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Spatial patterning in PM2.5 constituents under an
inversion-focused sampling design across an urban area
of complex terrain
Brett J. Tunno, Rebecca Dalton, Drew R. Michanowicz, Jessie L.C. Shmool, Ellen Kinnee, Sheila Tripathy, Leah Cambal and
Jane E. Clougherty

Health effects of fine particulate matter (PM2.5) vary by chemical composition, and composition can help to identify key PM2.5

sources across urban areas. Further, this intra-urban spatial variation in concentrations and composition may vary with
meteorological conditions (e.g., mixing height). Accordingly, we hypothesized that spatial sampling during atmospheric inversions
would help to better identify localized source effects, and reveal more distinct spatial patterns in key constituents. We designed a
2-year monitoring campaign to capture fine-scale intra-urban variability in PM2.5 composition across Pittsburgh, PA, and compared
both spatial patterns and source effects during “frequent inversion” hours vs 24-h weeklong averages. Using spatially distributed
programmable monitors, and a geographic information systems (GIS)-based design, we collected PM2.5 samples across 37
sampling locations per year to capture variation in local pollution sources (e.g., proximity to industry, traffic density) and terrain
(e.g., elevation). We used inductively coupled plasma mass spectrometry (ICP-MS) to determine elemental composition, and
unconstrained factor analysis to identify source suites by sampling scheme and season. We examined spatial patterning in source
factors using land use regression (LUR), wherein GIS-based source indicators served to corroborate factor interpretations. Under
both summer sampling regimes, and for winter inversion-focused sampling, we identified six source factors, characterized by
tracers associated with brake and tire wear, steel-making, soil and road dust, coal, diesel exhaust, and vehicular emissions. For
winter 24-h samples, four factors suggested traffic/fuel oil, traffic emissions, coal/industry, and steel-making sources. In LURs, as
hypothesized, GIS-based source terms better explained spatial variability in inversion-focused samples, including a greater
contribution from roadway, steel, and coal-related sources. Factor analysis produced source-related constituent suites under both
sampling designs, though factors were more distinct under inversion-focused sampling.
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INTRODUCTION
Exposures to fine particulate air pollution (PM2.5) have been
associated with adverse health effects, including respiratory and
cardiovascular disease.1–4 PM2.5, however, is a complex mixture of
nitrates, sulfates, organic components, metals, soil/dust particles,
and other compounds, each with differing toxicities. PM2.5

composition varies substantially across urban areas,5 and this
spatial patterning—and apparent source-concentration relation-
ships—may vary with meteorological conditions (e.g., mixing
height, wind direction), particularly in areas of complex terrain.
Elucidating spatial patterns in pollutant concentrations

during “peak” exposure hours (e.g., during rush hours or under
inversion conditions) may lead to a better understanding of
population exposure contrasts and of constituent-specific health
effects.6 For example, under temperature inversions, limited
atmospheric convection and pollutant dispersion may intensify
concentrations near sources, and these “peak” spatial contrasts
may better characterize source-specific intra-urban exposure
gradients.

Factor analytic source apportionment has been used to identify
highly correlated groups of PM2.5 constituents, usually attributable
to a common source or sources. These source apportionment
methods have enabled the identification of source-specific effects
of PM2.5 on respiratory and cardiovascular outcomes.7 Normally
performed to leverage temporal variance at regulatory monitors,
this approach has also been used to identify spatially correlated
suites of PM2.5 constituents across urban sites.8,9 The spatial
application offers the additional advantage that factor interpreta-
tions (frequently based on a qualitative assessment of predomi-
nant source tracers loading onto each factor) can be corroborated
by examining spatial patterns with respect to source distributions.
Land use regression (LUR) techniques model spatial associa-

tions between multiple source indicators (e.g., diesel traffic
density, proximity to industry) and measured pollutant concen-
trations. LUR modeling is normally used for single pollutants,
but can also be used to identify key sources associated with
correlated constituent suites, or with factor scores derived from
factor analysis.9,10 In this way, LUR models can corroborate
factor interpretations, more clearly identify constituent-specific
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PM2.5 sources, and ultimately improve source-specific PM2.5

epidemiology.9

The Pittsburgh, PA region is characterized by complex terrain,
periods of heavy traffic, and large industrial pollution sources,
along with a complex meteorology that includes frequent
inversion events.11,12 These inversion events may trap both local
industrial and traffic emissions in river valleys, intensifying spatial
contrasts in constituent concentrations and factor sources.13,14

Previously, we reported greater spatial contrasts in total PM2.5 and
black carbon using inversion-focused spatial sampling; here, we
compare PM2.5 composition and source contributions under “24-h
weeklong” and “inversion-focused” sampling schemes. We use
factor analysis to identify spatially correlated suites of constitu-
ents, variously characterized by high loadings of constituent
tracers associated with key urban sources, such as traffic, industry
and long-range transport, then model factor scores using LUR.
Previously, we found similar source contributions under both
sampling schemes, although the GIS-based urban source terms
explained a greater portion of PM2.5 variability under the
inversion-focused method.6,11 Here, we hypothesized that the
inversion-focused sampling scheme would provide higher con-
centrations, greater spatial variation in elemental constituents,

and more spatially distinct source contributions, compared with
the 24-h weeklong sampling scheme.

MATERIALS AND METHODS
Study Design
Data collection methods are detailed in Shmool et al. and Tunno et al.6,11

Briefly, GIS-based indicators of local pollution sources (e.g., proximity to
industry, traffic density) and potential source-concentration modifiers (e.g.,
elevation) were used to systematically allocate 37 sampling locations each
year, to capture spatial and source variability across the Pittsburgh
metropolitan area (~150 sq. miles). Sampling units were custom-designed
to capture integrated street-level samples of PM2.5 during selected hours of
the day. Instruments were programmed for specific hours of sampling
using a chrontroller (ChronTrol Corporation, San Diego, CA, USA), and a
tetraCal volumetric air flow calibrator (BGI Instruments, Butler, NJ, USA) was
used to calibrate the flow to 4.0 liters per minute. Data on ambient
temperature and relative humidity (RH) was collected in 15-minute
intervals using a HOBO data logger (Pocasset, MA). During year 1 (summer
2011, winter 2012), we performed “inversion-focused” sampling wherein
the programmable instruments collected PM2.5 across “peak” hours (6 to
11am, including the morning rush hour) Monday through Friday (25 h
total) over six weeklong sampling sessions. During year 2 (summer 2012,
winter 2013), we performed “24-h weeklong” sampling, wherein integrated

Table 1. Summary of literature review for constituent source indicators.

Constituents Traffic Local/regional Industry Other

Motor vehicle Brake/tire Soil/road dust Diesel Fuel/oil Coal/
secondary

Steel making Wood/vegetative
burning

NO2 3
BC 3, 4, 5, 24 8, 13, 19,

20, 22, 24
20

Al 24 18, 19, 20, 22, 23,
25, 26

22, 24

As 22 1, 3, 13,
16

Ba 4 6, 10, 13, 17 13 5
Ca 4, 5, 8 2, 6 2, 3, 5, 20,

23, 24, 26
8, 13, 20

Cd 11 9 1
Cr 11 9, 13 13 22 1 21
Cu 3, 11 2, 6, 9,

13, 17
13, 18, 22 20

Fe 4, 5, 12 2, 6,
10, 13

2, 5, 13, 18, 20,
22, 23, 25, 26

13, 19 3, 12, 18, 19, 21

K 5 2, 25, 26 3, 14, 19, 20, 25
La 5 12
Mg 13 23 13
Mn 13 13, 18, 22 19 1 3, 12, 18, 19, 21
Mo 2, 9, 13 21
Ni 11 9 3, 4, 12, 15, 20,

22, 26
1, 7, 12

P 8 8
Pb 11, 12 13, 18 1 19, 21
S 4, 12 3 8 12, 22
Sb 6, 9,

13, 17
1

Se 1, 3, 12, 13,
16, 22, 25

Sr 4, 6, 9
V 4 3, 4, 12, 15, 20,

26
7

Zn 5, 11,
12, 26

2, 9,
13, 17

13, 18 20 12, 19, 21

1 (Aneja et al.46); 2 (Apeagyei et al.19) 3 (Thurston et al.33); 4 (Lall and Thurston43); 5 (Zhao et al.34); 6 (Sternbeck et al.24); 7 (De Foy et al.47); 8 (Spencer et al.38); 9
(Figi et al.20); 10 (Gietl et al.23); 11 (Gunawardana et al.42); 12 (Hammond et al.35); 13 (Schauer et al.48; 14 (Fine PM et al.49); 15 (Viana et al.44);
16 (Salvador et al.50); 17 (Iijima et al.22); 18 (Irvine et al.26); 19 (Rizzo and Scheff32); 20 (Qin et al.31); 21 (Pekney et al.36); 22 (Ogulei et al.30); 23 (Lough et al.29);
24 (Lough and Schauer37); 25 (Lee et al.27); 26 (Li et al.28).
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Table 2. GIS-based source density indicators used for LUR modeling.

Source category for LUR
modeling

Covariates examined (50 m to 1000 m concentric radial buffers) Data source

Traffic density indicators Mean density traffic (primary roads)
Mean density traffic (primary and secondary roads)
Number of signaled intersections

Pennsylvania Department of Transportation (PADOT)

Road-specific measures Average daily traffic on nearest primary road
Distance to nearest major road
Summed length of primary roadways
Summed length of primary and secondary roadways

PADOT

Truck, bus, and diesel Mean density of bus traffic
Distance to nearest bus route
Outbound and inbound trip frequency per week summed by route
Mean density of heavy truck traffic on nearest primary roadway

Google Transit (11/11 - 3/12)

PADOT
Population Census population density (blockgroup) US Census Bureau (2010)
Land use/Built environment Total area of industrial parcels

Total area of commercial parcels
Total area of industrial and commercial parcels
Percent developed imperviousness
Land use/land cover (LULC) urban built area from orthophotography

Allegheny County Assessment Data, by parcel (2011)

National Land Cover Dataset (NLCD, 2006)
Southwestern Pennsylvania Commission (SPC, 2011)

Industrial emissions Mean density of total PM2.5 emitted per meter
Mean density of total SO2 emitted per meter
Mean density of total NOx emitted per meter
Mean density of total VOCs emitted per meter

National Emissions Inventory (NEI, 2011)

Transportation facilities Distance to nearest active railroad
Summed line length of active railroads
Distance to nearest bus depot

SPC, 2011

Potential modifying factors
Topography Average elevation National Elevation Dataset (NED, 2011)
Meteorology Temperature/relative humidity

Frequency of inversions
Wind direction and wind speed

Obtained from sampler
Univ. of Wyoming, Dept. of Atm. Science (2011-2012)
National Oceanic and Atmospheric Association (NOAA, 2011-2012)

Table 3. Summary of summer inversion-focused and 24-h weeklong concentrations for 37 distributed sites per year, with percent above analytic
LOD (= 3 ´ standard deviation of the analytical blanks).

Inversion-focused 24-h weeklong P-value between designs

Mean (SD) Median %4LOD Mean (SD) Median %4LOD

PM2.5 (μg/m3) 14.35 (3.97) 14.68 1.00 13.94 (2.01) 13.34 1.00 0.57
BC (abs) 1.64 (0.91) 1.59 1.00 1.06 (0.36) 0.96 1.00 0.0007
NO2 (p.p.b.) 12.59 (6.63) 10.59 1.00 10.37 (4.53) 10.24 1.00 0.56

Constituents measured by ICP-MS (ng/m3)
Al 36.84 (30.03) 32.93 0.81 34.34 (24.22) 29.92 0.97 0.58
As 1.76 (0.95) 1.75 0.97 1.28 (0.78) 1.00 1.00 0.01
Ba 13.89 (20.82) 7.47 0.49 4.14 (2.61) 3.30 0.84 0.002
Ca 148.55 (270.76) 84.49 0.78 156.42 (151.56) 128.13 0.97 0.95
Cd 0.25 (0.21) 0.23 0.95 0.14 (0.08) 0.13 1.00 0.001
Ce 0.07 (0.05) 0.05 0.92 0.07 (0.06) 0.06 1.00 0.62
Cr 3.45 (3.54) 2.12 0.95 1.06 (0.63) 0.93 1.00 o0.001
Cs 0.07 (0.20) 0.02 1.00 0.03 (0.04) 0.01 1.00 0.20
Cu 11.07 (9.94) 9.43 0.95 5.71 (6.10) 3.71 0.97 0.01
Fe 186.00 (158.27) 128.49 0.97 110.83 (86.26) 90.66 1.00 0.01
K 66.87 (68.99) 57.27 0.97 93.05 (55.98) 81.69 0.97 0.10
La 0.04 (0.04) 0.03 0.92 0.04 (0.03) 0.03 1.00 0.71
Mg 23.57 (30.19) 12.45 0.76 18.42 (13.89) 15.82 1.00 0.35
Mn 7.33 (7.00) 5.42 0.97 4.90 (5.42) 3.09 1.00 0.10
Mo 2.38 (2.45) 1.53 0.97 1.44 (0.94) 1.32 1.00 0.02
Ni 2.11 (2.01) 1.41 0.95 1.38 (1.78) 1.07 1.00 0.06
P 5.42 (3.83) 4.48 0.84 4.45 (1.54) 4.46 1.00 0.15
Pb 6.67 (6.14) 5.78 1.00 3.87 (2.20) 3.43 1.00 0.01
S 1013.00 (703.55) 880.82 0.97 1032.00 (353.85) 1016.22 1.00 0.95
Sb 1.37 (1.04) 1.13 0.97 1.05 (0.43) 0.96 1.00 0.09
Se 4.22 (4.95) 2.87 0.68 1.86 (1.89) 1.49 1.00 0.003
Sr 0.99 (1.09) 0.70 0.81 1.05 (0.67) 0.84 0.97 0.86
Tl 0.10 (0.17) 0.04 1.00 0.07 (0.14) 0.03 1.00 0.42
V 0.52 (0.25) 0.52 0.97 0.49 (0.15) 0.45 1.00 0.37
Zn 64.16 (103.26) 36.37 0.95 23.79 (14.97) 21.44 1.00 0.02

The P-value is from a paired t-test comparing inversion-focused and 24-h weeklong concentrations. Bolded P-values indicate a significant difference (Po0.05)
between inversion-focused and 24-h weeklong sample designs.
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samplers ran for 15min per hour for 7 days (42 h total), over six sampling
sessions. A limitation is that, owing to limited equipment availability,
inversion-focused and 24-h weeklong measurements were conducted in
successive years, creating non-contemporaneous measurements for
comparison. To establish comparability across years, we repeated a
random subset of 13 sites both years for both campaigns. A reference site
located at Settlers Cabin Park in Carnegie, PA, approximately 9 miles
upwind of the study area, was used throughout sampling to assess
comparability across designs, and to adjust distributed samples for intra-
season temporal variance.

Sample Analyses
Teflon filters (37mm; Pall Life Sciences) were pre- and post-weighed using
an ultramicrobalance (Mettler Toledo Model XP2U) inside a temperature-
and relative humidity-controlled glove box (PlasLabs Model 890 THC).
Black carbon (BC) was measured from each filter using an EEL43M
Smokestain Reflectometer (Diffusion Systems Limited, London, England),15

and reported in absorbance units (abs). To determine elemental
composition, inductively coupled plasma mass spectrometry (ICP-MS)
analyses were conducted by the Wisconsin State Laboratory of Hygiene
following documented protocols (ESS INO Method 400.4; EPA Method
1638).16 Ogawa passive badges were analyzed using water-based
extraction and spectrophotometry (Thermo Scientific Evolution 60S
UV-Visible Spectrophotometer, Waltham, MA, USA) for nitrogen dioxide
(NO2) concentrations (p.p.b.).

Source Apportionment
To interpret source factors we updated a previously published
literature review of observed elemental tracers of key urban PM2.5

sources9,17 (Table 1). The literature search was updated using PubMed
and Web of Science, and search criteria included any of: “constituents,”
“source apportionment,” or “trace metals.” We retained identified source

apportionment studies performed within northeastern US cities, or
source-specific controlled studies (i.e., source characterizations),
performed within the last three decades. Because cerium, cesium, and
thallium were above LOD across nearly all sampled sites for
all four seasons, we opted to retain these elements in factor analysis,
although we did not originally identify clear sources in the literature
review.
Following the methods outlined by Clougherty et al.9 and Levy et al.,17

we performed a two-stage analysis to identify groupings of
correlated constituents, and to evaluate spatial relationships between
factor scores and urban sources using LUR. First, we performed season-
specific unconstrained factor analysis on temporally-adjusted elemental
concentrations to derive factors representing latent emissions
source groupings. Examining concentration variance across space, rather
than time, we recognize that some constituents may have opposite
spatial patterns to unrelated sources in other locations. Thus, negative
loadings are plausible, and, accordingly, we opted to use unconstrained
factor analysis with varimax rotation.
To determine the number of factors, we considered eigenvalue-one

criterion and scree plots, and retained only those factors explaining at least
5% of total variance. Constituents loading greater than or equal to 0.60
were considered in factor interpretations. The factor solution was
sensitivity-tested using constituent loading cutoffs of 0.50 and 0.70 to
identify changes in factor interpretations and groupings. Statistical
analyses were performed using PROC FACTOR in SAS v. 9.3 (Cary, NC,
USA) and R statistical software v. 2.12.1. We used EPA’s Positive Matrix
Factorization model version 5.0 as a sensitivity test to corroborate our
factor solution.18

Factor scores were calculated for each factor, across all distributed
monitoring locations, for each season. We modeled factor scores as a
function of GIS-based local source indicators including traffic, land use, and
industry terms (Table 2). Significant GIS-based source covariates were
examined to corroborate factor interpretations based on the literature

Table 4. Summary of winter inversion-focused and 24-h weeklong concentrations for 37 distributed sites per year, with percent above analytic LOD.

Inversion-focused 24-h weeklong P-value between designs

Mean (SD) Median %4LOD Mean (SD) Median %4LOD

PM2.5 (μg/m3) 12.76 (2.57) 12.37 1.00 11.26 (2.01) 11.12 1.00 0.01
BC (abs) 1.34 (0.53) 1.24 1.00 0.93 (0.35) 0.82 1.00 0.0002
NO2 (p.p.b.) 18.84 (6.19) 16.77 1.00 15.61 (5.44) 14.73 1.00 0.001

Constituents measured by ICP-MS (ng/m3)
Al 35.20 (44.16) 24.18 0.89 15.62 (21.53) 10.32 1.00 0.003
As 0.76 (0.39) 0.62 1.00 0.77 (0.59) 0.58 1.00 0.94
Ba 9.04 (11.17) 3.42 0.65 11.95 (25.96) 1.44 1.00 0.53
Ca 110.00 (113.57) 64.44 0.89 278.50 (772.58) 100.9 1.00 0.29
Cd 0.21 (0.29) 0.13 1.00 0.41 (0.95) 0.17 1.00 0.22
Ce 0.11 (0.28) 0.06 1.00 0.24 (0.95) 0.03 1.00 0.45
Cr 1.69 (1.70) 1.41 0.97 1.08 (2.27) 0.43 0.97 0.25
Cs 0.06 (0.13) 0.01 1.00 0.04 (0.10) 0.01 1.00 0.49
Cu 4.24 (2.83) 3.50 1.00 3.96 (4.34) 2.77 1.00 0.74
Fe 158.71 (202.91) 87.49 1.00 259.97 (675.82) 53.38 1.00 0.39
K 99.22 (189.72) 39.12 1.00 55.79 (46.44) 40.70 1.00 0.18
La 0.06 (0.17) 0.02 0.95 0.03 (0.04) 0.02 1.00 0.14
Mg 10.48 (9.03) 8.13 0.97 16.21 (26.90) 6.40 0.97 0.06
Mn 6.94 (9.77) 3.11 1.00 9.08 (21.96) 2.14 1.00 0.59
Mo 3.58 (4.57) 2.04 1.00 1.07 (0.74) 0.87 1.00 0.002
Ni 1.15 (1.35) 0.65 0.97 0.54 (0.95) 0.30 1.00 0.03
P 5.60 (5.98) 3.76 1.00 4.06 (3.69) 2.84 1.00 0.10
Pb 4.36 (3.64) 3.15 0.97 4.21 (5.43) 2.57 1.00 0.89
S 554.95 (259.56) 487.54 1.00 485.39 (272.89) 415.27 1.00 0.27
Sb 0.87 (0.58) 0.68 1.00 0.65 (0.51) 0.53 1.00 0.09
Se 0.63 (3.98) 1.13 0.97 1.14 (1.13) 0.92 0.86 0.05
Sr 0.56 (0.60) 0.30 1.00 0.43 (0.55) 0.23 1.00 0.27
Tl 0.04 (0.05) 0.03 1.00 0.08 (0.17) 0.02 1.00 0.24
V 0.35 (0.14) 0.30 1.00 0.33 (0.41) 0.25 1.00 0.79
Zn 47.12 (64.13) 23.02 0.95 38.99 (84.12) 10.47 1.00 0.64

The P-value is from a paired t-test comparing inversion-focused and 24-h weeklong concentrations. Bolded P-values indicate a significant difference (Po0.05)
between inversion-focused and 24-h week long sample designs.
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review. Separate LUR models for each factor were derived
using manual forward step-wise linear regression, separately
for each sampling season (n= 4), following LUR methods from our prior
analyses.6 Final LUR models for each seasonal, design-specific set of factor
scores were determined, with all retained source covariates significant at
Po0.05.

RESULTS

Summary Statistics

Across the 37 monitoring locations, 27 pollutants (25 particle
constituents from ICP-MS analysis, NO2, and BC) were included in
factor analyses for each of four sampling seasons. Concentrations

Figure 1. Factor loading plots for summer inversion-focused and 24-h weeklong constituents (top) and winter inversion-focused and 24-h
weeklong constituents (bottom).
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from summer inversion-focused and 24-h weeklong sampling
are summarized in Table 3; concentrations from winter
inversion-focused and 24-h weeklong sampling are summarized
in Table 4. The highest constituent concentrations were found for
aluminum (Al), calcium (Ca), iron (Fe), potassium (K), sulfur (S),
and zinc (Zn), under either sampling design. Correlation matrices
of elemental constituents, by season, can be found in
Supplementary Material (Supplementary Tables S1 to S4). For
the 13 sites repeated in both years (i.e., using both sampling
designs), PM2.5 and BC concentrations did not significantly differ,
and likewise mean concentrations at the reference monitors were
comparable across years.

Literature Review
Reviewed studies19–44 identified PM2.5 constituents commonly
associated with a range of urban sources, including vehicular
traffic: BC, Ca, Fe, Zn for motor vehicles; barium (Ba), copper
(Cu), Fe, molybdenum (Mo), antimony (Sb), strontium (Sr), Zn for
brake/tire wear; Al, Ca, Fe for soil/road dust resuspension;
and BC, Al, Ca, Fe for diesel. Constituents commonly associated
with long-range transport [e.g., arsenic (As), nickel (Ni),
selenium (Se), sulfur (S)] are often associated with local coal
combustion and coal-burning power plant emissions in
our region. Fe, manganese (Mn), lead (Pb), and Zn are often
associated with steel manufacturing; and Ni and vanadium (V)
for residual fuel oil combustion (Table 1).

Factor Analysis/Source Apportionment
We identified 6-factor solutions for both summers and the
inversion-focused winter constituent measures, and a 4-factor
solution for the 24-h weeklong winter season (Figure 1). Similar
overall variance (%) was explained by inversion-focused factor
solutions compared with 24-h weeklong, especially between the
summers. More traffic-related sources were identified using the
inversion-focused design in both seasons, and a higher proportion
of explained variance was clustered in factor one of the 24-h
weeklong winter sampling.
For inversion-focused summer samples, a 6-factor solution

explained 78% of overall variability across constituent concentra-
tions (Figure 2). Factor one was characterized by indicators of soil/
road dust (e.g., Al, Ca). Factor two was characterized by indicators
of brake/tire wear (e.g., Cu, Fe). Factor three included indicators of
steel-making/industry (Cs, Mn, Pb, Zn). Factor four included coal
(As, Se). Factor five suggested motor vehicles (P, Zn), and factor six
indicated diesel/motor vehicles, given high loadings of BC and NO2.
For 24-h weeklong summer samples, a 6-factor solution

explained 78% of variability across constituents (Figure 3). Factor
one included motor vehicle (Al, Ca, P) and brake/tire wear indicators
(Ba, Ca, Ce, La, Mg). Factor two indicated steel-making and motor
vehicle sources (BC, Cs, Fe, Mn, Zn). Factor three included brake and
tire wear (Cu, Sr). As, Pb, and Tl, indicators of coal and industrial
emissions, loaded strongly onto factor four. Factor five was
characterized by indicators of brake/tire wear (Ca, Cr), and factor
six included an indicator of coal (Se).

Figure 2. Spatial distribution of factor scores across monitoring locations for inversion-focused summer sampling, based on proposed 6-factor
solution. For factor 2 (brake/tire), the circled highest concentration sites indicate areas located near downtown Pittsburgh. For, factor 3 (steel-
making/industry), the circled highest concentrations indicate areas located near an active steel mill. For factor 4 (coal), the circled highest
concentration sites indicate areas located near an active coke works.

Inversion-focused PM2.5 constituents
Tunno et al

390

Journal of Exposure Science and Environmental Epidemiology (2016), 385 – 396 © 2016 Nature America, Inc.



For inversion-focused winter samples, a 6-factor solution
explained 77% of variability found in constituents, and multiple
traffic-related sources and steel-making were represented in the
first factor (Figure 4). Factor two suggested brake/tire wear, as Ba
and Cu loaded strongly. Factor three consisted of Ce, La, and Mo,
suggesting that this factor may be traffic-related. La is associated
with fuel oil combustion and motor vehicle exhaust, whereas Mo
indicates brake/tire wear. Factor four indicated fuel oil combus-
tion (Ni). Factor five indicated coal (Se). Factor six indicated
diesel (BC).
For 24-h weeklong winter samples, a 4-factor solution explained

88% of variability across constituents (Figure 5). Factor one
explained 67% of the variance and suggested a combination of
many traffic sources (motor vehicle, brake/tire, soil/road dust,
diesel) and fuel oil (Ni, V). Factor two indicated traffic-emissions (i.e.,
NO2). Factor three indicated coal/industry (Pb, Se, Tl). Factor four
indicated steel-making (Fe, Mn, Zn).

Sampling Design Comparison
The inversion-focused sampling design, on average, produced
higher constituent concentrations, during both the summer and
winter seasons, compared with the 24-h weeklong sampling. For
the summer, BC (diesel/motor vehicle), As and Se (coal/secondary),
Ba, Cd, Cr, Cu, and Mo (brake/tire wear), and Fe, Pb, and Zn (steel-
making) concentrations were significantly higher in inversion-
focused samples compared with 24-h weeklong samples. For the
winter, PM2.5, BC, and NO2 (motor vehicle), Al (soil/road dust), Mo
(brake/tire wear), and Ni (fuel/oil) concentrations were significantly
higher in inversion-focused samples compared with 24-h week-
long samples.

Seasonal Comparison
Within each sampling design, higher concentrations of As, S, and Tl
(coal), Cu, Mg, Sb, and Sr (brake/tire wear), Ni and V (fuel oil
combustion), and Pb (steel-making or soil/road dust resuspension)
were found in inversion-focused samples during summer compared
with the winter. Higher concentrations of Al and K (soil/road dust
resuspension), As, S, and Se (coal), Ni and V (fuel oil combustion),
and Sb and Sr (brake/tire wear) were found for 24-h weeklong
samples during summer compared to winter (Supplementary
Tables S5 and S6). Although K is often used as an indicator of
wood burning, we did not find higher concentrations during winter.

LUR of Factor Scores
For inversion-focused summer samples, length of primary and
secondary roadways explained variability in the brake/tire wear factor,
and higher factor scores were observed at sites near downtown
compared with those further away (Figure 2). Industrial land use
within 750m was significant for the steel-making/industry factor
(Table 5), and higher scores were observed at sites in Braddock, PA,
near an active steel mill (Figure 2). Sulfur dioxide (SO2) emissions was
a significant predictor for the coal factor (Table 5), and higher scores
were observed in the Clairton/Liberty area, near an active coke works
(Figure 2). Mean density of primary roadways within 1000m was a
significant predictor for the motor vehicle factor (Factor 5).
For 24-h weeklong summer samples, mean density of buses

within 750 m was significant in the LUR model for the motor
vehicle/brake and tire wear factor (Table 5). Commercial and
industrial land use within 1000m was significant for the
steel-making/motor vehicle factor (Table 5). Signaled intersections
within 500 m was a significant predictor for the brake/tire wear

Figure 3. Spatial distribution of factor scores across monitoring locations for 24-h weeklong summer sampling, based on proposed 6-factor
solution.
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factor. SO2 emissions was significant for the coal industry factor
(Figure 3). No significant predictors were identified for the final
brake/tire wear and coal factors.
For winter inversion-focused sampling, commercial and indus-

trial land use within 500m was significant for the traffic and steel-
making factor (Table 6). Signaled intersections within 750m was
significant for the brake/tire wear factor. LUR results suggested
that mean density of heavy truck traffic within 500m and inverse
distance to primary roadways were significant predictors for the
traffic-related factor (Table 6). Elevation was the lone significant
predictor for the coal factor, possibly indicating trapping of
pollutants in the industrial river valleys during inversion-focused
sampling — however, there was no significant interaction
between elevation and either industrial or traffic source covariates.
Signaled intersections within 500 m and summed industrial
parcels within 750m were significant for the diesel factor.
For 24-h weeklong winter sampling, no spatial covariates were

significant for the traffic/fuel oil factor in LUR modeling; the most
strongly correlated covariates included traffic density on primary
roadways and mean truck density within 500 m (r= 0.27). Signaled
intersections within 500m and PM2.5 emissions were significant
LUR predictors for the traffic emissions factor. Industrial PM2.5

emissions was a significant predictor for the coal/industry factor.
Summed industrial land use within 500m was significant for the
steel-making factor (Table 6).

Sensitivity Analysis
Using a factor loading X0.50 or 0.70, the elimination or addition
of constituents to a factor were minimal and did not alter the
proposed factor source. Therefore, results reported are at a factor

loading of X0.60. Using EPA’s Positive Matrix Factorization model,
proposed seasonal factors remained similar to those determined
using unconstrained factor analysis above.

DISCUSSION
PM2.5 elemental composition was examined and compared across
37 distributed sites, across two winter and two summer seasons,
using both inversion-focused and 24-h weeklong sampling
methods. The inversion-focused sampling method consisted of a
5-h 6–11 am sampling period; we expected the highest frequency
of inversions during these hours, where we found consistently
higher PM2.5 concentrations and a greater frequency of inversion
events during morning hours in a mobile monitoring campaign.12

Given the temporal overlap between these frequent-inversion
hours and the morning rush hour, we hypothesized that this
period would display peak daily concentrations, and maximum
spatial contrasts. Following on our prior study reporting greater
spatial contrast in PM2.5 and BC concentrations using inversion-
focused sampling,6 we hypothesized that it would also reveal
stronger local source contributions in factor analysis, compared
with 24-h weeklong sampling.
As in other intra-urban studies,9,10,17,45 we found substantial

spatial variability in constituents, under both the 24-h weeklong
and inversion-focused sampling schemes. For constituents that
significantly differed by sampling design, concentrations were
consistently higher using inversion-focused sampling.
As hypothesized, our inversion-focused analyses generally

produced clearer and more interpretable factors, and better LUR
model fits, compared with the 24-h weeklong method, in both
seasons. Most season-specific LUR models were weak (low to

Figure 4. Spatial distribution of factor scores across monitoring locations for inversion-focused winter sampling, based on proposed 6-factor
solution.
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Figure 5. Spatial distribution of factor scores across monitoring locations for 24-h weeklong winter sampling, based on proposed 4-factor solution.

Table 5. Summer inversion-focused and 24-h weeklong factor score LUR results.

Factor (% prop.) Proposed sources Final LUR modeling covariates (R2) Covariates most strongly correlated with factor scores (r)

Summer 2011 (Year 1: Inversion-Focused)
1 (41%) Soil/Road Dust (Al, Ca, Cr) VOC emissions (R2= 0.26) VOC emissions (r= 0.33)

Elevation within 1000m (r=− 0.30)

2 (17%) Brake/Tire (Cd, Cu, Fe, Mn, Ni), Length of primary and secondary roadways, 1000m
Industrial land use, 1000m (R2= 0.36)

Length of primary and secondary roadways, 1000m (r= 0.49)
Signaled intersections, 1000m (r= 0.43)
Industrial land use, 1000m (r= 0.34)
Elevation within 750 m ( r=− 0.51)

3 (9%) Steel-Making/ Industry (Cs, Mg, Mn, Pb, Zn) Industrial land use, 750m (R2= 0.34) Industrial land use, 750m (r= 0.50)
Signaled intersections, 500m (r= 0.44)
Elevation within 750 m (r=− 0.43)

4 (7%) Coal (As, Se, Tl) SO2 emissions
Signaled intersections, 500m (R2= 0.50)

SO2 emissions (r= 0.53)
Signaled intersections, 500m (r= 0.33)

5 (6%) Motor Vehicle (P, Zn) Mean density traffic (primary roads), 1000m (R2= 0.15) Mean truck density, 1000m (r= 0.39)
Mean density traffic (primary roads), 1000m (r= 0.38)
Length of primary roadway, 1000m (r= 0.35)

6 (5%) Diesel/Motor Vehicle (BC, NO2) Inverse distance to NEI /TRI sites (R2= 0.21) Inverse distance to NEI/TRI sites (r= 0.46)
Signaled intersections within 750m (r= 0.44)
Elevation within 1000m (r=− 0.43)

Summer 2012 (Year 2: 24-h Weeklong)
1 (38%) Motor Vehicle (Al, Ba, Ca, P),

Brake/Tire (Cu, Sr)
Mean density of bus traffic, 750m (R2= 0.28) Mean density of bus traffic, 750m (r= 0.50)

Mean density of truck traffic, 750m (r= 0.50)
Mean density traffic (primary roads), 750m (r= 0.46)

2 (16%) Steel-Making (Fe, Mn, Zn)
Motor Vehicle (BC, Fe, NO2, Zn)

Signaled intersections, 500m buffer
Commercial and industrial land use, 1000m (R2= 0.32)

Signaled intersections, 500m (r= 0.46)
Commercial and industrial land use, 1000m (r= 0.39)
PM2.5 emissions (r= 0.25)

3 (10%) Brake/Tire (Cu, Sr) Signaled intersections, 500m (R2= 0.47) Signaled intersections, 500m (r= 0.36)
Population, 1000m (r= 0.31)

4 (8%) Coal/Industry (As, Pb, Tl) SO2 emissions (R2= 0.54) SO2 emissions (r= 0.72)

5 (6%) Brake/Tire (Cr) No spatial covariates SO2 emissions (r= 0.23)

6 (5%) Coal (Se) No spatial covariates No covariates4r= 0.15

Percentage of explained variance is given alongside each factor, along with proposed sources based on literature review, the final LUR covariates (with final
R2), and the covariates that most strongly correlated with the factor scores (rho).

Inversion-focused PM2.5 constituents
Tunno et al

393

© 2016 Nature America, Inc. Journal of Exposure Science and Environmental Epidemiology (2016), 385 – 396



moderate R2s of 0.15 to 0.54), but reasonably corroborated factor
interpretations.

Summer Analyses
Summer sampling revealed greater variability in constituent
concentrations, compared with winter, using both sampling
designs (Tables 3 and 4), as previously reported for PM2.5 and
BC.6 Inversion-focused sampling identified a stronger presence of
road-related sources during both seasons, and summer inversion-
focused sampling revealed higher concentrations of elements
related to steel and coal industries (Table 3). In the summer, we
captured a greater contribution from steel and coal emissions
under the inversion-focused sampling design than 24-h sampling.
LUR models moderately corroborated these factor interpretations,
identifying industrial land use for the steel/industry factor
(R2 = 0.34) and SO2 emissions for the coal factor (R2 = 0.50) as
key spatial covariates. Five of the six summer factors from the 24-h
sampling were comprised of elements associated with brake/tire
wear or coal burning.

Winter Analyses
Fewer constituents differed by sampling scheme during winter,
which was expected, as lower mixing heights and lesser insolation
may have reduced the influence of inversion-focused sampling.
The clustering of many sources under the first inversion-focused
winter factor may be indicative of a low mixing height and
combined general traffic and industrial activity, predicted by the

summed area of commercial and industrial land use within 500m.
Other factors from the winter inversion-focused analyses were
reasonably corroborated using LUR, and by assessing the spatial
pattern across sites. Fewer factors were corroborated for the 24-h
weeklong sampling design.

Spatial Analyses and Mapping
Spatial modeling and mapping of inversion-focused factor scores
generally reinforced factor interpretations, particularly for the
inversion-focused samples, as higher loadings of brake and tire
wear factors were observed nearer to downtown Pittsburgh, with
greater traffic congestion during morning rush hours. Steel-
making constituent concentrations were highest in the Braddock
neighborhood, near an active steel mill, as in prior studies.36,39,40

Coal-related constituent concentrations were highest in the
neighborhood of Clairton, near the largest coke works in the US;
SO2 emissions was a significant predictor for the coal factors under
both designs during summer.
The key sources we identified are in keeping with nationwide

results using EPA’s Chemical Speciation Network (CSN), which, in
our region identified factors related to motor vehicle traffic, steel
industry, oil combustion, and coal combustion.33

Limitations
Owing to equipment availability, both sampling schemes could
not be run simultaneously. Although it is possible that the
intensity of localized source emissions from traffic and industry

Table 6. Winter inversion-focused and 24-h weeklong factor score LUR results.

Factor (% prop.) Proposed sources Final LUR modeling covariates (R2) Covariates most strongly correlated with factor
scores (r)

Winter 2012 (Year 1: Inversion-Focused)
1 (44%) Brake/Tire (Cd, Mg, Sb, Sr, Zn),

Soil/Road Dust (Al, Ca, Fe, K, Pb),
Steel (Fe, Mn, Pb, Zn)

Commercial and industrial land use,
500m (R2= 0.18)

Industrial land use, 1000m (r= 0.36)
Elevation within 1000m (r=− 0.34)
Commercial and industrial land use,
500m (r= 0.29)

2 (12%) Brake/Tire (Ba, Cr, Cu) Signaled intersections, 750m (R2= 0.20) Signaled intersections, 750m (r= 0.41)
Mean bus density, 500m (r= 0.35)

3 (9%) Traffic Source (Ce, La, Mo) Mean density of heavy truck traffic,
500m

Inverse distance to primary roadways
(R2= 0.43)

Mean density of truck traffic, 500m (r= 0.36)
Length of primary roadways, 200m (r= 0.35)
Traffic density on primary roadways,
300m (r= 0.32)

4 (7%) Fuel Oil Combustion (Ni) Distance to nearest primary roadway
(R2= 0.23)

Distance to nearest primary roadway (r= 0.37)
PM2.5 emissions (r= 0.27)

5 (5%) Coal (Se) Elevation within 50m (R2= 0.12) Elevation within 50 m (r=− 0.33)

6 (5%) Diesel/Motor Vehicle (BC) Signaled intersections, 500m
Industrial land use, 750m (R2= 0.34)

Inverse distance to NEI /TRI sites (r= 0.43)
Signaled intersections, 500m (r= 0.42)
Industrial land use, 750m (r= 0.38)

Winter 2013 (Year 2: 24-h Weeklong)
1 (67%) Brake/Tire (Cr, Cu, Mg, Sr),

Soil/Road Dust (Al, Ca, Cu, Mg),
Fuel/Oil (Ni, V)

No spatial covariates Mean truck density, 500m (r= 0.27)
Traffic density of primary roadways,
500m (r= 0.26)

2 (9%) Diesel/Motor Vehicle (BC, La, NO2,
P),
Brake/Tire (Ba, Cu, Sb)

Signaled intersections, 500m
PM2.5 emissions (R2= 0.30)

Signaled intersections, 500m (r= 0.40)
PM2.5 emissions (r= 0.40)
Mean elevation (r=− 0.40)

3 (8%) Coal/Industry (Pb, Se, Tl) PM2.5 emissions (R2= 0.30) PM2.5 emissions (r= 0.49)
Commercial and industrial land use,
200m (r= 0.38)

4 (5%) Steel-Making (Fe, Mn, Zn) Industrial land use, 500m (R2= 0.28) Industrial land use, 500m (r= 0.39)
PM2.5 emissions (r= 0.35)

Percentage of explained variance is given alongside each factor, along with proposed sources based on literature review, the final LUR covariates (with final
R2), and the covariates that most strongly correlated with the factor scores (rho).
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differed in successive years, we established comparability
between years, finding similar PM2.5 and BC concentrations at
the 13 repeated sites. Across both years, reference data at the
upwind rural background site were comparable. PM2.5 concentra-
tions were similar using each sampling method at the background
reference site during both seasons (summer 24-h = 11.92 (SD=
3.99) μg/m3 vs summer inversion-focused = 11.91 (SD= 2.22) μg/
m3); (winter 24-h = 8.43 (SD= 1.76) μg/m3 vs winter inversion-
focused = 8.64 (SD= 1.73) μg/m3). BC results were similar to those
found for PM2.5 concentrations. We also assessed inversion
frequency, and found a comparable number of inversion events
by year and season.
A further limitation may be that these elemental constituents

comprise only a small fraction of total PM2.5 by mass. Sulfur was
the most predominant constituent, as in other northeast US
studies. For inversion-focused sampling, sulfur accounted for 66%
(SD = 14%) of the total characterized elemental mass in summer,
and 54% (SD = 12%) in winter. For 24-h weeklong sampling, sulfur
accounted for 70% (SD = 10%) and 64% (SD = 11%) of
characterized elemental mass in summer and winter, respectively.
Sulfur air pollutants (impurity from coal and oil) from power plants
include SO2, sulfate PM, and sulfuric acid. SO2 can undergo
chemical reactions in the air to form secondary sulfates. Because
SO2 emissions from power plants peaked during summer, and
warmer temperatures and sunlight generally favor secondary
formation, sulfates may be produced more readily, and greater
quantities of elemental sulfur taken up into other compounds.
Nonetheless, this 2-year study enabled the comparison of

spatial patterning in 24-h weeklong measures vs hypothesized
high-concentration hours across an urban area. As hypothesized,
our inversion-focused sampling approach elucidated greater
spatial variability and stronger source contributions. Twenty-
four-hour weeklong sampling also produced interpretable factors
each season. Inversion-focused sampling captured significantly
greater concentrations in several constituents in both seasons,
and helped to more clearly distinguish source contributions and
reveal peak exposure contrasts across an urban area.6
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