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Abstract

Aging is accompanied by declines in executive control abilities and changes in underlying brain 

network architecture. Here, we examined brain networks in young and older adults during a task-

free resting-state and an N-back task and investigated age-related changes in the modular network 

organization of the brain. Compared to young adults, older adults showed larger changes in 

network organization between resting-state and task. While young adults exhibited increased 

connectivity between lateral frontal regions and other network modules during the most difficult 

task condition, older adults also exhibited this pattern of increased connectivity during less 

demanding task conditions. Moreover, the increase in between-module connectivity in older adults 

was related to faster task performance and greater fractional anisotropy (FA) of the superior 

longitudinal fasciculus. These results demonstrate that older adults who exhibit more pronounced 

network changes between a resting-state and task have better executive control performance and 

greater structural connectivity of a core frontal-posterior white matter pathway.
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1. Introduction

Cognitive decline is pervasive in older adulthood, notably in executive control processes 

thought to be subserved by the frontal cortex (Grady, 2012; 2008; Park et al., 2002). 

Extensive alterations in brain structure and function are also observed in older adults. 
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Functional changes in aging have been documented in the activation of individual brain 

regions as well as in the functional connectivity between brain regions (Grady, 2012; Spreng 

et al., 2010; Turner and Spreng, 2015; 2012). Alterations in functional connectivity are 

thought to be related, in part, to a decline in structural connectivity, such as through long-

range white matter fiber tracts (Bennett and Madden, 2014).

Further work in older adults has examined the functional communication among groups of 

brain regions by quantifying the connectivity of brain sub-networks (Andrews-Hanna et al., 

2007; Damoiseaux et al., 2008; Ferreira and Busatto, 2013), such as the default-mode and 

fronto-parietal networks. However, executive control processes rely on the integration of 

signals from frontal cortex to widely distributed brain regions, likely not limited to specific 

sub-networks as has been examined thus far (Barceló et al., 2000; Chao and Knight, 1998; 

Fuster et al., 1985; Knight et al., 1999; Lee and D’Esposito, 2012; Miller and D’Esposito, 

2005). Thus, changes in executive control processing in aging may be better examined by 

methods that quantify the large-scale (e.g., whole-brain) network organization of the brain. 

Graph theoretical methods describe the brain as a complex network, comprised of 

functionally separable sub-networks or modules. This type of organization is critical for 

supporting both local processing within and global processing between modules. Using 

graph theory, the modularity of network organization can be quantified (Meunier et al., 

2010; 2009b), where networks with high modularity have dense connections within modules 

and sparser connections between modules.

Studies examining modular network organization during working memory have shown that 

increasing executive control demands (i.e., increasing N-back load) are supported by a more 

integrated network organization, manifested in decreased modularity (Kitzbichler et al., 

2011; Vatansever et al., 2015; Wen et al., 2015) and increased connectivity between network 

modules (Liang et al., 2015; Stanley et al., 2014). This reconfiguration of brain networks has 

also been observed when comparing networks from a task-free ‘resting-state’ to those during 

the performance of tasks with increasing demands (Wen et al., 2015).

In older adults, analyses of structural and resting-state fMRI data have demonstrated that 

aging is associated with declines in modularity (Chan et al., 2014; Z. J. Chen et al., 2011; 

Geerligs et al., 2014a; Meunier et al., 2009a; Onoda and Yamaguchi, 2013). Importantly, 

these studies have not examined how networks reconfigure during the performance of a task 

in older adults. To understand how network-level changes contribute to age-related 

alterations in executive control, it is critical to investigate changes in brain network 

properties during cognitive processing.

In this study, we examine how the modular organization of the brain reconfigures between 

the absence of a task (e.g., a resting-state) and the performance of an N-back task in older 

and young adults. We first quantify the topological overlap of modules identified during 

resting-state and task. We next examine changes in between-module connectivity with 

increasing cognitive demands, both across the entire brain (i.e., modularity) and in a subset 

of lateral frontal regions. We also examine how changes in between-module connectivity 

from a resting-state to task are related to behavioral performance. Finally, as aging is 

associated with declines in white matter pathways (Bennett and Madden, 2014), we 
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investigate how frontal-posterior structural connectivity is related to functional 

reconfiguration of brain networks in older adults.

2. Material and Methods

2.1 Participants

Eighteen young (10 females; mean age = 21.08, range = 18–26) and 38 older (24 females; 

mean age = 66.97, range = 60–80) adults were included in this analysis. Young and older 

participants were matched on distribution of gender (χ2(1, N = 56) = 0.30, p = 0.59). Older 

participants had greater years of education compared to young participants (mean ± SEM, 

older: 17.42 ± 0.49; young: 14.53 ± 0.48; t(54) = 3.67, p = 0.001). Participants were pre-

screened for the presence of medical, neurological, or psychiatric illness (e.g., stroke, 

traumatic brain injury) and the use of prescribed drugs with known effects on cognition (e.g., 

benzodiazepines). Older participants were recruited through the Berkeley Aging Cohort and 

through the community (e.g., fliers, senior residences). Older participants were normal on 

cognitive screening (i.e., no score less than 1.5 SDs below expected performance in more 

than one cognitive domain for neuropsychological assessments of memory, concentration, 

verbal fluency, and visuospatial function). A complete neuropsychological evaluation was 

not available for one subject; however, this subject had an MMSE score of 28. Young 

participants were recruited after the collection of older subject data through research study 

postings at the University of California, Berkeley. Informed consent was obtained from all 

participants in accordance with the Committee for Protection of Human Subjects at the 

University of California, Berkeley.

2.2 Cognitive task

The cognitive task performed during fMRI scanning was an N-back task that consisted of 20 

runs lasting approximately two minutes each (A. J. W. Chen et al., 2011; Lee and 

D’Esposito, 2012). Each run contained a series of pseudo-randomly interleaved face and 

natural scene stimuli (10 of each) during which participants were instructed to either attend 

to and maintain images from the relevant stimulus category, while ignoring images from the 

irrelevant category, or to attend both categories. Each stimulus was presented for 600 ms, 

with a 2.4, 4.4, or 6.4 s jittered delay (randomly ordered) between each stimulus 

presentation. The four conditions varied in executive control demands and were referred to 

as: ‘CATEGORIZE,’ ‘SCENES,’ ‘FACES,’ and ‘BOTH.’ In CATEGORIZE, participants 

indicated with a button press whether the current image was a face or a scene, with no 

attempt to remember the image. In SCENES and FACES, participants were instructed to 

selectively attend to and maintain images from the relevant category (i.e., scenes or faces, 

respectively) and ignore images from the irrelevant category (i.e., faces or scenes, 

respectively). Participants indicated if the current attended image matched the previous 

image in the same category. Participants responded to all unattended items in SCENES and 

FACES with the ‘no-match’ button. Finally, in BOTH, participants were instructed to attend 

to and maintain both the face and scene stimuli. If the current image matched the previous 

image of the same category, participants pressed the ‘match’ button. Participants completed 

five blocks of each condition during fMRI scanning.
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2.3 MRI acquisition and preprocessing

MRI scans were collected with a 12-channel head coil on a 3T Siemens Trio scanner at the 

University of California, Berkeley. A high-resolution T1-weighted MP-RAGE sequence was 

used to acquire 3D anatomical images (TR = 2300 ms, TE = 2.98 ms, FA = 9°, 1.00 mm 3 

voxels). A T2*-weighted echoplanar imaging (EPI) sequence was used to acquire resting-

state and task functional data (TR = 1000 ms, TE = 27 ms for older participants; 24 ms for 

young participants, 5.00 mm thick interleaved (descending for young participants) axial 

slices (0.50 mm gap), in-plane resolution = 3.50 mm2). Functional data for older adults was 

collected using GRAPPA with an acceleration factor of two. For the N-back task scans, five 

114-volume runs of each task condition were collected. For the resting-state scans, one 300-

volume run was collected for all young and 35 older adults. We collected the resting-state 

scans for the remaining three older adults with the following parameters: 435 volumes, TR = 

1370 ms, TE = 26 ms, 3.50 mm thick interleaved axial slices (0.35 mm gap), in-plane 

resolution = 2.34 mm2.

Standard preprocessing of EPI data was carried out with AFNI versions 2.61–4.21 (Cox, 

1996). EPI volumes were slice-time and motion corrected, co-registered to the T1-weighted 

structural image using a 12-parameter affine transformation, and scaled to have each voxel’s 

run mean be equal to 100. Structural scans were segmented into cerebrospinal fluid (CSF) 

and gray and white matter components using SPM8 (Wellcome Department of Cognitive 

Neurology, London, United Kingdom). Functional data was spatially smoothed to a 6 mm 

full width at half maximum Gaussian kernel and signals (mean and temporal derivative) 

from white matter, CSF, and motion were regressed out.

Diffusion weighted images were acquired for 32 older participants along 30 non-collinear 

diffusion-encoding directions (50 slices, TR = 6400 ms, TE = 87 ms, FOV: 256 × 256 mm2, 

128 × 128 matrix, 2 mm thick axial slices, in-plane resolution = 2.2 mm2). The data were 

preprocessed using the Functional Magnetic Resonance Imaging in the Brain (FMRIB) 

Software Library (FSL) (Smith et al., 2004; Woolrich et al., 2009). First, the Digital Imaging 

and Communications in Medicine files of each acquisition were converted to a single 

multivolume 4D format in the MRIcron software (Rorden et al., 2007). Next, they were 

corrected for any effects of head movement and eddy current distortion using the eddy 

correct tool in FMRIB’s Diffusion Toolbox (FDT). This tool conducts an affine registration 

of each individual volume to a specified b0 volume. Brain tissue was segmented using the 

Brain Extraction Tool (BET) (Smith, 2002) in FSL and a brain mask was created at a 

threshold of 0.3 as recommended by FSL. Diffusion weighted images were also collected for 

16 young adults but not analyzed here.

2.4 Functional connectivity analyses

Participants’ T1-weighted anatomical scans were parcellated into 90 cortical and subcortical 

regions of interest (ROIs) from the AAL atlas (Tzourio-Mazoyer et al., 2002). ROIs were 

reverse-normalized to each participant’s native space using the parameters from SPM 

segmentation (i.e., a reverse-normalization from the warping to MNI template space that was 

computed during segmentation). Individual time-series from each resting-state and task run 

were averaged over the voxels in each ROI and bandpass filtered (0.009 – 0.08 Hz) to 
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remove physiological artifacts. Six ROIs were excluded from subsequent analyses because 

they were missing coverage in the EPI volumes in some scanning runs in either young or 

older participants (bilateral inferior occipital gyrus, left fusiform gyrus, right superior 

parietal gyrus, left middle temporal pole, left inferior temporal gyrus). Finally, functional 

connectivity matrices for resting-state and task were created for each participant by 

correlating the time-series between each pair of ROIs using Pearson’s correlation coefficient 

and applying a Fisher z-transform. As there are multiple methods for parcellating the brain 

into ROIs for network analyses, we also repeated our analyses with a commonly used atlas 

that is composed of functionally, rather than anatomically, defined regions from healthy 

young subjects (Power et al., 2011).

We matched whether resting-state scans were acquired before or after the N-back task in the 

younger and older groups. Resting-state scans were collected after the task for 26 older and 

13 young adults; the remaining participants had resting-state scans collected before the task 

(12 older and 5 young). The distribution of pre- and post-task resting-state scans across 

participants was equivalent between the two age groups (χ2(1, N = 56) = 0.08, p = 0.77). 

Additional follow-up analyses in Section 3.4 address the potential effects of pre- and post-

task resting-state scans on our results.

To have similar numbers of volumes for resting-state and task correlation analyses, 5.7 

minutes (342 volumes) of each task condition were analyzed, by demeaning and 

concatenating three of the five blocks for each condition before computing correlations 

between each ROI pair. Concatenating task volumes allows for additional task data to be 

used to more reliably estimate functionally connectivity between ROIs. Further, it makes the 

amount of data for correlation analyses similar between resting-state and task conditions. 

For 11 young and 29 older adults, we used the first three runs of each task condition to 

generate the task time-series. In a portion of the first three runs for the remaining nine older 

adults, there were suspected artifacts from movement during the GRAPPA reference scan 

(auto-calibrating signal (ACS) scan); we therefore used one or two of the subsequent runs to 

generate task time-series (12 total time-series across participants and task conditions). We 

matched the composition of the task time-series for these older participants in a set of seven 

young older adults. Further, the distribution of whether task time-series were generated from 

the first three runs was matched between the age groups (χ2(1, N = 56) = 1.38, p = 0.24). 

Additional follow-up analyses in Section 3.4 address the potential effects of task run 

selection on our results.

2.5 Module-based network metrics

The functional connectivity matrices were binarized to create adjacency matrices that 

indicate the presence or absence of a connection between a pair of regions. Matrices were 

binarized over a range of connection density thresholds, where thresholding of the matrices 

was achieved by matching the number of network connections across participants (here, the 

top 5–25% of all possible connections in the network in 5% increments). Each of these 

thresholded matrices was used to create unweighted, undirected whole-brain graphs (defined 

as a set of nodes or ROIs and the edges or connections between them) with which network 

metrics were examined. Unless otherwise noted, network metrics were created separately for 
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each connection threshold and are presented as the average across all five connection density 

thresholds.

Each brain graph was then subdivided into modules using a simulated annealing algorithm 

(Kirkpatrick et al., 1983). We subsequently refer to the collection of modules as a ‘partition.’ 

For each graph, we identified its ‘optimal’ modular organization by choosing the partition 

with the highest modularity value across the algorithm iterations (Newman and Girvan, 

2004). Highly modular graphs have dense connections within modules and sparser 

connections between modules. We then investigated the reconfiguration of modular network 

structure between a resting-state and task in the two age groups.

First, as our module-detection procedure allows for different partitions (groupings of nodes 

into modules) across individuals and task conditions, we investigated the overlap of modules 

between a resting-state and task using mutual information (MI). MI quantifies the similarity 

of two partitions (Danon et al., 2005) with 1 representing identical partitions and low values 

indicating that nodes tend to group together into different modules. We compared each 

subject’s resting-state network organization to those created from the four task conditions to 

examine the differences in modules between a resting-state and task.

Next, we investigated changes in network connections between resting-state and task. We 

first quantified modularity, a whole-brain network measure that compares the number of 

connections within to the number of connections between modules (Newman and Girvan, 

2004). Modularity will be 1 if all connections fall within modules and it will be 0 if there are 

no more connections within modules than would be expected by chance.

While modularity quantifies the balance of within- and between-module connections across 

the whole-brain network, there may also be changes in particular network connections in the 

brain. Thus, we also examined the properties of specific between-module connections that 

provide communication across network modules. To do so, we quantified the participation 

coefficient (PC) of individual brain regions, a measure of the distribution of a node’s 

connections across modules (Guimera and Amaral, 2005; Guimera et al., 2006). A node’s 

PC will be 1 if its connections are uniformly distributed across all network modules and it 

will be 0 if its connections are concentrated within its own module. In other words, a higher 

PC value suggests that a node’s connections are more distributed among network modules, 

while a lower PC value indicates that a node’s connections are more concentrated in its own 

module. We focused on examining PC of lateral frontal regions, as they play a critical role in 

top-down modulation of sensory cortices (Gazzaley and Nobre, 2012) to support executive 

control functions such as attention and working memory (Chao and Knight, 1998; Funahashi 

et al., 1993a; 1993b; Lee and D’Esposito, 2012). Further, older adults exhibit notable 

impairments in these functions (Clapp et al., 2011; Gazzaley et al., 2005). We calculated PC 

for 10 lateral frontal regions in the AAL atlas: bilateral precentral, middle frontal, superior 

frontal, and pars opercularis and pars triangularis of the inferior frontal gyrus. PC was 

averaged across lateral frontal regions to examine general changes that occur in lateral 

frontal cortex with aging. To examine the specificity of lateral frontal changes, we also 

examined PC for 10 control regions in the occipital cortex: bilateral superior occipital, 
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middle occipital, cuneus, calcarine, and lingual gyrus. We restricted our analyses to one set 

of control regions to limit the number of statistical tests conducted.

2.6 White matter connectivity analyses

We were also interested in investigating the relationship between functional network 

changes and connectivity of long-range white matter association fiber tracts. We focused on 

the superior longitudinal fasciculus (SLF), as it has been shown to provide critical 

anatomical connections between frontal and posterior cortical regions (Makris et al., 2005), 

putative targets of frontal regions implicated in executive control (Mori et al., 2008). After 

preprocessing, the FDT tool in FSL was used to fit a diffusion tensor model at each voxel in 

the brain-extracted images created with BET. Fractional anisotropy (FA) maps were derived 

for each participant. Voxel-wise statistical analysis of the FA data was carried out using 

Tract-Based Spatial Statistics (TBSS) (Smith et al., 2006) in FSL. ROI masks for the left and 

right superior longitudinal fasciculus were created using the JHU-ICBM-DTI-81 Atlas. 

These masks were then used to extract the average FA value for the tract across hemispheres 

in each participant, which we speculate reflects variability in underlying structural 

connectivity or white matter architecture across participants.

2.7 Statistical analysis

Effects of aging on task performance (i.e., accuracy and reaction time) were assessed with a 

repeated-measures ANOVA with a within-subjects factor of task condition (CATEGORIZE, 

SCENES, FACES, BOTH) and a between-subjects factor of age group (OLDER, YOUNG). 

Mutual information between a resting-state and the four task network partitions was assessed 

with a repeated-measures ANOVA with a within-subjects factor of task condition 

(CATEGORIZE, SCENES, FACES, BOTH) and a between-subjects factor of age group 

(OLDER, YOUNG). Modularity and PC were assessed with repeated-measures ANOVAs 

with a within-subjects factor of task condition (RESTING-STATE, CATEGORIZE, 

SCENES, FACES, BOTH) and a between-subjects factor of age group (OLDER, YOUNG). 

For ANOVAs that only include the four task conditions as factors (i.e., do not include 

resting-state), we report both the overall within-subjects effects of task condition as well as 

the linear within-subjects contrasts, as we hypothesized that the task conditions would 

modulate outcome measures in a parametric fashion.

We set a significance threshold of p < 0.05 and also report non-significant trends at p < 0.10. 

To ensure maximal transparency, we report uncorrected p-values and interpret results with 

caution when they do not pass a Bonferroni-corrected threshold for three tests (mutual 

information, modularity, and lateral frontal PC). For all ANOVAs, we also report estimates 

of effect size for each contrast as partial eta-squared (ηp
2). Significant interactions between 

age group and task condition were subsequently investigated with post-hoc comparisons, 

focusing on age group differences across resting-state and task conditions.

Recent work has shown that in-scanner motion can spuriously affect measures of functional 

connectivity (Power et al., 2012; 2013; Satterthwaite et al., 2013; Van Dijk et al., 2012). We 

took several steps to ensure that the reconfiguration of modular network structure was not 

related to motion. First, we examined age and task differences in head motion, quantified as 
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the Euclidean norm of the derivatives of motion parameters. Second, we conducted all 

network analyses with motion as a covariate of no interest.

Finally, we examined behavioral and structural correlates of network reconfiguration in older 

adults. We quantified network reconfiguration as the change in lateral frontal PC between 

resting-state and task (averaged across all task conditions). Correlations were quantified with 

Spearman’s rho instead of Pearson’s correlation coefficient to reduce the influence of 

extreme values. To examine the relationship between network reconfiguration and executive 

control, we conducted correlations between the change in lateral frontal PC and behavioral 

performance (reaction time) from the task. Differences in correlation values between older 

and young groups were evaluated using the formula described by Cohen (Cohen et al., 2003) 

after using the conversion from Spearman’s to Pearson’s coefficients described by Myers 

and Sirois (Myers and Sirois, 2004). To examine the relationship between white matter 

architecture and network reconfiguration in older adults, we conducted correlations between 

FA of the SLF (average of left and right hemispheres) and the change in lateral frontal PC.

Plots were created with the Matplotlib package (http://matplotlib.org/) in IPython (http://

ipython.org/) and brain network graphs were visualized with BrainNet Viewer (http://

www.nitrc.org/projects/bnv/).

3. Results

3.1 Task performance

Accuracy and reaction time (RT) analyses revealed main effects of age group (accuracy: 

F(1,54) = 5.74, p = 0.02, ηp
2 = 0.10; RT: F(1,54) = 5.03, p = 0.03, ηp

2 = 0.09) and task 

condition (accuracy: overall effect, F(3,162) = 28.50, p < 0.001, ηp
2 = 0.35 and linear 

contrast, F(1,54) = 60.04, p < 0.001, ηp
2 = 0.53; RT: overall effect, F(3,162) = 141.90, p < 

0.001, ηp
2 = 0.72 and linear contrast, F(1,54) = 200.92, p < 0.001, ηp

2 = 0.79). Across all 

conditions, older adults had lower accuracy and longer RTs than young adults. Across all 

participants, accuracy was highest and RTs were shortest in the CATEGORIZE and 

SCENES conditions, followed by FACES and BOTH.

The age group by task condition interaction was also significant for both accuracy and RT 

(accuracy: F(3,162) = 7.75, p < 0.001, ηp
2 = 0.13; RT: F(3,162) = 10.47, p < 0.001, ηp

2 = 

0.16), indicating that older adults performed worse than young adults, but not equally in all 

conditions. Older and young adults had equivalent accuracy and RT in the CATEGORIZE 

condition (accuracy: p = 0.85; RT: p = 0.65) but older adults had lower accuracy (Fig. 1A) 

and longer RTs (Fig. 1B) than young adults in the SCENES, FACES, and BOTH conditions 

(accuracy: p = 0.09, p = 0.005, p = 0.001; RT: p = 0.07, p = 0.05, p = 0.001). We also 

conducted non-parametric tests (Mann-Whitney U test) between the age groups for each task 

condition. These results confirmed that older adults performed less accurately and slower on 

all conditions except for CATEGORIZE (accuracy: CATEGORIZE, p = 0.85; SCENES, p = 

0.02; FACES, p < 0.001; BOTH, p < 0.001; RT: CATEGORIZE, p = 0.66; SCENES, p = 

0.03; FACES, p = 0.04; BOTH, p = 0.001)
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3.2 Reconfiguration of modular network organization during executive control processing

3.2.1 Mutual information between network partitions during resting-state and 
task performance—We first examined changes in modules between resting-state and task 

in young and older adults. More specifically, we quantified the mutual information (MI) 

between each subject’s resting network partition and those derived from the four task 

conditions, thus producing four MI values (each task condition compared to resting-state) 

for each subject. A repeated-measures ANOVA on MI revealed main effects of age group 

and task condition (Fig. 2A; age group: F(1,54) = 33.22, p < 0.001, ηp
2 = 0.38; task 

condition: overall effect, F(3,162) = 2.11, p = 0.10, ηp
2 = 0.04 and linear contrast, F(1,54) = 

4.33, p = 0.04, ηp
2 = 0.07). Across all task conditions, older adults had lower MI between 

resting-state and task than young adults. The significant linear contrast suggests that MI was 

modulated parametrically across the task conditions. Across all participants, MI between 

resting-state and task was higher for CATEGORIZE and SCENES compared to BOTH and 

higher in SCENES compared to FACES. The main effect of task condition on MI should be 

interpreted with caution, as it does not pass a Bonferroni-corrected significance threshold of 

p <0.05. There was no significant age group by task condition interaction (F(3,162) = 0.56, p 

= 0.64, ηp
2 = 0.01)

3.2.2 Modularity of the brain during resting-state and task performance—We 

next examined changes in the balance of within- and between-module connections across the 

whole brain by quantifying the modularity of the network. ANOVAs on modularity revealed 

a main effect of age group (F(1,54) = 43.38, p < 0.001, ηp
2 = 0.45) and task condition 

(F(4,216) = 2.59, p = 0.04, ηp
2 = 0.05). Across all task conditions, older adults had lower 

modularity than young adults. Across all participants, RESTING-STATE, CATEGORIZE, 

SCENES, and FACES conditions were associated with higher modularity than the BOTH 

condition (Fig. 2B). While the main effect of task condition on modularity using the AAL 

atlas does not pass a Bonferroni-corrected significance threshold of p < 0.05, we replicated 

this result using the Power et al. (2011) atlas (main effect of task condition, corrected p < 

0.05; see Supplementary Material). There was no significant age group by task condition 

interaction (F(4,216) = 1.12, p = 0.35, ηp
2 = 0.02).

3.2.3 Participation coefficient of lateral frontal regions during resting-state 
and task performance—To examine the specific contribution of lateral frontal 

connections to network reconfiguration, we quantified the distribution of between-module 

connections (i.e., participation coefficient, PC) from ten lateral frontal regions in the AAL 

atlas (Fig. 2C). An ANOVA on lateral frontal PC revealed main effects of age group (F(1,54) 

= 18.26, p < 0.001, ηp
2 = 0.25) and task condition (F(4,216) = 2.96, p = 0.02, ηp

2 = 0.05). 

Across all task conditions, older adults had higher frontal PC than young adults. Across all 

participants, frontal PC was lower during RESTING-STATE and SCENES compared to 

FACES and BOTH. The main effect of task condition on lateral frontal PC passes a marginal 

Bonferroni-corrected significance threshold of p < 0.1.

There was also a significant age group by task condition interaction (F(4,216) = 4.68, p = 

0.001, ηp
2 = 0.08), indicating that the increased frontal PC in older adults was not equivalent 

across all task conditions (Fig. 3). Specifically, while there were no differences in lateral 
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frontal PC between older and young adults during a RESTING-STATE condition (p = 0.70), 

older adults showed increased frontal PC compared to young adults during the three less 

demanding task conditions (CATEGORIZE, p < 0.001; SCENES, p < 0.001; FACES, p = 

0.02). Further, there were no significant differences between older and young adults in the 

BOTH condition (p = 0.14). This suggests that older adults exhibited a task-related increase 

in lateral frontal PC during all conditions, while young adults only exhibited an increase 

during the most demanding condition. Importantly, this age group by task condition 

interaction was not present in 10 control regions from the occipital cortex (Fig. 2D; F(4,216) 

= 0.55, p = 0.70, ηp
2 = 0.01), suggesting that the age-related reconfiguration of between-

module connections may be specific to the lateral frontal cortex.

3.2.4 Behavioral correlates of network reconfiguration in older adults—To 

investigate how changes in between-module connections in lateral frontal cortex during task 

performance are related to individual differences in behavior, we correlated task-based 

reconfiguration of lateral frontal PC (i.e., difference between task and resting-state) and 

mean task RT. We averaged PC for each task condition given that older adults exhibited 

increases in PC across all task conditions. Older adults who exhibited greater task-based 

increases in lateral frontal PC had faster task performance (Fig. 4A; rho(36) = −0.32, p = 

0.05), while this relationship was not present in young adults (rho(16) = 0.31, p = 0.21). The 

difference in correlations between older and young groups was statistically significant (p = 

0.03). Critically, the correlation in older adults was only present when quantifying the 

difference in lateral frontal PC between resting-state and task; there was no correlation 

between task performance and lateral frontal PC during resting-state or task alone in older 

adults (RESTING-STATE, p = 0.14; TASK, p = 0.76).

3.2.5 Replication analyses of changes in network reconfiguration—We 

reproduced the results of this study using a different brain parcellation scheme comprised of 

functionally defined ROIs (Power et al., 2011), with two separate approaches. First, we used 

spectral clustering to identify network modules for each subject and task condition. While 

simulated annealing is one of the most accurate methods to identify modules (Guimera and 

Amaral, 2005), it is computationally intensive. Thus, for this larger set of ROIs, we 

identified modules using a spectral clustering algorithm (Newman, 2006) that provides a 

tradeoff between accuracy and expediency, after thresholding the correlation matrices 

similarly to previous reports (Power et al., 2011): the top 2–10% of connections in 5% 

increments. This is an approach we have taken previously (Sadaghiani et al., 2015). Second, 

we used predefined modules previously identified in a group of individuals (Power et al., 

2011), thus applying the same modular partition across all individuals rather than identifying 

modules with a clustering algorithm. This approach allowed us to examine changes in the 

connections between modules that are not influenced by changes in the grouping of nodes 

into modules themselves. In other words, the modules were fixed for all subjects and we 

then examined changes in the connectivity between modules (i.e., modularity and lateral 

frontal PC). Using these two approaches, we reproduced our previous results for changes in 

module-based network metrics and correlations with task performance (see Supplementary 

Material).
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3.3 Structural correlates of network reconfiguration in older adults

To investigate how the age-related functional reconfiguration of between-module 

connections in lateral frontal cortex is related to structural connectivity, we correlated task-

based reconfiguration of lateral frontal PC and FA of the SLF in older adults (mean ± SD, 

0.42 ± 0.02). Older adults who exhibited greater task-based increases in lateral frontal PC 

had marginally greater FA of the SLF (Fig. 4B; rho(30) = 0.34, p = 0.06). While the 

correlation with 10 lateral frontal ROIs from the AAL atlas was marginally significant, we 

replicated this result using the 30 lateral frontal ROIs from the Power et al. (2011) atlas 

when modules were identified with spectral clustering. Using this atlas, greater task-based 

increases in lateral frontal PC were significantly related to greater SLF FA (p = 0.02; see 

Supplementary Material).

3.4 Consideration of confounds on network reconfiguration in older adults

We first examined the effects of head motion on measurements of network organization. 

While head motion was higher in older adults across all task conditions (F(1,54) = 13.37, p = 

0.001), there was no effect of task condition or age group by task condition interaction on 

motion (F(4,216) = 0.22, p = 0.83; F(4,216) = 0.80, p = 0.46). Importantly, head motion did 

not differ between resting-state and task in either the older or young groups (p = 0.91; p = 

0.98), suggesting that the age differences in network reconfiguration between resting-state 

and task were not driven by differences in head motion between conditions in the age 

groups. Further, including head motion as a covariate in the AAL network analyses did not 

substantially change any results.

We also examined effects of the time period of resting data collection on measurements of 

network organization. While the proportion of resting-state scans pre- or post-task was 

matched in the older and young groups, it is possible that there were group differences (i.e., 

an age group by resting-state position interaction). To test this, we repeated all AAL network 

analyses with resting-state position (i.e., pre- or post-task) as an additional between-subjects 

factor. There was no significant two-way interaction between age group and resting-state 

position or three-way interaction between age group, resting-state position, and task 

condition for mutual information, modularity, or lateral frontal PC. This suggests that the 

effects reported are not differentially present whether the resting-state scan was collected 

pre- or post-task.

Finally, we examined the effect of task run selection on measurements of network 

organization. We repeated all AAL network analyses with task-position (i.e., first three runs 

or containing some subsequent runs) as an additional between-subjects factor. There was no 

significant two-way interaction between age group and task-position or three-way 

interaction between age group, task-position, and task condition for mutual information, 

modularity, or lateral frontal PC. These results suggest that the results reported are not 

differentially present whether the task time-series were composed of the first three runs or 

subsequent runs.
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4. Discussion

Here, we analyzed resting-state and task-based fMRI data to characterize brain network 

reconfiguration that supports executive control functioning (i.e., performance of a N-back 

task) in older adults. Recent studies have shown that older adults have a less modular brain 

network organization in a resting-state compared to young adults (Chan et al., 2014; 

Geerligs et al., 2014a; Onoda and Yamaguchi, 2013). However, the extent to which this 

organization reconfigures during a cognitive task in older adults remains underspecified. We 

provide evidence that older adults exhibit larger changes in network organization at lower 

levels of N-back task demands compared to young adults. More specifically, older adults 

showed greater between-module connectivity of lateral frontal regions compared to young 

adults at low levels of executive control demands. In older adults, greater network 

reconfiguration (i.e., increased between-module connections of lateral frontal regions) from 

resting-state to task was related to better task performance, suggesting that greater between-

module integration during task performance is critical for successful executive control in 

aging. Finally, network reconfiguration from resting-state to task in older adults was related 

to individual variability in white matter microstructure of the superior longitudinal fasciculus 

(SLF), the main tract connecting frontal and posterior brain regions.

4.1 Changes in topological overlap of modules between resting-state and task

We found that older adults had less overlap between modules present during a task-free 

resting-state and those present during the performance of an N-back task. In other words, the 

composition of modules identified during a resting-state changed more during the task in 

older adults compared to young adults. This finding suggests that older adults exhibited 

greater reconfiguration of network modules detected during a resting-state while performing 

a task. Further, across both young and older adults, we found that modules identified during 

the more challenging task conditions had less overlap with resting-state modules, suggesting 

that resting modular organization changed more during higher task demands. This latter 

finding is consistent with a previous study in young participants showing that there was less 

overlap of modules across subjects (e.g., more variability in the modules across subjects) 

during a more difficult N-back condition (Stanley et al., 2014). This result and ours adds to a 

growing literature suggesting that the modular organization of the brain shows more 

pronounced reconfigurations with increasing cognitive demands.

4.2 Reconfiguration of modular brain network organization during resting-state and task

We found that older adults exhibited lower modularity than younger adults during a resting-

state, which supports accumulating evidence that aging reduces the segregation of networks 

into distinct modules when measured in the absence of a task (Chan et al., 2014; Geerligs et 

al., 2014a; Onoda and Yamaguchi, 2013). Decreased modularity in older adults has been 

hypothesized to reflect reduced functional integrity of brain network modules, in which 

brain sub-networks are less segregated in older adults compared to young adults. We further 

found that older adults had lower modularity than young adults during the N-back task, 

suggesting that such global age differences in brain network organization are also present 

throughout task performance.
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In addition, across both young and older adults, we found that modularity decreased with 

increasing task demands. This is consistent with previous findings in young adults 

examining network changes during task performance. First, prior work has shown that 

within-module connections decrease and between-module connections increase from 

resting-state to task (Cole et al., 2014). Second, studies have shown that modularity 

decreases with increasing working memory load and that this reconfiguration is related to 

better task performance (Kitzbichler et al., 2011; Stanley et al., 2014; Vatansever et al., 

2015). We found a similar pattern of results, in which the most demanding conditions of the 

N-back task were associated with the lowest modularity, and extend this work by showing 

similar effects across both young and older adults. Changes in modularity due to increasing 

cognitive demands are proposed to reflect increased integration between brain network 

modules to support higher processing demands. Further, it has been proposed that reductions 

in modularity with increasing cognitive effort represent the formation of a neuronal 

‘workspace’ (Dehaene et al., 1998) that supports more efficient communication across the 

brain (Kitzbichler et al., 2011).

4.3 Alterations in between-module connections with increasing task demands

While we found that modularity was reduced in older adults during a resting-state and task 

performance, we also examined how specific between-module connections reconfigured 

during these conditions in young and older adults. We found that young and older adults had 

similar between-module connectivity (PC) of lateral frontal regions during a resting-state 

and that older adults exhibited increased connectivity during all task conditions. Specifically, 

older adults had greater between-module connectivity than young adults during the less 

demanding conditions, but similar between-module connectivity in the most demanding 

condition (i.e., BOTH). These results suggest that older adults recruited additional between-

module connections at all levels of task demand, whereas young adults only did so when 

task demands were highest. Furthermore, in older adults, greater network reconfiguration 

from a resting-state to task was associated with better task performance. Not surprisingly, 

this relationship was not present in young adults, given that they did not show an increase in 

lateral frontal PC for the majority of the task conditions. Finally, we found that greater 

network reconfiguration from a resting-state to task in older adults was associated with 

greater FA of the SLF, a core frontal-posterior white matter tract. Our results support the 

‘workspace’ hypothesis: increased cognitive effort is associated with increased between-

module integration that is related to better task performance (Kitzbichler et al., 2011; 

Stanley et al., 2014; Vatansever et al., 2015). Here, we provide new evidence that older 

adults exhibit increased between-module integration at lower levels of cognitive demand 

than young adults. It should be noted that older adults showed this reconfiguration even 

when performance was equivalent to young adults in terms of accuracy and reaction time 

(e.g., during CATEGORIZE), suggesting that network changes were not merely due to 

differences in performance between the older and young groups.

Most studies examining age-related changes in brain function due to specific cognitive 

demands have examined the activation of individual brain regions, rather than using a large-

scale network approach. In particular, numerous studies have shown that older adults exhibit 

increased frontal activity during less demanding cognitive tasks compared to young adults 
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(Mattay et al., 2006; Spreng et al., 2010; Turner and Spreng, 2015; 2012). Together, these 

studies have been interpreted to reflect the recruitment of additional neural resources that 

support cognition at lower levels of cognitive demand (Reuter-Lorenz and Cappell, 2008). 

Our results further support the idea of compensatory recruitment and, importantly, suggest a 

large-scale network-level mechanism by which the aging brain reorganizes to support 

executive control processing. While our correlation analyses cannot provide information 

about directionality, we propose that greater structural connectivity of frontal-posterior white 

matter pathways enables older adults to appropriately reconfigure brain networks between a 

resting-state and task performance, depending on the task demands. Specifically, older adults 

showed greater increases in lateral frontal between-module connections at lower levels of 

demand compared to young adults. We postulate that this pattern of increased connectivity 

between frontal regions and other modules is reflective of a more integrated network 

architecture that is important for successful executive control processing in aging.

Future work should investigate how other changes that occur with aging (e.g., reductions in 

cerebral gray matter) are related to functional network reconfiguration. Further, as aging is 

associated with cognitive changes in other domains, such as long-term memory, an 

important future step would be to quantify network changes during other cognitive tasks. 

There is some evidence that older adults show larger connectivity changes in non-frontal 

regions (i.e., parietal and somatosensory cortex) with increasing task demands compared to 

young adults (Geerligs et al., 2014b). The network reconfiguration reported here could be a 

domain-general response to increasing cognitive demands or there could be unique changes 

for the processing of specific cognitive functions.

4.4 Methodological considerations

There are many valid approaches to examining brain network properties with fMRI data. 

Regarding methods for parcellating the brain into ROIs, we demonstrated that our results are 

reproducible for both anatomically- (Tzourio-Mazoyer et al., 2002) and functionally- (Power 

et al., 2011) defined ROIs. Although the larger ROIs in the AAL atlas may encompass 

multiple functional regions, there may also be drawbacks to using a functionally defined 

atlas when comparing groups of young and older adults. Specifically, most functionally 

defined atlases have been created using data from young subjects. Thus, differences in 

functional boundaries in older adults could bias network measures in a way that an 

anatomically defined atlas would not. Given this, the replication of our results using an 

anatomical and functional atlas demonstrates the robustness of our findings. Future work 

should examine how potential changes in the functional boundaries of brain regions in older 

adults influence network measures.

Regarding methods for identifying brain network modules, subject-level modular networks 

may be noisier than those derived at the group-level (e.g., identifying modules after 

averaging correlation matrices across subjects). Further, if the modules are different across 

subjects, changes in network connections could arise from differences in the modules 

themselves and/or changes in connectivity. While we examined the overlap in modules with 

mutual information, we also replicated our results after imposing the same modular 

organization across all subjects.
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Finally, while our primary findings demonstrated an interaction between age group and task 

condition, we reported several main effects of age group on network organization (e.g., 

mutual information and modularity). We cannot rule out the possibility that these effects are 

due to age-related changes in vasculature that may impact the BOLD signal, anatomical 

changes in gray and white matter (D’Esposito et al., 2003), or differences in functional 

image acquisition between older and young adults.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We examined age effects on network reconfiguration between resting-state 

and task.

• Older adults had larger network reconfiguration at lower levels of task 

demand.

• In older adults, larger network changes were associated with better 

performance.

• In older adults, structural connectivity was related to network 

reconfiguration.
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Figure 1. 
Task accuracy (A) and reaction time (B) for young and older adults. Data are presented as 

mean ± SEM. Pairwise comparisons between young and older groups across the task 

conditions were conducted for metrics showing significant age group by task condition 

interactions. *** P < 0.001; ** P < 0.01; * P < 0.05; ~ P < 0.1.
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Figure 2. 
Module-based network metrics during resting-state and task. (A) Mutual information (MI) 

between resting-state network partitions and those derived from the task conditions. Note 

that we quantified the mutual information (MI) between each subject’s resting network 

partition to those derived from the four task conditions. In this manner, MI during resting-

state would be equal to 1 because it is the network used for comparison and is therefore not 

plotted in A. Modularity (B) and lateral frontal (C) and occipital (D) participation coefficient 

(PC) for resting-state and task conditions. Centers of mass for lateral frontal and occipital 

AAL atlas nodes used to calculate PC are plotted on a sagittal view of the brain in C and D, 

respectively. Data are presented as mean ± SEM. Pairwise comparisons between younger 

and older groups across the task conditions were conducted for metrics showing significant 

age group by task condition interactions. *** P < 0.001; ** P < 0.01; * P < 0.05; ~ P < 0.1.
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Figure 3. 
Sagittal views of group partitions during resting-state (top) and the least and most 

demanding task conditions (middle and bottom, respectively) for young and older adults. For 

visualization purposes, group consensus partitions were created by averaging the AAL atlas 

correlation matrices across subjects in each group and thresholding at 20% of possible 

network connections (although note that all analyses presented in the Results were done at 

the individual subject level at multiple connection thresholds as described in the Materials 

and Methods). Within-module edges are colored to match that of nodes in their own module 

and between-module edges are colored gray, with lateral frontal between-module 

connections bolded. Older adults show more between-module lateral frontal connections at 

lower levels of demand (CATEGORIZE) compared to young adults. Young and older adults 

Gallen et al. Page 22

Neurobiol Aging. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



have similar amounts of lateral frontal connections during resting-state and the more 

demanding task condition (BOTH).
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Figure 4. 
Relationship between change in lateral frontal PC from resting-state to task and executive 

control task performance (RT, A) and fractional anisotropy (FA) of the superior longitudinal 

fasciculus (SLF, B) in older adults.
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