Table 9.
Advanced methods and removal efficiency of DCF, E2, and EE2
| Method | Initial concentration | Method, removal efficiency | Reference |
|---|---|---|---|
| DCF | |||
| FeCl3/Al2(SO4)3 | 14–18 μg L−1 (municipal wastewater) 10–18 μg L−1 10–18 μg L−1 |
Coagulation-flocculation; 70 % FeCl2/68 % Al2(SO4)3, with aluminum polychloride; 50 % flotation with low fat wastewater 12 °C, 25 %; 25 °C; 40 % flotation with high fat wastewater 22 °C, 25 %; 25 °C, 48 % | Carballa et al. (2005) |
| FeCl3/Al2(SO4)3 | Municipal wastewater | Coagulation-flocculation, 21.6 %(mean) | Suarez et al. (2009) |
| UV-A | 15 mg L−1 (deionized water) | 50 mL cylindrical quartz glass UV-reactor; photocatalytic treatment 1500 W xenon arc lamp (750 W m−2) 100 % in 1 h | Calza et al. (2006) |
| UV-A | 10 mg L−1 (deionized water) | 350 mL laboratory-scale photoreactor; 9 W UV-A lamp at a fluence 0.69 kWh m−2, TiO2, 85 % after 240 min | Achilleos et al. (2010) |
| UV254 nm | 0.518 μg L−1 (WWTP effluent) | 10 min, 100 % | De la Cruz et al. (2012) |
| UV200–800 nm | 9.24 mg L−1 (deionized water) | Low and medium pressure: 97–98 % | Lekkerkerker-Teunissen et al. (2012) |
| UV254 nm | 0.858 μg L−1 (MBR effluent hospital wastewater) | 800, 2400, 7200 J m−2; 47 %, 88 %, >98 % | Kovalova et al. (2013) |
| UV/H2O2 | 2.8 mg L−1 | LP-Hg lamp (2.51 × 10−6 E s−1) [H2O2] 5 and 10 mM, pH 7.8, T = 298 K; 100 % in 2 min | Andreozzi et al. (2003) |
| UV/H2O2 | 1 mM (296 mg L−1) solution with double glass-distilled water | UV/H2O2 oxidation, 17 W low-pressure mercury monochromatic lamp, annular reactor (0.420 L); complete in 10 min | Vogna et al. (2004) |
| UV-A/TiO2/H2O2 | (Synthetic WWTP effluent) | UV-A: 2.8 × 10−6 E s−1, [TiO2]: 0.1 g L−1, [H2O2]: 100 mg L−1; fixed bed reactor | Pablos et al. (2013) |
| UV200–800 nm/H2O2 | 9.24 mg L−1 (deionized water) | Low and medium pressure, [H2O2]: 5–10 mg L−1, 97–98 % | Lekkerkerker-Teunissen et al. (2012) |
| UV254 nm/H2O2 | 0.518 μg L−1 (WWTP effluent) | 10 min, [H2O2]: 50 mg L−1, 100 % | De la Cruz et al. (2012) |
| UV254 nm/Fenton (photo-Fenton) | 0.518 μg L−1 (WWTP effluent) | 10 min, UV254 nm, [Fe2+]: 5 mg L−1, [H2O2]: 25–50 mg L−1, 100 % | De la Cruz et al. (2012) |
| UV254 nm/H2O2/Fe UV254 nm/H2O2 |
0.49–1.3 μg L−1 (WWTP effluent) 0.49–1.3 μg L−1 (WWTP effluent) |
[H2O2]: 20–30 mg L−1, [Fe2+]: 2 mg L−1: 99–100 % [H2O2]: 20–30 mg L−1, 99–100 % |
De la Cruz et al. (2013) |
| Radiation | 0.1–1 mM | 0.1–1 mM DCF: few kGy doses sufficient; 0.1 mM DCF—complete degradation with 1 kGy dose | Homlok et al. (2011) |
| Radiation | 50 mg L−1 | 100 % with 4.0 kGy dose (60Co), or with 1.0 kGy, when saturated with N2O | Trojanowicz et al. (2012) |
| Radiation | DCF sodium salt | 12.4 kGy (60Co) | Ozer et al. (2013) |
| Ultrasonic | 2–5 mg L−1 (deionized water) | pH (3.5–11), power density (25–100 W L−1), TOC removal of 19 % after 60 min | Naddeo et al. (2009) |
| Ultrasonication | 30 μM DCF (deionized water) | pH 3, frequency: 861 kHz, 90 min sonication in the presence of 8.9 mM reactive zero-valent iron (ZVI), 0.01 mM reactive divalent iron (DVI), and 0.001 mM nonreactive iron superoxide nanoparticles (NPI) were 22, 43, and 30 %, respectively | Güyer and Ince (2011) |
| O3 | 1.3 | [O3]: 5–10 mg L−1, >96 % | Ternes et al. (2003) |
| O3 | 1 mM (296 mg L−1) solution with double glass-distilled water | [O3]: 5 mg L−1
semibatch glass reactor (1.090 L); almost completely after 10 min |
Vogna et al. (2004) |
| O3 | 10 μg L−1 | KO3 = 6.8 × 105 M−1 s−1
[O3]: 0.016 mg L−1, 100 % |
Sein et al. (2008) |
| O3 | 200 mg L−1 (Milli-Q water) | Ozonation, 1 L batch reactor; almost completely after 30 min | Coelho et al. (2009) |
| O3 | 0.015 (WWTP effluent) | Technical scale; [O3]: 5 mg L−1, >90 % in 15 min | Sui et al. (2010) |
| O3 | 0.858 μg L−1 (MBR effluent hospital wastewater) | [O3]: 4.2, 5.8, 7 mg L−1; 100 % for all three O3 concentrations | Kovalova et al. (2013) |
| O3 | 1 μg L−1 (WWTP effluent) | [O3]: 0.5–12.0 mg L−1 | Antoniou et al. (2013) |
| O3 | 1.13 μg L−1 ± 0.39 | 5.7 mg L−1 ozone dosage, technical scale; WWTP effluent, 94 % | Margot et al. (2013) |
| O3 | 1 μg L−1 (WWTP effluent) | [O3]: 0.5–12 mg L−1, 100 % | Antoniou et al. (2013) |
| ClO2 | 1 μg L−1 (ground and surface water) | [ClO2]: 0.95–11.5 mg L−1, 30–60 min, 100 % | Huber et al. (2005b) |
| O3/H2O2 | 0.165 (average) WWTP effluent | Pilot scale; [O3]: 5 mg L−1; [H2O2]: 3.5 mg L−1; >99 % | Gerrity et al. (2011) |
| O3/UV-A/TiO2 | 30 and 80 mg L−1 (ultrapure water and WWTP effluent) | Cylindrical borosilicate glass photoreactor (0.45 m height and 0.08 m inside diameter), 100 % within 6 min | Aguinaco et al. (2012) |
| O2/UVA/TiO2
O3/UVA/TiO2 |
10−4 M/L solution in Milli-Q water | Cylindrical borosilicate glass photoreactor (0.45 m height, 0.08 m diameter); ozonation, almost completely after 7 min O2/UVA/TiO2, 90 % after 10 min O3/UVA/TiO2, 95 % after 10 min |
García-Araya et al. (2010) |
| Fenton | 0.518 μg L−1 (WWTP effluent) | 30 min, [Fe2+]: 5 mg L−1, [H2O2]: 25–50 mg L−1, 24 % | De la Cruz et al. (2012) |
| Sonolysis TiO2/sonolysis |
50 mg L−1 (deionized water) | 300 mL batch reactor; sonolysis, 90 % after 60 min; sonolysis, TiO2 catalyst, 84 % after 30 min; sonolysis, SiO2 catalyst, 80 % after 30 min; sonolysis, TiO2 and SiO2 catalysts, 80 % after 30 min | Hartmann et al. (2008) |
| BDD/Si | 175 mg L−1 (deionized water) | 150 mL batch reactor pH 6.5 50 mA cm−2: 95.1 % after 360 min 100 mA cm−2: 98.9 % after 360 min 300 mA cm−2: 100 % after 300 min 450 mA cm−2: 100 % after 200 min |
Brillas et al. (2010) |
| BDD/Nb | 300 mg L−1 (bidistilled water) | Batch reactor 100 mL; [Na2SO4] = 0.1 surface area electrode: 6 cm; 42 mA cm−2; 99.8 % within 600 min | Vedenyapina et al. (2011) |
| BDD/Ti | 150 mg L−1 | Batch reactor; pH 6.5; current densities = 10, 15, and 20 mA cm−2; higher DCF decay achieved at current density of 15 mA cm−2. Higher current density leads to oxygen evolution and less efficiency | Coria et al. (2014) |
| BDD/Nb | 50 μM (deionized water, hard tap water, WWTP effluent) | Batch reactor, 3 L, 3.5 A, 100 % after 15 min in deionized water, in 20 min in hard tap water, in 30 min in WWTP effluent | Rajab et al. (2013) |
| Pulsed corona discharge | 5 mg L−1 (tap water) | Reactor (solution volume 55 mL); 100 % after 7 min | Dobrin et al. (2013) |
| Magnetic nanoscaled catalyst cobalt ferrite/oxone | 33.77 μM (deionized water) | 250 mL glass bottle; 100 % in 15 min | Deng et al. (2003) |
| PdFe | 32 mM (bidistilled water) | Plated elemental iron (PdFe), anoxic condition, batch experiment 80 % within 10 min, 100 % after 2 h |
Ghauch et al. (2010) |
| Fe0-based trimetallic system | 32 μM (bidistilled water) | Anoxic condition, batch experiment PdNiFe, 100 % after 1 h PdCuFe, 80 % after 1 h NiPdFe, 80 % after 1 h |
Ghauch et al. (2011) |
| E2 | |||
| O3 | 0.5–5 μg L−1 (WWTP effluent) | [O3]: ≥2 mg L−1, 90–99 % | Huber et al. (2005a) |
| UV | 5 μM (deionized water) | LP-UV, MP-UV, reduction of estrogenic activity lower relevant concentrations | Rosenfeldt et al. (2006) |
| UV/H2O2 | 5 μM (deionized water) | LP-UV + 5 mg L−1 H2O2; >90 % MP-UV + 5 mg L−1 H2O2; >90 % |
Rosenfeldt et al. (2007) |
| UV-A/TiO2 | 500 μg L−1 (deionized water) | [TiO2]: 10 mg L−1
Degradation efficiency increases with increasing pH value |
Karpova et al. (2007) |
| UV-A/TiO2 | 10 μg L−1 (distilled water) | 55 min for 100 %, 24 min for 90 % | Coleman et al. (2004) |
| O3/H2O2 | 0.003 (average) WWTP effluent | Pilot scale; [O3]: 5 mg L−1; [H2O2]: 3.5 mg L−1; >83 % | Gerrity et al. (2011) |
| BDD/Si | 500 μg L−1 (distilled water) | 500 mL batch reactor pH 6 12.5 mA cm−2: 100 % after 40 min 25 mA/cm−2: 100 % after 40 min |
Murugananthan et al. (2007) |
| EE2 | |||
| O3 | 4 μmol/L (natural water) | [O3]: 1.5–7.5 μmol L−1, removal strongly depends on pH value | Huber et al. (2003) |
| O3 | 0.5–5 μg L−1 (WWTP effluent) | [O3]: ≥2 mg L−1, 90–99 % | Huber et al. (2005a) |
| ClO2 | 1 μg L−1 (groundwater) | [ClO2]: 0.1 mg L−1, <5 min, 100 % | Huber et al. (2005b) |
| MnO2 | 5 mg L−1 day−1
40 mg L−1 day−1 |
93 % 75 % |
Forrez et al. (2009) |
| Biologically produced MnO2 | 40 mg L−1 day−1 | 57 % | Forrez et al. (2009) |
| UV-A/TiO2 | 10 μg L−1 (distilled water) | 50 min for 100 %, 27.5 min for 90 % | Coleman et al. (2004) |
| Ultrasonic/O3 | Ultrasonic ozonation (US/O3) and photocatalytic ozonation (PC/O3) under different conditions involving supplied ozone dose, pH value and humic acid (HA) concentration of the effluent, ultrasonic radiation power, and photocatalyst dose; <13.3 % removal rate for EE2 | Zhou et al. (2015) | |