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Abstract

Aim—The purpose of our study was to determine whether genes involved in the organization of 

the hematopoietic niche were dysregulated in patients with primary myelofibrosis (MF) treated 

with lenalidomide.

Materials and Methods—We used reverse-transcription quantitative polymerase chain reaction 

to study the expression of a set of genes involved in the organization of the hematopoietic niche in 

peripheral blood and bone marrow (BM) mononuclear cell (MNC) samples from 32 patients with 

primary MF who participated in a phase II trial of lenalidomide plus prednisone.

Results—At baseline (before treatment) cyclooxygenase 2 (COX2) was significantly up-

regulated, while chemokine (C-X-C motif) receptor 4 (CXCR4), paired box 5 (PAX5) C-terminus, 
and hypoxia inducible factor 1A(HIF-1α) were significantly down-regulated in BM MNCs from 

patients with primary MF compared to BM MNCs from healthy individuals. After 9 months of 

treatment, the expression of suppressor of cytokine signaling 3 (SOCS3) was significantly 

increased.

Conclusion—Patients with primary MF showed aberrant expression of several genes involved in 

maintaining BM homeostasis and our findings suggest that treatment with lenalidomide plus 

prednisone up-regulates SOCS3.

Introduction

Progressive bone marrow (BM) fibrosis is a key feature of primary myelofibrosis (MF), a 

disease characterized by clonal myeloproliferation. The BM microenvironment comprises of 

stromal cells, osteoclasts, and endothelial cells, and communication defects between these 
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cells upon expansion of the neoplastic clone results in a functionally-disturbed stromal 

niche, impaired hematopoiesis and, eventually BM fibrosis. Lenalidomide, an agent which 

modulates inflammatory cytokine secretion, angiogenesis and the expression of adhesion 

molecules likely has effects on the BM microenvironment.1 In a phase II trial of 

lenalidomide plus prednisone in 40 patients with MF conducted at our Institution, 30% of 

patients achieved an objective response.13 Furthermore, 10 out of 11 patients who responded 

and had grade 4 reticulin fibrosis at baseline had reduction in fibrosis to grade 2 or less. 

While newer therapies, such as janus kinase (JAK) inhibitors, have been shown to 

significantly improve symptoms of MF and quality of life, with the exception of minor 

reductions in BM fibrosis in some patients after many years of treatment with ruxolitinib,8 

lenalidomide is the only therapy shown to significantly reduce BM fibrosis in patients with 

MF. We hypothesized that lenalidomide may exert its effects, in part, by modulating the 

expression of genes involved in maintaining the BM stromal niche. To test our hypothesis, 

we measured the expression of a set of genes involved the organization of the hematopoietic 

niche in peripheral blood (PB) and BM mononuclear cell (MNC) samples from patients with 

primary MF who participated in a phase II trial of lenalidomide plus prednisone.13 Genes 

involved in cell-stroma interactions (secreted protein, acidic, cysteine-rich [SPARC], 
chemokine [C-X-C motif] receptor 4 [CXCR4]), angiogenesis (cyclo-oxygenase 2 

[COX-2]), response to hypoxia (hypoxia inducible factor 1A [HIF-1α], and cell 

differentiation and signaling (paired box 5 [PAX5] C-terminus, FBJ murine osteosarcoma 

viral oncogene homolog [FOS], Kristen rat sarcoma viral oncogene homolog [KRAS], 
suppressor of cytokine signaling 3 [SOCS3] were profiled.

Materials and Methods

All patients gave written informed consent and the study was approved by the Institutional 

Review Board (PA11-1122) and performed in accordance with the Declaration of Helsinki. 

BM and PB samples from six hematologically healthy individuals were purchased from 

Stem Cell Technologies (Vancouver, Canada). BM aspirates and PB samples were available 

for 13 patients with primary MF. Sequential BM and PB samples were collected at baseline 

and every 3 months during the course of treatment. However, samples were not available for 

all 13 patients at all time points due to the fact that some patients discontinued treatment or 

died, or the samples were of poor quality. For this reason, baseline BM samples available for 

nine patients and baseline PB samples available for 11 patients (13 patients total) were used 

for our analysis. Low-density mononuclear cells (MNCs) were isolated from BM aspirates 

and PB samples using gradient centrifugation with Ficoll Hypaque 1077 (Sigma-Aldrich, St. 

Louis, MO, USA). Total RNA was isolated from gradient-separated MNCs using Trizol 

reagent (Invitrogen, Carlsbad, CA, USA) and reverse transcription was performed with the 

Superscript First-Strand Synthesis System for RT-PCR (Invitrogen). Quantitative real-time 

polymerase chain reaction (qRT-PCR) was performed to quantify the expression levels of 

SPARC, COX2, CXCR4, Pax5 C-terminus, SOCS3, HIF-1α and β-actin (reference gene) 

using primer pairs obtained from Applied Biosystems Inc. (Foster City, CA, USA). The 

primer sequences used are listed in Table 1. qRT-PCR was performed in duplicate for each 

sample. Gene expression was calculated as ΔCT values, using β-actin as the reference gene. 

Data are presented as mean ΔCT values with 95% confidence intervals. Student's t-tests 
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were used to compare mean ΔCT values from patient samples at baseline (before treatment) 

and healthy controls. One-way analysis of variance was used to compare the mean ΔCT 

values at different time points.

Results and Discussion

Clinical characteristics of the 13 patients whose samples we studied are shown in Table 2. At 

baseline (before treatment) COX2 was significantly up-regulated, while CXCR4, Pax5 C-
terminus, and HIF-1α were significantly down-regulated in BM MNCs from patients 

compared to healthy BM MNCs (Table 3). Expression of SPARC, KRAS, SOCS3, and FOS 
and were not significantly different. Although SOCS3 has been shown to be down-regulated 

in primary MF, in part due to hypermethylation of its promoter, we only detected a 

significant difference in the expression of SOCS3 in patients with JAK2-negative MF and 

normal controls (Figure 1B). There were no significant differences in relative gene 

expression between BM MNC and PB samples; however, when compared with samples 

from normal controls, significant down-regulation of CXCR4 and HIF-1α in primary MF 

was only observed in the BM samples. This may be expected since changes in the 

expression of these genes are likely to be more prominent in the BM.

Treatment with lenalidomide plus prednisone had no effect on the expression of SPARC, 

COX-2, CXCR4, Pax5 C-terminus, or HIF-1α. However, the expression of SOCS3 was 

significantly increased after 9 months of treatment (Figure 1A), suggesting that some of the 

clinical effects of lenalidomide may be due to a SOCS3-mediated reduction in JAK 

signaling. Interestingly, at baseline SOCS3 expression was significantly lower in patients 

without the JAK2V617F mutation than in those with the mutation (p=0.0063; Figure 1B), 

which is in agreement with a previous study3. By contrast, there was no correlation between 

JAK2 mutation status and the expression of the other genes. In addition, there was no 

correlation between expression levels and cytogenetic abnormalities.

Up-regulation of COX2 and down-regulation of CXCR4, PAX5C, and HIF-1α may reflect 

disruptions in the interactions between cells in the BM microenvironment in primary MF.

For example, down-regulation of CXCR4 in primary MF has been shown in several studies 

and is thought to contribute to the increased circulation of CD34+ cells in primary MF.1, 6, 15 

The observed down-regulation of HIF-1α in the BM from patients with primary MF is 

consistent with studies showing that a less hypoxic BM microenvironment promotes the 

aberrant proliferation of hematopoietic progenitor cells in MPNs.2, 9, 14 PAX5 encodes a 

transcription factor that plays a key role in B-cell development.11 Thus, the reduction in 

PAX5C expression in primary MF BM compared with normal BM, may be due to the 

expansion of the myeloid lineage in primary MF. Finally, the up-regulation of COX2, an 

enzyme involved in the formation of prostaglandins, which are key mediators of 

inflammation and angiogenesis (among other functions), is consistent with the increased 

inflammation and angiogenesis seen in BM in primary MF.5, 10, 12

In T-cells from BM in multiple myeloma, lenalidomide has been shown to decrease SOCS1 
expression.4 How lenalidomide increases SOCS3 expression in primary MF is therefore not 
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clear. It is intriguing that SOCS3 has been shown to act as part of an E3 ubiquitin ligase 

complex to promote ubiquitinylation (and hence degradation) of JAK2 and the interleukin 6 

receptor common chain (gp130) given the recent finding that lenalidomide exerts it action in 

part by binding to cereblon as part of an E3 ubiquitin ligase complex.7 In conclusion, we 

found that patients with primary MF show aberrant expression of several genes involved in 

maintaining BM homeostasis and our findings suggest that treatment with lenalidomide plus 

prednisone up-regulates SOCS3. These results should be validated in a larger cohort of 

patients treated with lenalidomide.
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Figure 1. 
Changes in suppressor of cytokine signaling 3 [SOCS3] gene expression. A: Expression of 

SOCS3 increased significantly with time on treatment (p=0.02 using one-way analysis of 

variance). Mean expression at 9, 12 and >14 months was significantly higher than at 

baseline, as assessed by Dunnett's multiple comparisons test. Horizontal bars represent 

median±standard deviation. p<0.05 was considered statistically significant. B: SOCS3 

expression was significantly higher in patients with the Janus kinase 2 V617F mutation.
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Table I
Primers used for quantitative reverse transcriptase-polymerase chain reactionq (qRT-
PCR)

Primer Gene name Primer sequence

COX2_F: Cyclo-oxygenase 2 5′-CCT TCCTCCTGTGCCTGATG-3′,

COX2_R: 5′-ACAATCTCATTTGAATCAGGAAGCT-3′

COX2-6FAM 5′-TGCCCGACTCCCTTGGGTGTCA-MGBNFQ

SPARC_R: Secreted protein, acidic, cysteine-rich 5′-TCTTCCCTGTACACTGGCAGTTC-3′

SPARC_F: 5′-AGCTCGGTGTGGGAGAGGTA-3′

SPARC-6FAM 5′-CAGCTGGACCAGCACCCATTGACA-MGBNFQ

HIF1A_F: Hypoxia inducible factor 1A 5′-CTCATCCAAGAAGCCCTAACGTGTT-3′

HIF1A_R: 5′-GCTTTCTCTGAGCATTCTGCAAAGC-3′

HIF1A-6FAM 5′-CCTCAGGAACTGTAGTTCTTTGACTCAAAGCGACA-MGBNFQ

CXCR4: Chemokine (C-X-C motif) receptor 4 Hs00607978_s1 (Applied Bioscience)

PAX5C Paired box 5 C-terminus Hs00277134_m1 (Applied Bioscience)

FOS_F: FBJ murine osteosarcoma viral oncogene 
homolog

5′-CGAGCCCTTTGTATGACTTCCT-3′

FOS_R: 5′-GTCCATGTCTGGCACGGA G-3′

FOS-6FAM 5′-CCCAGCATCATCCAGGCCCAGTCA-MGBNFQ

KRAS_F: Kristen rat sarcoma viral oncogene homolog 5′-TTCCTACAGGAAGCA AGT AG-3′

KRAS_R: 5′-CACAAAGAA AGCCCTCCCCA-3′

KRAS-6FAM 5′-TTGATGGAGAAACCTGTCTCTTGGCA-MGBNFQ

β-Actin_F: 5′-GATGGCCACGGCTGCTT-3′

β-Actin _R: 5′-ACCGCTCATTGCCAATGG-3′

β-Actin -6FAM 5′-ACCACCACGGCCGAGCGGCA-MGMNFQ

F: Forward primer; R: reverse primer; 6FAM: 6-carboxyfluorescin; MGBNFQ: molecular-groove binding non-fluorescence quencher.
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Table II
Baseline characteristics of 13 patients whose samples were analyzed in this study

Characteristic Value

Age, median (range), years 65 (51-83)

Gender, N (%)

 Male 7 (54)

 Female 6 (46)

Cytogenetics, N (%)

 Diploid 6 (46)

 Abnormal 7 (54)

JAK2V617F mutation, N (%)

 Positive 7 (54)

 Negative 4 (31)

 Not determined 1 (8)

Hemoglobin, mean (range), g/dL 10.1 (8.1-16.4)

Platelet count, mean (range), ×l09/L 244 (18-704)

WBC count, mean (range), ×l09/L 12 (1.3-28)

Spleen size, mean (range), cm 8.9 (0-22)

Performance status, median (range) 1 (0-2)

Prior therapy, N (%) 8 (69)

Number of prior therapies, median (range) 1 (0-3)

Best response (IWG-MRT)*, N (%)

 Stable disease 6 (46)

 Clinical improvement 5 (38)

 Partial response 1 (8)

 Complete hematological response 1 (8)

Duration of response, median (range), months 9 (3-59)

IWG-MRT: International Working Group for Myelofibrosis Research and Treatment; JAK: janus kinase;

*
IWG-MRT criteria published in 2006 were used.
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