Skip to main content
. 2016 Mar 29;23:12835–12866. doi: 10.1007/s11356-016-6503-x

Table 9.

Advanced methods and removal efficiency of DCF, E2, and EE2

Method Initial concentration Method, removal efficiency Reference
DCF
 FeCl3/Al2(SO4)3 14–18 μg L−1 (municipal wastewater)
10–18 μg L−1
10–18 μg L−1
Coagulation-flocculation; 70 % FeCl2/68 % Al2(SO4)3, with aluminum polychloride; 50 % flotation with low fat wastewater 12 °C, 25 %; 25 °C; 40 % flotation with high fat wastewater 22 °C, 25 %; 25 °C, 48 % Carballa et al. (2005)
 FeCl3/Al2(SO4)3 Municipal wastewater Coagulation-flocculation, 21.6 %(mean) Suarez et al. (2009)
 UV-A 15 mg L−1 (deionized water) 50 mL cylindrical quartz glass UV-reactor; photocatalytic treatment 1500 W xenon arc lamp (750 W m−2) 100 % in 1 h Calza et al. (2006)
 UV-A 10 mg L−1 (deionized water) 350 mL laboratory-scale photoreactor; 9 W UV-A lamp at a fluence 0.69 kWh m−2, TiO2, 85 % after 240 min Achilleos et al. (2010)
 UV254 nm 0.518 μg L−1 (WWTP effluent) 10 min, 100 % De la Cruz et al. (2012)
 UV200–800 nm 9.24 mg L−1 (deionized water) Low and medium pressure: 97–98 % Lekkerkerker-Teunissen et al. (2012)
 UV254 nm 0.858 μg L−1 (MBR effluent hospital wastewater) 800, 2400, 7200 J m−2; 47 %, 88 %, >98 % Kovalova et al. (2013)
 UV/H2O2 2.8 mg L−1 LP-Hg lamp (2.51 × 10−6 E s−1) [H2O2] 5 and 10 mM, pH 7.8, T = 298 K; 100 % in 2 min Andreozzi et al. (2003)
 UV/H2O2 1 mM (296 mg L−1) solution with double glass-distilled water UV/H2O2 oxidation, 17 W low-pressure mercury monochromatic lamp, annular reactor (0.420 L); complete in 10 min Vogna et al. (2004)
 UV-A/TiO2/H2O2 (Synthetic WWTP effluent) UV-A: 2.8 × 10−6 E s−1, [TiO2]: 0.1 g L−1, [H2O2]: 100 mg L−1; fixed bed reactor Pablos et al. (2013)
 UV200–800 nm/H2O2 9.24 mg L−1 (deionized water) Low and medium pressure, [H2O2]: 5–10 mg L−1, 97–98 % Lekkerkerker-Teunissen et al. (2012)
 UV254 nm/H2O2 0.518 μg L−1 (WWTP effluent) 10 min, [H2O2]: 50 mg L−1, 100 % De la Cruz et al. (2012)
 UV254 nm/Fenton (photo-Fenton) 0.518 μg L−1 (WWTP effluent) 10 min, UV254 nm, [Fe2+]: 5 mg L−1, [H2O2]: 25–50 mg L−1, 100 % De la Cruz et al. (2012)
 UV254 nm/H2O2/Fe
UV254 nm/H2O2
0.49–1.3 μg L−1 (WWTP effluent)
0.49–1.3 μg L−1 (WWTP effluent)
[H2O2]: 20–30 mg L−1, [Fe2+]: 2 mg L−1: 99–100 %
[H2O2]: 20–30 mg L−1, 99–100 %
De la Cruz et al. (2013)
 Radiation 0.1–1 mM 0.1–1 mM DCF: few kGy doses sufficient; 0.1 mM DCF—complete degradation with 1 kGy dose Homlok et al. (2011)
 Radiation 50 mg L−1 100 % with 4.0 kGy dose (60Co), or with 1.0 kGy, when saturated with N2O Trojanowicz et al. (2012)
 Radiation DCF sodium salt 12.4 kGy (60Co) Ozer et al. (2013)
 Ultrasonic 2–5 mg L−1 (deionized water) pH (3.5–11), power density (25–100 W L−1), TOC removal of 19 % after 60 min Naddeo et al. (2009)
 Ultrasonication 30 μM DCF (deionized water) pH 3, frequency: 861 kHz, 90 min sonication in the presence of 8.9 mM reactive zero-valent iron (ZVI), 0.01 mM reactive divalent iron (DVI), and 0.001 mM nonreactive iron superoxide nanoparticles (NPI) were 22, 43, and 30 %, respectively Güyer and Ince (2011)
 O3 1.3 [O3]: 5–10 mg L−1, >96 % Ternes et al. (2003)
 O3 1 mM (296 mg L−1) solution with double glass-distilled water [O3]: 5 mg L−1
semibatch glass reactor (1.090 L); almost completely after 10 min
Vogna et al. (2004)
 O3 10 μg L−1 KO3 = 6.8 × 105 M−1 s−1
[O3]: 0.016 mg L−1, 100 %
Sein et al. (2008)
 O3 200 mg L−1 (Milli-Q water) Ozonation, 1 L batch reactor; almost completely after 30 min Coelho et al. (2009)
 O3 0.015 (WWTP effluent) Technical scale; [O3]: 5 mg L−1, >90 % in 15 min Sui et al. (2010)
 O3 0.858 μg L−1 (MBR effluent hospital wastewater) [O3]: 4.2, 5.8, 7 mg L−1; 100 % for all three O3 concentrations Kovalova et al. (2013)
 O3 1 μg L−1 (WWTP effluent) [O3]: 0.5–12.0 mg L−1 Antoniou et al. (2013)
 O3 1.13 μg L−1 ± 0.39 5.7 mg L−1 ozone dosage, technical scale; WWTP effluent, 94 % Margot et al. (2013)
 O3 1 μg L−1 (WWTP effluent) [O3]: 0.5–12 mg L−1, 100 % Antoniou et al. (2013)
 ClO2 1 μg L−1 (ground and surface water) [ClO2]: 0.95–11.5 mg L−1, 30–60 min, 100 % Huber et al. (2005b)
 O3/H2O2 0.165 (average) WWTP effluent Pilot scale; [O3]: 5 mg L−1; [H2O2]: 3.5 mg L−1; >99 % Gerrity et al. (2011)
 O3/UV-A/TiO2 30 and 80 mg L−1 (ultrapure water and WWTP effluent) Cylindrical borosilicate glass photoreactor (0.45 m height and 0.08 m inside diameter), 100 % within 6 min Aguinaco et al. (2012)
 O2/UVA/TiO2
O3/UVA/TiO2
10−4 M/L solution in Milli-Q water Cylindrical borosilicate glass photoreactor (0.45 m height, 0.08 m diameter); ozonation, almost completely after 7 min
O2/UVA/TiO2, 90 % after 10 min
O3/UVA/TiO2, 95 % after 10 min
García-Araya et al. (2010)
 Fenton 0.518 μg L−1 (WWTP effluent) 30 min, [Fe2+]: 5 mg L−1, [H2O2]: 25–50 mg L−1, 24 % De la Cruz et al. (2012)
 Sonolysis
TiO2/sonolysis
50 mg L−1 (deionized water) 300 mL batch reactor; sonolysis, 90 % after 60 min; sonolysis, TiO2 catalyst, 84 % after 30 min; sonolysis, SiO2 catalyst, 80 % after 30 min; sonolysis, TiO2 and SiO2 catalysts, 80 % after 30 min Hartmann et al. (2008)
 BDD/Si 175 mg L−1 (deionized water) 150 mL batch reactor pH 6.5
50 mA cm−2: 95.1 % after 360 min
100 mA cm−2: 98.9 % after 360 min
300 mA cm−2: 100 % after 300 min
450 mA cm−2: 100 % after 200 min
Brillas et al. (2010)
 BDD/Nb 300 mg L−1 (bidistilled water) Batch reactor 100 mL; [Na2SO4] = 0.1 surface area electrode: 6 cm; 42 mA cm−2; 99.8 % within 600 min Vedenyapina et al. (2011)
 BDD/Ti 150 mg L−1 Batch reactor; pH 6.5; current densities = 10, 15, and 20 mA cm−2; higher DCF decay achieved at current density of 15 mA cm−2. Higher current density leads to oxygen evolution and less efficiency Coria et al. (2014)
 BDD/Nb 50 μM (deionized water, hard tap water, WWTP effluent) Batch reactor, 3 L, 3.5 A, 100 % after 15 min in deionized water, in 20 min in hard tap water, in 30 min in WWTP effluent Rajab et al. (2013)
 Pulsed corona discharge 5 mg L−1 (tap water) Reactor (solution volume 55 mL); 100 % after 7 min Dobrin et al. (2013)
 Magnetic nanoscaled catalyst cobalt ferrite/oxone 33.77 μM (deionized water) 250 mL glass bottle; 100 % in 15 min Deng et al. (2003)
 PdFe 32 mM (bidistilled water) Plated elemental iron (PdFe), anoxic condition, batch experiment
80 % within 10 min, 100 % after 2 h
Ghauch et al. (2010)
 Fe0-based trimetallic system 32 μM (bidistilled water) Anoxic condition, batch experiment
PdNiFe, 100 % after 1 h
PdCuFe, 80 % after 1 h
NiPdFe, 80 % after 1 h
Ghauch et al. (2011)
E2
 O3 0.5–5 μg L−1 (WWTP effluent) [O3]: ≥2 mg L−1, 90–99 % Huber et al. (2005a)
 UV 5 μM (deionized water) LP-UV, MP-UV, reduction of estrogenic activity lower relevant concentrations Rosenfeldt et al. (2006)
 UV/H2O2 5 μM (deionized water) LP-UV + 5 mg L−1 H2O2; >90 %
MP-UV + 5 mg L−1 H2O2; >90 %
Rosenfeldt et al. (2007)
 UV-A/TiO2 500 μg L−1 (deionized water) [TiO2]: 10 mg L−1
Degradation efficiency increases with increasing pH value
Karpova et al. (2007)
 UV-A/TiO2 10 μg L−1 (distilled water) 55 min for 100 %, 24 min for 90 % Coleman et al. (2004)
 O3/H2O2 0.003 (average) WWTP effluent Pilot scale; [O3]: 5 mg L−1; [H2O2]: 3.5 mg L−1; >83 % Gerrity et al. (2011)
 BDD/Si 500 μg L−1 (distilled water) 500 mL batch reactor pH 6
12.5 mA cm−2: 100 % after 40 min
25 mA/cm−2: 100 % after 40 min
Murugananthan et al. (2007)
EE2
 O3 4 μmol/L (natural water) [O3]: 1.5–7.5 μmol L−1, removal strongly depends on pH value Huber et al. (2003)
 O3 0.5–5 μg L−1 (WWTP effluent) [O3]: ≥2 mg L−1, 90–99 % Huber et al. (2005a)
 ClO2 1 μg L−1 (groundwater) [ClO2]: 0.1 mg L−1, <5 min, 100 % Huber et al. (2005b)
 MnO2 5 mg L−1 day−1
40 mg L−1 day−1
93 %
75 %
Forrez et al. (2009)
 Biologically produced MnO2 40 mg L−1 day−1 57 % Forrez et al. (2009)
 UV-A/TiO2 10 μg L−1 (distilled water) 50 min for 100 %, 27.5 min for 90 % Coleman et al. (2004)
 Ultrasonic/O3 Ultrasonic ozonation (US/O3) and photocatalytic ozonation (PC/O3) under different conditions involving supplied ozone dose, pH value and humic acid (HA) concentration of the effluent, ultrasonic radiation power, and photocatalyst dose; <13.3 % removal rate for EE2 Zhou et al. (2015)