Skip to main content
. 2016 May 24;130(4):923–934. doi: 10.1007/s00414-016-1388-2

Table 3.

Impact of gender on the performance of eye colour prediction models developed with a Polish sample set using neural networks and multinomial logistic regression methods

Eye colour category Prediction accuracy Mathematical method
Neural networks Multinomial logistic regression
Gender not included Gender included Gender not included Gender included
Blue eye colour AUC 0.889 0.863 0.872 0.880
Sensitivity [%] 94.06 92.51 93.11 93.11
Specificity [%] 74.34 73.85 74.07 74.07
Green eye colour AUC 0.667 0.709 0.611 0.628
Sensitivity [%] 0.71 0.00 0.00 0.00
Specificity [%] 99.55 99.88 99.88 99.88
Hazel eye colour AUC 0.833 0.843 0.797 0.800
Sensitivity [%] 64.88 63.60 65.20 65.20
Specificity [%] 81.04 79.91 80.22 80.22
Brown eye colour AUC 0.917 0.918 0.889 0.892
Sensitivity [%] 34.23 35.04 33.80 33.80
Specificity [%] 95.54 94.18 94.52 94.52