-scale GWAS in other complex traits have yielded hundreds of SNP-disease
associations,2%-31 studying larger samples in ischemic stroke subtypes will likely yield
additional associated common variants. Furthermore, the implementation of whole genome
sequencing studies in stroke will begin to test whether rare alleles in the population account
for a substantial proportion of disease heritability.

Despite its overall large sample size, the SiGN study has several limitations (in addition to
the power considerations discussed above). First, sample inclusion is heavily biased towards
individuals of European descent; inclusion of non-European populations will improve power
for locus discovery32 and be especially informative for future fine-mapping efforts.33
Second, the inclusion of TOAST-based stage Il samples likely added phenotypic
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heterogeneity (Figure 1, Supplementary Table 3b), potentially reducing power.1® Third,
many of the participating studies within SiGN (and in particular the publicly-available
controls) had limited or no stroke-specific risk factor data available. Such data is key to
disentangling potential gene-environment interactions. Future genetic studies of stroke will
continue to face additional challenges related to the phenotype, including high prevalence of
the disease (lifetime risk ~20%), its late onset (primarily > 65 years), the contribution of
other cardiovascular disease and environment to its etiology, and difficulties subtyping (in
SiGN 12.6 — 22.3% of all cases analyzed were ultimately classified as undetermined by CCS
or TOAST).

Our use of CCS enabled identification of candidate SNPs that did not reach significance for
stage Il follow-up in TOAST, including those SNPs at the 7SPANZ2locus. This refinement
may reflect a reduction in phenotypic heterogeneity that CCS introduces through its capture
of clinical stroke features, completeness of diagnostic investigations, and, where possible,
classification of cases with multiple potential etiologies into the most probable causes. The
association signal of the CCS-discovered 7SPANZlocus was, however, improved upon
inclusion of TOAST samples, suggesting that leveraging the genetic correlation underlying
the subtyping methods and allowing for broader inclusion of cases, regardless of subtyping
system, can yield discovery of more susceptibility loci. Further studies will determine
whether the rich repository of individual-level data created through the use of the CCS will
uncover novel phenotypes, revealing biological mechanisms and broadening our
understanding of stroke’s genetic architecture.
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Figure 1. Genetic and phenotypic correlation of CCS Causative, CCS Phenotypic, and TOAST
subtyping methods in stage | analyses

All cases with an available CCS subtype were included in stage | analyses. Genome-wide z-
scores from the CCS Causative (C), CCS Phenotypic (P), and TOAST (T) GWAS were
checked for correlation between each possible pair of traits. The moderate to strong genetic
correlation within subtypes indicated that additional TOAST-subtyped cases were suitable
for follow-up analyses. Phenotypic correlations were also strong within subtype-specific
clusters. (Top) Pearson’s r correlation coefficients (mathematically equivalent in this
scenario to the Lin’s concordance correlation coefficient) are printed within each square to
indicate genetic correlation. (Bottom) Cohen’s kappas are printed within each square to
indicate phenotypic agreement. Cq, all undetermined (CCS Causative); C,, incomplete and
unclassified (CCS Causative); Cs, cryptogenic and cardioembolic minor (CCS Causative).
The C, and Cj classifications are mutually exclusive.
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analysis of CCS Phenotypic cases and controls (stage 1) and TOAST-subtyped LAA cases

and their matched controls (stage I1). (b) Rs12122341 lies on chromosome 1 near the

TSPANZlocus. EUR, European-ancestry; AFR, African-ancestry; HIS, Hispanic; EAS, East
Asian ancestry; SAS, South Asian ancestry.
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