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Abstract: Alzheimer’s disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the 
most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These in-
clude vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies 
have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthe-
sis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses 
in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main 
risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are 
also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist 
against a background of underlying aging-related pathology. They may converge, and their synergistic propagation 
may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; 
chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative out-
come. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflam-
matory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal 
role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the 
above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress 
during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies 
strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in 
preventing AD onset and retarding cognitive dysfunction in aging and AD. A concerted multi-focal therapeutic effort 
around the inflammation-oxidative-nitrosative stress paradigm may be crucial in preventing and treating AD. This 
paper informs on such relevant polypharmacy approach.
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Introduction

Alzheimer’s disease (AD) is a neurodegenera-
tive disorder of the aged characterized by the 
accumulation of amyloid-β (Aβ) and hyperphos-
phorylated tau (Ptau). These are present aggre-
gated in amyloid plaques, and neurofibrillary 
tangles respectively - causing synaptic and 
neuronal loss, and enhancing cognitive dys-
function. AD is a multifactorial neurodegenera-
tive condition and accumulating evidence has 
shown inflammation to be an integral part of its 
etiology [1-16]. A host of comorbid conditions 
are associated with aging; these include - endo-

toxemia, type 2 diabetes, obesity, metabolic 
syndrome, obstructive sleep apnea (OSA), and 
sleep loss. All these conditions upregulate 
inflammation [17-24]. Indeed, several studies 
indicate that inflammatory mechanisms are 
upregulated by the above comorbid conditions. 
This diverse group of conditions induces prima-
ry and secondary mechanisms that upregulate 
inflammation and increase physiologic dysfunc-
tion in older adults. Inflammation is driven by 
interacting mechanisms including damage-
causing proinflammatory mediators, reactive 
oxygen species (ROS), excitotoxicity, calcium 
perturbations/increase, and dyshomeostasis, 
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among others. These can be superimposed 
and synergistic, thus strengthening the delete-
rious pathophysiological state. There is sup-
portive evidence for inflammation being an ini-
tial insult in cognitive decline. Indeed, dysfunc-
tional cognition may also occur in the so-called 
normal elderly following: a) peripheral infection 
[25, 26], b) delirium due to general anesthesia 
[27, 28], and c) neurotoxic conditions affecting 
neurons, as in hypoxia/hypoxemia [29, 30] - all 
these are associated with inflammation.

Mild, higher levels of bacterial endotoxin (about 
~1-100 pg/mL), persist in circulation in humans 
with adverse health conditions and unhealthy 
life styles such as aging, obesity, chronic infec-
tions, and chronic alcohol consumption and 
smoking [31-37]. The causes of mild but persis-
tent increase in plasma endotoxin are several 
including compromised gut mucosal barriers, 
dysbiosis (i.e. altered commensal and patho-
genic gram-negative microbiota ratio), and vas-
culature leakage. Lipopolysaccharide (LPS) 
found in the bacterial wall is present in the 
intestinal lumen and reaches the circulation 
causing metabolic endotoxemia. However, in- 
flammation is upregulated when LPS binds to 
Toll-like receptor 4 (TLR4) [38]. The ongoing 
smoldering subclinical mild endotoxemia caus-
ing low-grade but persistent inflammatory 
response induces the generation of inflamma-
tory cytokines/mediators [39]. The latter under-
lie the pathogenesis and propagation of vari-
ous chronic conditions including obesity, car-
diovascular diseases, diabetes, neurodegener-
ative conditions, and indeed inflammatory dis-
eases [31, 40-48]. The pathways involving 
those mentioned above are being continually 
investigated and defined [49]. Given the delete-
rious pathological effects caused by inflamma-
tion, engendered by endotoxemia and proin-
flammatory mediators, therapeutic strategies 
should target this persistent pathological sce-
nario to prevent and treat the above mentioned 
debilitating conditions.

Inflammation is meant to be beneficial to clear 
pathogen and phagocytose apoptotic cells/
debris; however, when inflammation remains 
uncontrolled and becomes chronic, it leads to 
the production of neurotoxic mediators/proin-
flammatory cytokine that exacerbates neurode-
generative pathological outcome. Cytokines 
and Chemokines are proinflammatory proteins 
that mediate the body’s immune response. 

Their dysregulation is a cardinal feature in 
some pathological processes including the 
neuroinflammation, neurodegeneration, and 
demyelination. Pathologies in the CNS activate 
microglia that upregulates the production of 
these proinflammatory mediators, lead to glial 
and neuronal injury, and their death (see below). 
The above mentioned, therefore, orchestrates 
a scenario of imbalance between homeostasis-
repair and inflammatory-neurodegenerative 
processes.

An excessive inflammatory response is charac-
terized not only by elevated inflammatory cyto-
kines, but by increases in mitochondrial dys-
function, reactive oxygen species (ROS), and 
nitric oxide (NO). Consequently, there may be 
damage to the systemic vascular endothelium, 
redox-glutathione depletion, and mitochondrial 
respiratory dysfunction causing reduction in 
ATP and O(2) consumption. Although, ROS are 
essential as antioxidant defenses in cells; how-
ever, an excess of ROS production is harmful  
to homeostasis. The resulting cellular patholo-
gies, therefore, are a function of mitochondrial 
dysfunction and an excess of oxidative stress 
damage. Hence, inflammation and oxidative 
stress are intertwined [50-54]. LPS-induced 
ROS signaling from mitochondria has been 
demonstrated to be critical in macrophage acti-
vation [55]. Conversely, antioxidants not only 
reduce mitochondrial damage, but they may 
also reduce interleukin-6 levels [54] and de- 
crease LPS-stimulated proinflammatory cyto-
kines [56].

The molecular mechanisms underlying the 
pathogenesis of sporadic AD are being unrav-
eled on a continuous basis in the literature 
[1-24]. This enormous amount of data, however, 
are now available on their involvement in AD 
pathophysiology. Overall, the purpose of this 
review is to discuss key concepts of inflamma-
tion, immune-reactivity, and oxidative stress in 
the context of aging, comorbid conditions, neu-
rodegeneration, and cognitive decline. This 
review describes the salient literature and  
discusses major studies regarding alterations 
in proinflammatory mediators and oxidative 
stress. There is an emphasis on heterogeneous 
disease conditions promoting neuroinflamma-
tion, and inter-relationship between neuroin-
flammation and neurodegeneration that may 
lead to cognitive impairment and AD. Addi- 
tionally, an important pharmacological ap- 
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proach is described that may inhibit both 
inflammation and oxidative stress, ameliorate 
cognitive decline, and possibly treat AD.

Aging and inflammation

Aging represents a state of complex multifacto-
rial pathways that involve an ongoing molecu-
lar, cellular, and organ damage causing func-
tional loss, disease vulnerability, and eventual 
death [57]. Dysfunctional aging and an 
increased risk of death owe their origin to 
diverse unfavorable factors including genetic, 
epigenetic, and nongenetic including lifestyle 
and environmental factors [58].

In aging, there is a 2-4-fold increase in serum 
levels of inflammatory mediators such as acute 
phase proteins and cytokines. A variety of fac-
tors may maintain this low-grade inflammation; 
these include - increased adipose tissue, smok-
ing, excess alcohol, indolent infections (asymp-
tomatic microbial), and chronic disorders of 
gastrointestinal, respiratory, and cardiovascu-
lar systems [59-63]. The pathogenetic role of 
proinflammatory cytokines may conceivably 
constitute a link between dysfunctional physiol-
ogy, dysfunctional aging, and co-prevailing per-
sistent age-associated diseases [64].

Interestingly, compared with younger individu-
als, healthy aged persons may suffer impair-
ment in their memory following deleterious 
events such as severe bacterial infection, sur-
gery, or psychological trauma. These life events 
may trigger an increased and prolonged pro-
duction of proinflammatory cytokines and neu-
roinflammatory response during aging. This has 
been shown to be due to sensitization/priming 
of microglia that is the source of this height-
ened proinflammatory response. An enhanced 
neuroinflammatory response may impair syn-
aptic plasticity, and cause a reduction in Arc 
(important mediator of synaptic plasticity) and 
BDNF (brain-derived neurotrophic factor) - the 
important downstream factors. The above-
mentioned mechanisms are crucial in impact-
ing/decreasing long-term memory [65, 66].

There is an array of proinflammatory factors in 
addition to cytokines. These, e.g. include homo-
cysteine, C-reactive protein (CRP) and alpha-
1-antichymotrypsin (ACT). In a study, the corre-
lation was studied between homocysteine and 
6-year cognitive decrease, and the critical role 

of Interleukin-6 (IL-6), CRP, and ACT. Higher 
homocysteine was negatively associated with 
lower information processing speed and a 
decline in cognitive function. The above nega-
tive association was highest in the presence  
of high level of IL-6. Similarly, higher CRP plus 
higher homocysteine were associated with 
decreased memory retention. Further, higher 
ACT plus higher homocysteine were also asso-
ciated with lower information processing speed 
and faster decline. The above data reflect that 
a combination of inflammatory factors under-
lies cognitive impairment [67]. Furthermore, 
high serum CRP levels in association with high 
IL-6 levels were a significant risk factor for  
vascular dementia (VaD). Notably, just hyperho-
mocysteinemia (Hhcy) was correlated with 
increased risk of AD [68, 69].

LPS induces memory impairment in old mice 
compared to young animals [70-72]. Thus,  
disruption of cognitive processing [73, 74] in 
the old animals by LPS suggests that in old ani-
mals the hippocampus is vulnerable to cyto-
kines, LPS, and an acute infection [75-82]. 
Importantly, LPS-challenged old animals had 
difficulty in locating the platform in Morris Maze 
test. This suggests that cognitive decline can 
be ameliorated when the neuroinflammatory 
response is minimized and kept under control 
[83].

As in neurodegenerative diseases, microglia is 
primed in aging also [84, 85]. Consequently, 
microglia in the aged brain respond to the 
inflammatory signals (e.g. infection) and gener-
ate more proinflammatory interleukin-1beta  
(IL-1β) for a longer duration than microglia in 
younger brains [17]. Indeed, LPS administration 
also resulted in an elevated proinflammatory 
cytokine response in the aged brain [84, 86, 
87], as did Escherichia coli administration to 
older rats [82]. As well as higher proinflamma-
tory cytokine response in the brain, LPS-
injected aged mice demonstrated behavioral 
dysfunction, and a decline in hippocampal-
dependent learning and memory - again com-
pared with younger animals [84, 86, 88]. 
Similar to rodent data, acute cognitive impair-
ments are common in the elderly humans (aged 
65 years or older) suffering from peripheral 
infection [89, 90]. Hence, microglial cell prim-
ing, neuroinflammation, and dysfunctional phy- 
siological processes activate neuropathology 
in the aged brain [17, 91].
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Aging and comorbid age-related diseases might 
have an impact on synaptic plasticity in the  
hippocampus, to produce memory failures.  
For example, the LTP (long-term potentiation) 
induced in area CA1 (using theta-burst stimula-
tion) is compromised by the combined effects 
of aging and infection [92]. Likewise, immune 
challenge e.g. employing intraperitoneal injec-
tion of E. coli disrupts hippocampus-dependent 
memory in aged (24-month-old), but not young 
(3-month-old), F344xBN rats. Synaptic pla- 
sticity and long-term memory strongly depend 

of these disease conditions in aging evoke dif-
ferent pathologies. However, since they have  
an impact on inflammation, it is important to 
appreciate their role in neuroinflammation in 
various age-related disease. In keeping with 
aging being a state of low-grade inflammation, 
the plasma concentration of LPS and its bind-
ing protein are significantly higher in older sub-
jects [96]. This reflects the presence of meta-
bolic endotoxemia, i.e. the presence of incre- 
ased plasma endotoxin level in old age and 
metabolic disease [96].

Figure 1. Schematic representation of the pathogenesis of cognitive decline 
in aging and AD. Aging in conjunction with several comorbid conditions/risk 
factors including obesity, hypertension, diabetes, hypoxia/OSA, infection, sleep 
loss and dysbiosis synergistically promote a complex inflammatory milieu. The 
latter is comprised of LPS, Cytokines, Chemokines, Complement System, and 
Acute Phase Proteins such as CRP - they are the components of systemic in-
flammation. The latter triggers neuroinflammation and oxidative-nitrosative 
stress mediated by activated microglia and amyloid. The above cascade leads 
to several pathologies including cerebral amyloid angiopathy, blood-brain-bar-
rier dysfunction, mitochondrial dysfunction, and cerebral hypoperfusion. They 
lead to the accumulation of Aβ, NFT, and neuronal calcium causing neuronal 
death. An escalating neurodegeneration promotes cognitive/memory decline 
and AD.

on BDNF; however, the com-
bined effect of aging plus 
infection might disrupt BD- 
NF production and its pro-
cessing in the hippocam-
pus. Indeed, inflammation-
related BDNF reduction in 
synaptosomes may evoke 
long-term memory disrup-
tions in aging [93]. BNDF is 
known to function in neuro-
nal protection from dysfunc-
tion due to infection or inju-
ry; it plays a vital role in  
hippocampal plasticity pro-
cesses. However, memory  
is compromised by deleteri-
ous effect of cytokines such 
as IL-1β. Thus, aging and 
inflammatory response in 
the brain depletes BDNF 
required to maintain memo-
ry-related plasticity process-
es at synapses in the hippo-
campus [94]. Minocycline, 
an inhibitor of microglial 
activation has been shown 
to restore significant LTP in 
middle-aged rats adminis-
tered arthritis adjuvant sys-
temically [95]. (Also, see 
below).

Heterogeneous comorbid 
conditions and inflamma-
tion: different roads but 
same destination

Various disease pathologies 
often co-exist in aging (Fig- 
ure 1). The predisposition, 
interaction, and causation 
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Obesity and inflammation

It is well characterized that negative health out-
comes are associated with high levels of fat 
within the abdominal cavity. Obesity enhances 
systemic inflammation and proinflammatory 
cytokines [97-99]. The visceral obesity-induced 
systemic inflammation is linked to the patho-
genesis of insulin resistance [100], type 2 dia-
betes [101, 102], hypertension [103], and car-
diovascular disease [104]. The adipose tissue 
is a rich source of metabolically active adipocy-
tokines including leptin, plasminogen activator 
inhibitor-1, adiponectin, and resistin [105]. 
Also, adipose tissue in obese persons secretes 
high levels of some inflammatory cytokines 
including TNF-α, IL-6, and IL-8 [106]. Stem cells 
derived from adipose tissue of obesity showed 
hyper-responsiveness to hypoxia and strong 
nuclear factor-κB (NF-κB) activation that may, in 
turn, sustain inflammation [107]. Hence, NF-κB 
inhibitors might curtail the obesity-induced 
inflammation. Systemic inflammation is a pre-
cursor of neuroinflammation (see below). The 
neuroinflammation worsens central pathways 
of energy regulation/energy balance, perturbs 
nutrient metabolism, and triggers several dis-
ease states such as obesity, diabetes, and car-
diovascular problems [108]. These conditions 
then impact physiological function/homeosta-
sis and perturb neural regulation. Indeed, there 
is accumulating evidence that high-fat diet and 
obesity induce gliosis and inflammation in the 
human and rodent hypothalamus [109, 110], 
and perturb the hypothalamic function [111, 
112].

Gut microbiota and metabolic endotoxemia-
inflammation

High-fat consumption causes changes in gut 
microbiota, i.e. dysbiosis (an increase in patho-
genic bacteria at the expense of commensals), 
and this generates high plasma concentration 
of LPS, termed metabolic endotoxemia. The lat-
ter has been correlated with a decrease in glu-
cose intolerance, adiposity, oxidative stress, 
and mRNA expression related to macrophage 
infiltration in visceral adipose tissue. Of note, 
high-fat consumption strongly enhanced intes-
tinal permeability via reduced expression of 
proteins of the tight junctions. This shows a 
close inter-connection between metabolic 
endotoxemia, inflammation, and intestinal per-
meability to LPS. Importantly, metabolic endo-

toxemia has been shown to upregulate both 
obesity and insulin resistance [20, 113]. 
Indeed, bacterial LPS is a triggering factor for 
the above disease states. Hence, LPS may be 
an important therapeutic target, and lowering 
plasma LPS concentration could be a viable 
strategy to ameliorate/retard metabolic diseas-
es [20]. Further, favorable intestinal microbiota 
e.g. bifidobacteria prevent the deleterious 
effect of endotoxemia [19, 20, 31]. Also, thera-
peutic strategies involving weight loss and pro-
biotic plus prebiotic intake can reduce inflam-
mation, endotoxemia, and associated condi-
tions e.g. insulin resistance [113].

Type 2 diabetes and inflammation

Epidemiological evidence links type 2 diabetes, 
obesity, hyperinsulinemia, and metabolic syn-
drome, to AD. There is an inherent association 
between the development of type 2 diabetes 
and elevated (but ‘normal range’) levels of cir-
culating inflammatory mediators including CRP, 
and indices of insulin resistance (IR) [114]. 
Obesity, (mainly central obesity) is a strong 
mediator of insulin resistance and type 2 dia-
betes since it generates proinflammatory cyto-
kines such as IL-6 [115]. The great majority of 
patients (90%) with diabetes have insulin resis-
tance. Subclinical chronic inflammation has 
been implicated as an essential pathogenic 
factor in the development of insulin resistance 
and type 2 diabetes. Markers for this chronic 
inflammation include CRP, IL-6 and TNF-α (albe-
it at low level) [116]. Indeed, inflammation may 
trigger several mechanisms including insulin 
resistance and deficiency, impaired insulin 
receptor, impairment of insulin growth factor 
(IGF) signaling, glucose toxicity, dysfunctional 
advanced glycation end products and their 
receptors, cerebrovascular injury, and vascular 
inflammation [105, 117-119]. Furthermore, the 
proinflammatory effects of cytokines may in- 
volve specific intracellular signaling pathways 
such as the nuclear factor (NF)-dB, IκB kinase, 
(IKK), activating Protein-1 (AP-1) and c-Jun NH2-
terminal kinase (JNK), and impaired insulin sig-
naling [21]. This provides important perspec-
tives for treating insulin resistance, and glu-
cose intolerance. The antidiabetic drugs that 
reduce insulin and insulin resistance may, in 
fact, reduce inflammation as well. Conversely, 
anti-inflammatory drugs (such as thiazolidinedi-
one) may improve insulin resistance and glu-
cose tolerance.
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Obstructive sleep apnea and inflammation

OSA is a common condition whose hallmark 
feature is intermittent hypoxia (IH). Chronic IH 
induces inflammation and directly triggers pro-
inflammatory pathways [120-126]. Since obe-
sity is associated with OSA, recent work has 
shown that IH leads to activation of inflamma-
tory responses in human adipocytes [127]. The 
latter irrespective of being derived from either 
visceral or subcutaneous sites showed activat-
ed NF-κB DNA-binding activity in IH, compared 
with normoxic controls. IH upregulated proin-
flammatory gene expression and mRNA expres-
sion in adipocytes that were the source of sig-
nificantly increased secretion of TNF-α, IL-6, 
and IL-8 [127]. Recurrence of IH resulted in cel-
lular and systemic inflammation in the rat 3T3-
L1 adipocytes. Both mRNA and protein levels of 
TNF-α, IL-6, and leptin, were significantly high in 
severe IH group; the level of these proinflam-
matory markers was proportional to the severi-
ty of IH [128]. In OSA patients, TNF-α and 
TNF-α/IL-10 ratio values were significantly high-
er compared with the control group; however, 
IL-10 was much lower. A meta-analysis of  
51 studies found that the levels of systemic 
inflammatory markers were higher in OSA 
patients compared to control individuals [129]. 
Importantly, continuous positive airway pres-
sure (C-PAP) therapy for a month decreased 
TNF-α level, while there was no change in the 
level of IL-10 [130]. The inflammatory response 
in IH rodents regarding serum levels of TNF-α, 
IL-6, and IL-8 showed progressive increment 
from onset to the 6th week, while the level  
of anti-inflammatory IL-10 decreased [131]. 
Further, soluble TNF receptor-1 (sTNF-R1) levels 
were significantly higher in the OSA patients 
then the controls [132]. However, three months 
of CPAP therapy lowered sTNF-R1 [133, 134].

Fibrinogen (a coagulation protein) is associated 
with inflammation, and long-term elevated plas-
ma fibrinogen is linked to an increased risk of 
cardiovascular diseases (CVD). Compared to 
controls, fibrinogen is significantly higher in 
OSA patients [135], as is CVD. Plasminogen 
activator inhibitor-1 (PAI-1), is the principal 
inhibitor of tissue plasminogen activator (t-PA); 
it is higher in both OSA and CVD. OSA adversely 
affects circadian fibrinolytic balance, and t-PA 
has a pronounced circadian rhythm. This dys-
functional mechanism may be responsible  
for increased cardiovascular events in OSA 

patients [136]. Another important inflammatory 
marker of systemic inflammation that is elevat-
ed in OSA is CRP [137-140]. However, obese 
OSA patients may contain other elevated proin-
flammatory cytokines e.g. IL-6, as well as CRP 
[141]. Six months of CPAP significantly reduced 
CRP [142].

An interplay has been suggested between OSA, 
sleep fragmentation, and neuroinflammation 
that may cause OSA-induced brain injury [29, 
30]. There is accumulating evidence linking 
OSA with IR, glucose intolerance, and type2 
diabetes [143-145]. Thus, OSA-induced proin-
flammatory cytokines such as TNF-α and IL-6 
are associated with impaired glucose metabo-
lism [143, 144]. Hence, chronic OSA could up- 
regulate sustained glucose hypometabolism, 
inflammatory response, hypertension [146], 
ischemia due to endothelial dysfunction [147-
149], white matter damage [150], and apopto-
sis in the hippocampus [151, 152]; conceivably, 
these would promote widespread pathology 
and trigger cognitive dysfunction.

Sleep loss and inflammation

There is insufficient sleep among people in our 
fast-paced stress-prone society. Sleep distur-
bance due to conditions such as OSA and  
short sleep duration increase inflammation. 
Insufficient sleep enhances blood pressure, 
glucose dysmetabolism, hormonal dysregula-
tion, and inflammation [153]. Partial sleep 
deprivation (PSD) (compared with uninterrupt-
ed sleep) has been shown to cause significantly 
higher expression of TNF-α and IL-6 [154]. PSD 
also activated STAT family proteins; together 
they enhance the molecular inflammatory sig-
naling pathways [154]. Circadian misalignment 
due to the wakefulness-sleep schedule pertur-
bation conceivably causes a significant incre- 
ase in TNF-α, and CRP [155, 156]. CRP is a rec-
ognized general marker for inflammation [157, 
158]. Its serum concentration increases imme-
diately after sleep restriction [159]. The CRP 
level increases, as expected, during both total 
and PSD conditions [158]. Indeed, long-term 
sleep restriction may cause increased produc-
tion of cytokines including IL-β, IL-6, IL-17, as 
well as CRP [159]. One week of sleep restriction 
elevated not only mRNA concentrations of 
TNF-α and IL-1β but reduced endothelial-
dependent vasodilatation in healthy individuals 
[160]. Interestingly, it has been documented 
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recently that decreased sleep may decrease 
immune function and increase susceptibility to 
viral infections [161]. 

Recent data have found that Aβ pathology is 
associated with non-rapid eye movement 
(NREM) sleep disruption impacting memory 
function in older adults. The study found that 
Aβ burden in medial prefrontal cortex (mPFC) 
correlated significantly with less NREM sleep, 
and more memory impairment mediated by 
impaired hippocampus-dependent memory 
consolidation [162]. 

Comments

Disparate aspects of inflammation: LPS, proin-
flammatory cytokines, and other mediators

LPS (present in the cell wall of Gram-negative 
bacteria) - a potent endotoxin enhances the lev-
els of proinflammatory cytokines and activates 
both the neuroimmune and neuroendocrine 
systems [49]. It also blocks LTP in the hippo-
campus. Wistar rats administered LPS for three 
days showed increased level of expression of 
TNF-α, IL-1β, and IL-6 in the hippocampus (com-
pared with controls). Following seven days of 
administration, however, Aβ level also increased 
in the hippocampus. LPS-induced cognitive 
dysfunction was verified in Morris maze test 
[163]. Interestingly, even a single injection of 
LPS impaired hippocampal-dependent learning 
(spatial learning) [164].

LPS infusion (1.2 mg/kg/day intraperitoneal) 
for 14 days induced sustained hypertension 
and a significant increase in plasma level of 
TNF-α, IL-1β, and CRP. This LPS-induced sys-
temic inflammation was accompanied by acti-
vation of microglia, augmentation of TNF-α, 
IL-1β, or IL-6 protein expression, and O2 pro-
duction in rostral ventrolateral medulla (RVLM) 
[165]. The above mentioned were blunted by 
administration of a cycloxygenase-2 (COX-2) 
inhibitor, an inhibitor of microglial activation 
(NS398), a cytokine synthesis inhibitor (pent-
oxifylline), or minocycline [165]. Neuroinflam- 
mation was also associated with a COX-2-
dependent downregulation of endothelial NO 
synthase. The LPS-related pressor response 
was antagonized by minocycline, pentoxifylline, 
or tempol (SOD mimetic) [165]. An increase in 
serum LPS activity is associated with a host of 
pathologies including higher serum triglyceride, 

obesity/metabolic syndrome, diabetes, incre- 
ased blood pressure (mainly diastolic), and car-
diometabolic disorders [19, 20, 31, 166-169]. 
Thus, LPS is linked to the development of meta-
bolic and vascular dysfunctions supporting its 
role in evoking an immune response in their 
pathogenesis [166, 170, 171].

Proinflammatory cytokines are key molecules 
that modulate immune responses. Their lack of 
reversibility in persistent inflammation would 
enhance dyshomeostasis [96]. LPS administra-
tion in the aged rats induces prolonged neuro-
inflammation and astrogliosis in the hippocam-
pus (dentate gyrus) showing higher mRNA 
expression and protein levels of TNF-α and 
IL-1β [172]. The secretion of these proinflam-
matory cytokines increases several fold with 
daily consumption of alcohol in LPS-treated 
C57BL/6J mice [173]. Many disparate proin-
flammatory pathways may underpin aging and 
age-related diverse comorbid conditions (Fig- 
ure 1). For example, the proinflammatory mole-
cule eukaryotic translation initiation factor 5A 
(EIF5A) mediates stress-induced inflammation 
in diabetes [174]. EIF5A has been shown to 
upregulate inflammation by stimulating the 
translation of mRNA encoding inducible NO 
synthase (iNOS); the latter promotes inflamma-
tion-associated cell death. Inflammatory preva-
lence may be associated with the extracellular 
release of ATP that activates purinergic P2 
receptors and promotes chronic inflammation 
[175].

Adipose tissue is an important source of inflam-
mation and hypoxia triggers macrophage infil-
tration in adipose tissue [176-178]. The recur-
ring cessation of breathing in OSA may promote 
adipose tissue hypoxia and upregulate inflam-
mation in obesity. A major source of cytokine is 
adipose tissue; its expression of IL-6 is elevat-
ed in aging. Upon in vitro treatment of adipose 
tissue explants with LPS, IL-6 secretion was 
significantly increased in cultures from 24 
months old aged C57BL/6 mice - compared to 
4 months old young mice [179]. Further, treat-
ment of these explants with physiological levels 
of IL-1β induced significant secretion of IL-6; 
this effect was age-dependent, reflecting a  
synergistic response of adipose tissues to IL-1β 
in the aged [179]. However, inflammation in 
obesity is also associated with elevated corti-
sol levels [180]. Such enhanced inflammatory 
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response in the obese aged may impact and 
alter the risk of other age-related comorbid 
conditions. Healthy obese adults with exacer-
bated inflammation markers such as CRP and 
fibrinogen may possess higher fasting glucose 
(prediabetes). However, these individuals with 
prediabetes tend to have prehypertension also 
[181].

Greater levels of serum IL-6 and CRP were 
associated with faster rates of cognitive decline 
over nine years among cognitively intact com-
munity-dwelling older women. This finding has 
been correlated with microvascular changes 
leading to myelin damage, pathological pertur-
bations in neuronal axons, decreased neuron 
propagation, and impaired processing speed 
[182].

6,542 middle-aged adults were followed for 19 
years prospectively; participants with a history 
of alcohol abuse, however, showed increased 
odds of developing severe memory impairment 
later in life [183]. In the animals, ethanol con-
sumption upregulated basal gene expression  
of TNF-α, IL-1β, IL-6, and iNOS [184]. Alcohol-
induced gut mucosal injury leads to marked 
increase in the permeability of the gut mucosa 
to macromolecules such as LPS. Consequently, 
the release of proinflammatory mediators such 
as TNF-α, and infiltration of inflammatory cells, 
e.g., neutrophils, lead to endotoxemia and sys-
temic inflammation [185]. The leaky gut and 
associated inflammation upregulate depres-
sion also [186]. An increase in expression of 
inflammasome components (i.e. nucleotide-
binding domain leucine-rich repeat proteins or 
NOD-like receptors - NLRP1, NLRP3, and cas-
pase recruitment domain-ASC) and proinflam-
matory cytokines (such as TNF-α, MCP-1) 
occurs in the brain of alcohol-fed mice. An 
increase in IL-1β in alcohol-fed mice further 
activates inflammasomes [187].

It is well established that cytokines mediate 
immune and inflammatory responses. TNF-α 
and IL1-β enhance their mRNA levels as well as 
affect mRNA levels of other proinflammatory 
cytokines [188]. Thus, TNF-α and IL1-β induce 
each other, and indeed their own production 
[189]. When these cytokines are released into 
the extracellular space, they stimulate nearby 
neurons to produce TNF-α and IL1-β. Thus, 
cytokines render these neurons pathological 
and dysfunctional. Indeed, pathological neu-

rons produce proinflammatory cytokines and 
activate microglia [190-196].

The inflammatory process is integral to aging, 
obesity, IH, hypertension, malnutrition, diabe-
tes, and depression (see above). Also, APOE4 
genotype is known to potentiate the induction 
and regulation of inflammatory processes [197-
199]. Furthermore, stress hormones may facili-
tate inflammation; the induction of TNF-α, IL-1β, 
IL-6, IL-8, IL-18, and CRP production may occur 
through the corticotropin-releasing hormone/
substance P-histamine axis upregulation. Thus, 
a dysfunctional neuroendocrine-immune inter-
face may play an important role in the patho-
genesis of inflammation-related neuronal path- 
ology and cognitive decline [200].

The effect of mild chronic Hhcy on proinflamma-
tory cytokine levels in the brain, heart, and 
serum were investigated in rats. Results dem-
onstrated an increase in TNF-α, IL-1β, IL-6, and 
the chemokine MCP-1 (i.e. CCL(2)) in the hip-
pocampus, as well as an increase in IL-1β and 
IL-6 levels in the cerebral cortex. Also, an 
increase in prostaglandin E(2) in the hippocam-
pus and serum of the rats has been document-
ed [201]. These data suggest that homocyste-
ine increase promotes inflammatory status that 
can contribute to neuronal dysfunctions [202, 
203] and memory deficit [204]. Recent studies 
have corroborated these conclusions. Vascular 
dementia (VaD) is a frequent comorbidity with 
AD and is estimated to occur in as many as 
40% of AD patients. The heterogeneous causes 
of VaD may include chronic cerebral hypoperfu-
sion, microhemorrhages, hemorrhagic infarcts, 
or ischemic infarcts. MRI and histopathology 
revealed the occurrence of significant microhe-
morrhage, neuroinflammation, and elevated 
interleukin IL-1β, TNF-α, and IL-6, and the matrix 
metalloproteinase 2 (MMP2) and MMP9 in the 
Hhcy mice brain [202]. The Hhcy mice, not  
surprisingly, showed spatial memory deficit 
(assessed by the radial-arm water maze), and 
an increased risk for the neurodegenerative 
disease.

It is clear from the above mentioned that chron-
ic inflammatory milieu would promote both vas-
cular inflammation and neuroinflammation. The 
endothelium is the largest receptor-effector 
end-organ and maintains vascular homeosta-
sis. Inflammation-related endothelial dysfunc-
tion is an important perturbation that precedes 
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and accompanies cerebral neuropathology. It 
leads to cognitive dysfunction as well as sud-
den cerebrovascular and adverse cardiovascu-
lar events. Several cell types infiltrate vascula-
ture in inflammation; these include microglia, 
astrocytes, perivascular macrophages, and 
infiltrated peripheral immunocytes (T lympho-
cyte, B lymphocyte, and dendritic cells) [205, 
206]. Hypertension also is a major cause of 
vascular inflammation. Spontaneously hyper-
tensive rats subjected to hypoperfusion (via 
middle cerebral artery occlusion) showed im- 
mune cells of the peripheral blood infiltrated  
in the ischemic brain. These cells included  
neutrophils, monocytes, macrophages, and 
myeloid dendritic cells, lymphatic dendritic 
cells, microglia, and T cells [207]. This cellular 
recruitment, therefore, can aggravate damage 
to the brain tissue by releasing cytotoxic media-
tors, increasing vascular permeability, and dis-
rupting blood-brain barrier (BBB) [208].

Inflammation implicated in the etiopathogen-
esis of AD

Accumulating evidence supports the major role 
of inflammation in the etiopathogenesis of AD 
[209, 210]. As described above, proinflamma-
tory mediators activate various signaling path-
ways that lead to neuronal injury (Figure 1). 
Neurons, glial cells, and vasculature are all 
implicated as being different cerebral compo-
nents of neuroinflammation in AD, as are syn-
apses [211-213]. Aβ-induced microglial cell 
activation (see below) triggers TNF-α or IL1-β 
cytokine synthesis and promotes neuroinflam-
mation [214-217]. Systemic inflammation can 
upregulate neuroinflammation [218, 219]. In 
the preclinical stage of AD, systemic inflamma-
tion has been correlated with the development 
of AD [220, 221]. Indeed, early neuroinflamma-
tion occurs in the amnestic mild cognitive 
impairment (aMCI), underscoring that this 
pathology is a feature of prodromal cognitive 
decline [212, 222]. The expression of proin-
flammatory cytokines in middle age is an early 
risk factor and predictor of cognitive decline/
AD in old age [223].

The ������������������������������������������underlying primary event in the etiopatho-
genesis of AD has been emphasized in the data 
presented by van Exel et al. [224]. They [224] 
studied characteristics associated with genetic 
risk preceding AD development. They com-
pared middle-aged offsprings of AD patients 

with offsprings of cognitively intact non-AD par-
ents. The offsprings of AD patients showed 
enhanced proinflammatory responses (and 
increased hypertension). A greater proinflam-
matory response to inflammatory challenge 
found in the offsprings of AD patients, there-
fore, reflected their elevated genetic risk, and 
the susceptibility/predisposition to AD in the 
future. This was in keeping with well-document-
ed alterations in innate immunity/inflammation 
found by other workers [210]. (Also, see above). 
Other susceptibility genes for AD include CLU, 
PICALM, and CRI [225, 226]; it is noteworthy 
that CLU codes for clusterin, and CRI, comple-
ment receptor 1, - and both are involved in 
inflammation/innate immunity. 

It has been pointed out in the literature that 
LPS-induced inflammation promotes AD pathol-
ogy by altering Aβ transport at the BBB [227] 
and decreasing the central clearance of Aβ 
[228]. Alteration of BBB effectively increases 
brain influx of Aβ but decreases its efflux [227]. 
It has been discussed above that low-grade 
systemic inflammation is rampant and accom-
panies aging and various comorbid diseases in 
AD [229, 230]. Obesity (e.g.) in aging is associ-
ated with significant systemic inflammation, 
that disruption BBB [231]. The resulting neuro-
inflammation and oxidative stress in the hippo-
campus likely contribute to the significant cog-
nitive decline observed in obese aged animals. 
Both peripheral and central increases in proin-
flammatory cytokine levels result in increased 
Aβ1-42 in the hippocampus and cognitive defi-
cits [232, 233]. 

The Honolulu-Asia Aging Study found that ele-
vated CRP levels are related to a significant- 
ly increased risk for dementia [234]. The 
Rotterdam Study also reported a relationship 
between elevated levels of α-1 antichymotryp-
sin (ACT), CRP, IL-6, Intracellular adhesion mol-
ecule-1 (ICAM), and vascular cell adhesion mol-
ecule-1 (VCAM) - and an increased risk for AD 
[235]. Chronic inflammation (in 3xTg-AD mice) - 
related elevation of TNF signaling (in the hippo-
campus) [236], and intraneuronal amyloid and 
Ptau may promote neuronal death [236-238]. 

Inflammation-activated microglia and abeta 
exacerbation

Normally, Microglia is innate immune cells of 
the brain; they constantly scan the tissue, 
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respond to pathological signals, and protect 
CNS homeostasis. They encapsulate pathogen-
ic foci and remove apoptotic cells/debris there-
by defending the CNS tissue integrity. In neuro-
degenerative conditions, however, activated 
microglia and macrophages (peripherally-de- 
rived) take on strong proinflammatory function 
and generate proinflammatory mediators - 
including TNF-α, IL1-β, chemokines, comple-
ment factors, and other neurotoxic factors such 
as NO, ROS, and proteolytic enzymes. They all 
enhance Aβ production and plaque accumula-
tion. Although microglia should be beneficial by 
generating anti-Aβ antibodies and stimulating 
clearance of amyloid plaques; the activated 
microglia promote Aβ pathology. Indeed, proin-
flammatory microglia develops in aging, trau-
matic brain injury, and neurodegenerative dis-
ease [239]. 

AD is characterized by Aβ plaques, neuronal 
atrophy, and degeneration in the hippocampus 
and cortex. Chronic inflammation contributes 
to the onset and progression of the above men-
tioned AD-related pathologies. Following intra-
peritoneal administration of LPS, C57BL/6J 
mice showed significantly higher levels of Aβ1-
42 in their hippocampus with cognitive deficits 
[232]. Similarly, neuroinflammation attenuated 
memory retrieval (specifically impairing context 
discrimination memory via disruption of pattern 
separation processes) in hippocampus-requir-
ing tasks in Sprague-Dawley rats [240]. OSA is 
a low-grade inflammatory condition associated 
with neuronal degeneration [29, 30] (see 
above). Exposure to IH induces low-grade neu-
roinflammation in the dorsal hippocampus of 
C57BL/6J mice. Chronic IH in conjunction with 
LPS elevated IL-6 mRNA, caused microglial 
changes, and enhanced cognitive impairment 
[241] (Figure 1).

A vicious cycle occurs between neuroinflamma-
tion and Aβ accumulation; activated microglia 
potentiates Aβ deposition and generates 
inflammatory mediators that in turn enhance 
Aβ level [242]. LPS administration induces a 
significant inflammatory response in both cor-
tex and hippocampal formation in AD transgen-
ic mice (see above); the resulting axonal pathol-
ogy noted in these regions is secondary to 
increases in β-site of amyloid precursor protein 
cleaving enzyme (BACE-1) and soluble Aβ [212]. 
These AD-like data reflect that amyloidogenic 
axonal pathology and dendritic degeneration 

arise from LPS-induced neuroinflammation 
[212]. Other studies have also shown myelin/
axonal injury in the cortex following LPS admin-
istration and an increase in IL-1, Aβ protein pre-
cursor (AβPP), and Aβ [243].

Inflammation, AD pathology, and oxidative 
stress

Oxidative damage is a common and early fea-
ture of AD and other neurodegenerative condi-
tions. Neuroinflammation implicated in cogni-
tive decline enhances ROS and reactive NO 
species (RNS) that are neurotoxic. Oxidative 
stress plays an important role in neural injury 
and cognitive impairments [59, 60]. Oxidative 
stress can arise from several sources includ- 
ing disease state, IH/OSA, sleep restriction, 
unhealthy lifestyle including excessive caloric 
intake, malnutrition, and excessive alcohol con-
sumption [29, 30, 59, 60, 146-149]. The noc-
turnal IH may induce the production of ROS 
and, therefore, cause local and systemic inflam-
mation (Figure 1). ROS contributes to the “age-
related cascade of neurodegeneration”; it con-
tributes to accumulating oxidative damage in 
conjunction with protein aggregation, metabol-
ic dysfunction, and inflammation [50-54, 97]. 

Thiamine deficiency (TD) induces a region-
selective neuronal loss in the brain, accompa-
nied by impairment of oxidative metabolism 
[244]. Free radical injury to the brain was 
assessed using CSF isoprostane concentra-
tions (with age, sex, race, cigarette smoking, 
BMI, APOE ε4 allele, and CSF biomarkers of AD 
as confounders). The results were consistent 
with an age-related increase in free radical inju-
ry in the human brain. The concentration of 
CSF isoprostane has been shown to increase 
with age by approximately 10% from age 45 to 
71 years in healthy, cognitively normal adults. 
Also, the CSF isoprostane concentration also 
increases by approximately >10% for every 5-U 
increase in BMI, as well as other life style modi-
fications (e.g. smoking) [245]. The above stud-
ies highlight the importance of lifestyle modifi-
cation (reducing high BMI and smoking) in 
decreasing free radical injury to the brain [245]. 

There is a potential contribution by ROS to 
homocysteine-related neurotoxicity and neuro-
nal damage. The latter derives from ROS as 
well as increased Ca2+ influx. ROS can be gener-
ated extracellularly by homocysteine [246] fol-
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lowing excessive N-methyl-D-aspartate (NMDA) 
receptor stimulation [247, 248]. Importantly, 
SOD and catalase may offer protection from 
neuronal damage [247, 248].

Inflammation, AD pathology, and nitrosative 
stress

The OSA patients demonstrate decreased plas-
ma levels of NO metabolites, and increased 
production of superoxide (by neutrophils and 
monocytes), isoprostane (in breath conden-
sate) [249, 250], and exhaled NO (eNO), carbon 
monoxide (eCO), nitrates, and hydrogen perox-
ide (H2O2) [251, 252]. Oxidant stress and 
inflammation are potential mediators of IH- 
induced vascular dysfunction [253, 254]. There 
is direct evidence that OSA is a major determi-
nant of endothelial dysfunction, inflammation, 
and elevated oxidative stress in obese patients 
[254]. Indeed, both ROS and RNS may lead to a 
breakdown of endothelial-derived NO and exag-
gerated lipid peroxidation [255-257].

IH induces inflammation and results in signifi-
cant oxidative injury in sleep-wake regions of 
the brain; this is associated with hypersomno-
lence and increased susceptibility to short-
term sleep loss. Compared to mice exposed to 
sham IH, those exposed to IH develop reduced 
mean sleep latency. Following two weeks of IH, 
the oxidative injury was present in regions of 
the basal forebrain and brainstem reflected by 
elevated isoprostane (22%), increased protein 
carbonylation (50%), and increased nitration 
(200%) [258].

Neuroinflammation enhances both ROS and 
RNS species [259] (Figure 1); both are neuro-
toxic and induce mitochondrial damage, up- 
regulate caspases, increase calcium, and pro-
mote AD and other neurodegenerative diseas-
es [260-262]. IL-1β and TNF-α in combination 
caused marked neuronal injury; their synergis-
tic action being required to disrupt memory 
consolidation [263]. Brain cell cultures treated 
with TNF-α and IL-1β generated substantial 
amounts of NO. Blockade of NO production 
with an NO synthase inhibitor was accompa-
nied by a marked reduction (about 45%) of neu-
ronal injury - suggesting that NO plays a signifi-
cant role in neurotoxicity. The addition of NMDA 
receptor antagonists to the brain cell cultures 
also blocked TNF-α and IL-1β-induced neuro-
toxicity (by 55%), implicating the involvement of 

NMDA receptors in neurotoxicity [264]. Both 
intracellular and extracellular glutamate levels 
are elevated following TNF-α and IL-1β treat-
ment. Pre-treatment with NMDA receptor 
antagonist MK-801 blocked cytokine-induced 
neurotoxicity [265].

Inflammation, AD pathology, and Tau

Tau phosphorylation and NFT are early hall-
marks of AD. Neuroinflammation implicated in 
tau pathology [266] promotes tau, its aggrega-
tion and neurodegeneration in humans [267-
270], as well as in animals [266, 271-275] 
(Figure 1). The above-mentioned progression 
of tau pathology following induction of brain 
inflammation was elegantly exemplified in hTau 
mice [266, 276]. Furthermore, blocking or 
enhancing IL1-β expression decreases [277] or 
increases [278] tau pathology, respectively. 
Importantly, the former ameliorates cognition 
in 3xTg-AD mice [277]. Several corroborative 
studies have documented inflammation pre-
ceding tau-mediated neuronal loss/neurode-
generation [271, 279]. Based on the above 
studies, it is emphasized that inflammation  
and activated microglia are essential in driving 
tau pathology and memory impairment [280]. 
However, tau pathology in 3xTg-AD transgenic 
mice may develop independently of Aβ genera-
tion [281, 282].

There is an age-related enhancement of Ptau 
species in the cortex and hippocampus of 
rTg4510 and other transgenic mice [281, 282, 
289, 290]. Hypoglycemia enhances the AMPK-
Akt-GSK3 pathway and tau hyperphosphoryla-
tion [291]. The central angiotensin II elevates 
Ptau levels via glycogen synthase kinase 3β 
(GSK 3β) and other tau kinases. However, Ptau 
and associated cognitive impairment were 
attenuated by losartan and the GSK 3β inhibi-
tor [292]. These three conditions mentioned 
above are associated with inflammation (see 
above). Indeed, neuroinflammation upregulates 
p38 mitogen-activated protein kinase (MAPK), 
GSK 3β [278], and cyclin-dependent kinase 5 
activity which potentiate tau phosphorylation 
[297]. 

The hippocampus in transgenic pR5 mice 
(expressing the pathogenic mutation P301L in 
the human tau gene) has a higher turnover of 
glutamate and glutamine - reflecting a hyper-
metabolic state [293]. Several data have identi-
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fied stimulation of inflammation signaling path-
way within the brains undergoing tauopathy 
[294-296]. Consequently, either reducing tau 
[283-285] or blocking neuroinflammatory path-
ways may serve as therapeutic targets to atten-
uate neurotoxicity/neurodegeneration and cog-
nitive decline [286-288].

Neuroprotection-therapeutic approach em-
ploying polypharmacy

AD is a multifactorial condition in which a com-
bination of many pathological pathways act 
synergistically and sequentially, evoking the 
neurodegenerative milieu. A single drug may 
not be efficacious - proverbially as “one size 
does not fit all”. Hence, multicomponent 
approach (polypharmacy) may be required in 
potential therapeutic intervention to prevent 
neurodegeneration and affect AD pathology 
[298]. There are many therapeutic targets in 
the pathogenic cascade of inflammation (see 
above). These may include proinflammatory 
cytokines, complement system, oxidative 
stress, nitrosative stress, microglial activation, 
as well as amyloid and tau accumulation. The 
following suggested therapeutics may be 
required in a multicomponent treatment 
approach; indeed, they may be worthy of clini-
cal trials.

1. It is essential that the immune homeostasis 
is maintained. High-dose intravenous immuno-
globulin G (IgG) antibodies suppress inflamma-
tion. Its anti-inflammatory activity is associated 
with IgG crystallizable fragments [299]. Mino- 
cycline has also been shown to attenuate LPS-
induced neuroinflammation [300] (see below).

2. MAPKs are implicated in the production of 
inflammation mediators. LPS treatment acti-
vates the MAPKs in both neurons and glia, pro-
moting glia-derived neurotoxic molecules [301]. 
The p38 MAPK signaling cascade is activated 
in human AD brain tissue [302]; it is implicated 
in increasing proinflammatory cytokine levels 
by glia, following activation with Aβ. An experi-
mental therapeutic “MW01-2-069A-SRM” - an 
inhibitor of p38 MAPK has been developed. 
This micromolecule is BBB penetrating, non-
toxic, and orally bioavailable; it reversed higher 
proinflammatory cytokine levels in the hippo-
campus to normal level in the animal model 
[303].

3. Fructose-1, 6-bisphosphate (FBP - a glyco-
lytic intermediate) reduced the expression of 
iNOS and inhibited LPS-induced NO production 
in a dose-dependent manner [305]. Although, 
FBP has anti-inflammatory and immunomodu-
latory properties, the underlying mechanisms 
of these functions have not been charact- 
erized.

4. The peroxisome proliferator activated recep-
tor-gamma (PPAR-γ) agonist pioglitazone inhib-
its iNOS activity in neurons and NO generation 
by microglia - following LPS-induced pathology 
[304]. Pioglitazone inhibits LPS-induced phos-
phorylation of p38 MAPK [304] and inhibits the 
expression of proinflammatory genes. It nega-
tively regulates microglial activation and APP 
processing with a 27% reduction in Aβ1-42 
level [306]. This has been corroborated by sub-
sequent studies. Treatment of the triple trans-
genic 3xTg-AD mouse with pioglitazone (for four 
months) resulted in reduced serum cholesterol, 
improved learning, decreased hippocampal Aβ 
and tau deposits, and improved short- and 
long-term plasticity [307]. While pioglitazone is 
ineffective in multiple sclerosis, it has docu-
mented effectiveness in suppressing oxidative 
stress, NFκB signal activation, inflammation, 
and neuronal degeneration in other inflamma-
tory conditions [308].

There is controversy surrounding common non-
steroidal anti-inflammatory (NSAID) regarding 
its effectiveness in protecting against AD; sev-
eral anti-inflammatory treatment trials have 
shown little to no effect on preventing or revers-
ing AD. However, there may be reduced AD inci-
dence after 2 to 3 years of NSAID use in asymp-
tomatic individuals [309]. This, therefore, 
reflects that in addition to innate inflammatory 
responses, there may be other concurrent 
pathological pathways that may require treat-
ment [310]. 

5. MitoQ is an antioxidant that protects mito-
chondria from oxidative damage/stress. MitoQ 
is a derivative of the antioxidant ubiquinone, 
with antioxidant and anti-apoptotic properties. 
In inflammatory condition, MitoQ decreased 
mitochondrial ROS in mice; it suppressed the 
NLRP3 inflammasome activation that is respon-
sible for the maturation of IL-1β and IL-18 [311, 
312]. It also decreased neurodegeneration by 
decreasing ROS production and lipid peroxida-
tion, increasing MnSOD activity and glutathione 
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levels, and reducing protein and DNA oxidation 
[313]. Similarly, treatment with the mitochon-
dria-targeted antioxidant, MitoTEMPO inhibited 
gut barrier dysfunction and suppressed colitis, 
thus enhancing barrier function and inhibiting 
proinflammatory cytokine generation [314]. 
Another important compound studied was 
mitochondria-protecting agent acetyl-L-carni-
tine (ALC). ALC enhanced SOD and reduced oxi-
dative damage to the BBB [315]. 

6. ROS and RNS upregulate glia-mediated 
inflammation and cause neuronal damage. 
Minocycline significantly decreases hypoxia-
ischemia (HI)-induced brain injury, owing to 
suppression of microglial activation and inhibi-
tion of neurotoxic factors and iNOS. It inhibits 
oxidative stress evidenced by an 8-isoprostane 
decrease in the minocycline-treated HI rat brain 
[316]. It has been shown to suppress pro-
inflammatory NO following hypoxic upregulation 
[317]. Other studies on HI model also found 
that that doxycycline (a derivative of tetracy-
cline, similar to minocycline) significantly inhib-
its neuroinflammation in several brain regions 
including the frontal cortex, striatum, and hip-
pocampus; doxycycline inhibits TNF-α and IL-1β 
and augments BDNF [318, 319]. Interestingly, 
Aβ1-42 fibrils complexed with C1q (comple-
ment factor) upregulated proinflammatory cyto-
kines in human microglia cell cultures, but 
minocycline decreased this production [320]. 
Furthermore, minocycline showed long-term 
neuroprotective property by improving cogni-
tive impairment in the rat by inhibiting astroglio-
sis [321]. In a detailed analysis, it was shown 
that minocycline activated BDNF, and incre- 
ased synaptic plasticity and synaptogenesis. 
Consequently, minocycline ameliorates cogni-
tive deficits and upregulates neuroplasticity 
[322]. The above studies indicate that minocy-
cline (and doxycycline) down-regulate microglial 
toxic factors and provide neuroprotection.

7. Rats subjected to IH (simulating OSA) show 
significant increases in levels of serum and hip-
pocampal malondialdehyde (MDA, indicators of 
oxidative stress), mRNA levels of inflammatory 
mediators, and apoptotic cell death. Melatonin 
treatment significantly inhibited hippocampal 
MDA levels, and apoptosis was entirely prevent-
ed. It decreased expression of the inflammato-
ry mediators including TNF-α, IL-1β, IL-6, iNOS, 
and cyclooxygenase-2, but enhanced expres-
sion of antioxidant enzymes including glutathi-

one peroxidase, catalase, and copper/zinc SOD 
in the hippocampus. Thus, melatonin signifi-
cantly attenuates oxidative stress and the 
pathogenesis of IH-induced hippocampal path- 
ology [323-325]. Further, melatonin lowered 
both NO and eNOS and elevated the endotheli-
al function [324]. The neuroprotective effect of 
melatonin is obvious from its attenuation of 
Aβ-mediated toxicity, and antioxidant and anti-
amyloid effects. Further, it attenuated tau 
hyperphosphorylation [326]. A recent meta-
analysis of randomized clinical trials concluded 
that “melatonin can be considered as a possi-
ble sole or add-on therapy in neurodegenera-
tive disorders” [327]. From the above men-
tioned it is clear that the antioxidant, pro-mito-
chondrial (i.e. inhibiting mitochondrial dysfunc-
tion), anti-tau, and anti-amyloidogenic impact 
of melatonin recommends its utilization in 
aging, MCI, and AD - in conjunction with other 
selected therapeutic substances described 
here [328, 329]. 

A polypharmacy therapeutic approach may 
include melatonin, minocycline, pioglitazone, 
scavengers of ROS and RNS, as well as those 
that ameliorate mitochondrial dysfunction. 
Such a treatment strategy may: (A) reduce the 
synthesis of inflammation mediators and oxi-
dants at multiple levels, (B) inhibit pathways 
involved in proinflammatory cytokine, ROS, and 
RNS signaling, and (C) attenuate mitochondrial 
and synaptic dysfunction.

Conclusion

The greatest risk factor in the neuropathogen-
esis of AD is aging. Several age-related comor-
bid conditions are important additive risk fac-
tors in upregulating inflammation and cognitive 
decline in aging. One of the mechanisms 
whereby LPS induces brain injury involves acti-
vation of TLR-4 on immune cells in neuroinflam-
mation. This initiates activation of inflammatory 
cells and a generalized inflammatory response; 
this then results in several pathologies in the 
CNS including hypoglycemia, white matter inju-
ry, and cerebral hypoperfusion [59, 330, 331].

There is upregulation of proinflammatory cyto-
kines, acute phase reactants, complement 
molecules, and other inflammatory mediators 
in AD brains; these are said to contribute the 
progression of neurodegenerative process. 
Both astrocytes and microglia are primed to 



Inflammation and oxidative-nitrosative pathways in Alzheimer’s disease

115	 Am J Neurodegener Dis 2016;5(2):102-130

produce several neurotoxic factors in the chron-
ic neurodegenerative state. Consequently, ele-
vated cytokines and chemokines would height-
en neuropathology in the vulnerable brain. 
Synergistic and superimposed insults from  
a host of sources (described above) would 
induce neuroinflammatory and neurodegenera-
tive condition and escalate worse functional 
and memory/cognitive outcomes. Understand- 
ably, the mechanisms/pathways of the exag-
gerated pathological responses due to inflam-
mation and oxidative-nitrosative stress should 
provide obvious potential targets for therapeu-
tic intervention. The therapeutic neuroprotec-
tive strategy pointed out here suggests poly- 
pharmacy.

Finally, neuroinflammation exists in very early 
stages of AD. The neuronal toxicity promoted by 
chronic inflammation makes it a critical risk 
factor in the pathogenesis of neurodegenera-
tive diseases in general and AD in particular. An 
essential goal for research today is to prevent 
and ameliorate inflammation and to reduce 
glial activation and neuronal toxicity/degenera-
tion. A targeted therapeutic strategy to abro-
gate neuroinflammation is of paramount impor-
tance and may hold promise to prevent cogni-
tive dysfunction and attenuate (possibly 
reverse) AD neuropathology. 
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