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Multi-targeted metagenetic 
analysis of the influence of climate 
and environmental parameters on 
soil microbial communities along an 
elevational gradient
Anders Lanzén1, Lur Epelde1, Fernando Blanco1, Iker Martín1, Unai Artetxe2 & Carlos Garbisu1

Mountain elevation gradients are invaluable sites for understanding the effects of climate change 
on ecosystem function, community structure and distribution. However, relatively little is known 
about the impact on soil microbial communities, in spite of their importance for the functioning of 
the soil ecosystem. Previous studies of microbial diversity along elevational gradients were often 
limited by confounding variables such as vegetation, pH, and nutrients. Here, we utilised a transect in 
the Pyrenees established to minimise variation in such parameters, to examine prokaryotic, fungal, 
protist and metazoan communities throughout three consecutive years. We aimed to determine 
the influences of climate and environmental parameters on soil microbial community structure; as 
well as on the relationships between those microbial communities. Further, functional diversity of 
heterotrophic bacteria was determined using Biolog. Prokaryotic and fungal community structure, but 
not alpha-diversity, correlated significantly with elevation. However, carbon-to-nitrogen ratio and pH 
appeared to affect prokaryotic and protist communities more strongly. Both community structure and 
physicochemical parameters varied considerably between years, illustrating the value of long-term 
monitoring of the dynamic processes controlling the soil ecosystem. Our study also illustrates both the 
challenges and strengths of using microbial communities as indicators of potential impacts of climate 
change.

Contemporary climate change is causing changes in species assemblages, often contributing to an accelerating 
and self-reinforcing loss of biodiversity1,2. Elevational gradients found in alpine areas are invaluable for studying 
such changes, as well as their underlying mechanisms and impacts on ecosystem function3. The resulting eco-
tones arranged over short distances, together with their harsh pedoclimatic conditions, also make these alpine 
habitats particularly sensitive to climate changes and other disturbances. It is therefore not surprising that the 
effect of contemporary climate change in the Alps (an increase of approximately 2 °C with associated changes in 
precipitation) has led to changes in vegetation structure and threatened the sustainability of ecosystem services 
provided4,5. Microbial communities play fundamental roles for soil ecosystem function and critically influence 
aboveground communities (and vice versa)6. Yet, relatively little is known about such changes in soil microbial 
communities and their suitability as indicators of climate change impact on soil health.

Examination of elevational gradients in mountain habitats has a long history3 , but it is only recently that it 
has been possible to study the composition of their full soil microbial communities, using culture-independent 
molecular techniques such as fingerprinting and marker gene profiling (“metagenetics”/“metabarcoding”). 
Although many studies have now used such techniques, no consistent patterns have been found with regard to 
alpha-diversity. Bryant et al. found a monotonic decrease in diversity of soil Acidobacteria with elevation along 
an elevational gradient in the Colorado Rocky Mountains7. Similar patterns were observed in total soil bacterial 
communities at Shennongjia Mountains in Hubei (China)8; at Mt. Shegyla (Tibetan Plateau)9 and in the Changbai 
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Mountain Range10,11. Along gradients located on Mt. Fuji and Mt. Norikura (Japan), Singh and colleagues found 
soil archaeal and bacterial diversity to peak at intermediate elevations and suggested “intermediate disturbance” 
as a possible explanation12 . However, the intermediate disturbance hypothesis has been criticised both for being 
logically incoherent and lacking sufficient empirical evidence13. As noted, the observed diversity pattern may also 
have been caused by a mid-elevation mix of niches and ecotypes, more abundant in the upper or lower zones12, or 
indeed a number of other mechanisms.

Inverse bacterial diversity patterns relative to the above were encountered on Mt. Halla on Jeju Island in the Korea 
Strait14 and in four mountain sites in Yunnan (China)15 (i.e. lower diversity at intermediate or lower elevations, respec-
tively). This suggested a lack of universal patterns and that instead a combination of biological and physicochemical 
factors may influence microbial diversity in a manner that cannot easily be separated from climatic influences14,15.

Similar to bacterial communities along the same gradient, Shen et al. found that the richness of microbial eukar-
yotes (including fungi and protists) was influenced mainly by soil pH, as opposed to elevation10,16. Coince et al. 
identified an intermediate peak in fungal rhizosphere OTU richness at intermediate elevations, also noting that 
Basidiomycetes and Ascomycetes showed different patterns17. These trends were equally explained by elevation and 
soil pH. Similar mid-domain effects have been observed for the richness of ectomycorrhizal (EM) fungi18. General 
declines in diversity with elevation have also been observed in EM19 as well as arbuscular mycorrhizal (AM) fungi20.

It is not always clear whether identified correlations between elevation and diversity represent a direct influ-
ence of temperature on microbial communities, or other parameters acted as confounding factors. We could only 
identify one study21 where environmental parameters appeared independent of elevation. The mentioned study 
concluded that no trend in microbial diversity with elevation was present, thus casting doubt on all studies where 
such patterns were identified21. Regardless, in most previous studies8–9,12,14–18,21, soil pH or vegetation structure 
correlated with alpha diversity or community dissimilarity (“beta diversity”) of soil microbial communities. Total 
nitrogen and carbon11 and exchangeable K+ and Ca2+ concentrations15 in soil have also appeared as main drivers 
of bacterial communities.

The Ordesa and Monte Perdido Microbial Observatory was established in order to investigate the potential of 
utilising an elevational gradient for studying how temperature and other aspects of climate may affect soil micro-
bial community structure and function. In order to minimise the effect of confounding factors encountered in 
several previous studies, a gradient (spanning 1,500 to 2,600 m) was chosen based on the preference of hosting a 
similar plant community, soil pH, and other physicochemical parameters along the elevational gradient, located 
in Ordesa and Monte Perdido National Park (Spain), in the Pyrenees. In order to evaluate microbial community 
structure, we utilised sequencing (Illumina MiSeq) of two sets of amplicons targeting the small-subunit riboso-
mal RNA of prokaryotes and eukaryotes (16S rRNA and 18S rRNA, respectively), as well as the internal tran-
scribed spacer (ITS) of fungi, and Biolog Ecoplates targeting the functional diversity of heterotrophic bacteria. 
Here, we aim to characterise, for each of the targeted communities:

	 – The relative influence of elevation and other abiotic parameters on soil microbial diversity and composition;
	 – How strongly fungal, protist, metazoan, bacterial and archaeal community structures related to each other;
	 – How plant community structure related to elevation and soil microbial community structure;
	 – If a better model explaining community structural changes can be obtained by taking into account temporal 

variation such as annual and weekly variation, recent soil temperature or snow cover.

This study paves the ground for further characterisation of the effects of climate change on microbial commu-
nities, in turn affecting landscape ecology and feedbacks to global carbon and nutrient cycles.

Materials and Methods
Study site.  The Ordesa and Monte Perdido Microbial Observatory was established in 2011 for the purpose 
of long-term environmental monitoring, in a protected area surrounding the Valley of Escuaín, in the Spanish 
side of the Pyrenees mountain range, located inside the Ordesa and Monte Perdido National Park. The area was 
selected based on its relatively uniform distribution of herbaceous vegetation, orientation and pH along a suitable 
elevational gradient. For the present study, a transect consisting of twelve sampling stations evenly distributed 
along an elevational gradient spanning approximately 1,500 to 2,600 m was established on the south and SSW 
facing slope of the mountain “Tres Marías” (a.k.a. “La Zuca”; see Table 1 and Supplementary Figure S1). The veg-
etation along the gradient consists of meadows with relatively uniform herbaceous vegetation, thus minimizing a 
possible source of variation due to vegetation type.

Soil types range from sandy loam to clay with siliclastic or carbonate sedimentary parent rock. Neither parent 
rock follows any obvious trend related to elevation (Table 1). The area has a long history of pastoralism and the 
vegetation is affected to some extent by summer grazing cattle and sheep, to roughly the same extent along the 
gradient. The area is characterised by a typical Pyreneean climate (humid continental to subalpine and alpine) 
with annual precipitation of approximately 1400 mm at 2000 to 2300 m22. The lowest station is close to stands 
of oak, pine and beech, whereas only a limited amount of wooden species were found above the montane zone 
(roughly 1500 to 1700 m), likely due to a combination of both grazing and climate (see Table 1). The subalpine 
zone (1700 to 2300 m) is dominated by the grasses Festuca eskia and F. gauteri, whereas the alpine zone (2400 to 
2600 m) is dominated by Nardus stricta (matgrass) and Poa alpina (alpine meadow-grass; see Table 1).

Sample collection and on-site measurements.  Soil samples were collected annually between 2011 and 
2014 in late August or early September from each station. A number of samples were also taken during other times 
of the year to study temporal variability (see Table 2). Each sample consisted of a composite of ten soil cores from 
a plot of 2 ×​ 2 m (10 cm depth, 23 mm diameter). Spatial replicates were taken from such plots separated by more 
than 2 m. The same sites, adjacent to temperature sensors, were studied each year. Samples were immediately 
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transferred to sterile plastic zip-lock bags, manually mixed in-bag and a subsample taken for molecular analysis, 
sieved on-site directly after collection (<​2 mm) and stored in approximately 10 ml RNALater in 15 ml Falcon 
tubes. Tubes were mixed and kept at outdoor temperature for a maximum of 48 h and thereafter stored at −​20 °C 
until DNA extraction. No molecular community profiling was carried out during the first year (Table 2).

Slope was measured using the inclinometer of the laser rangefinder TruPulse 360° (Laser Technology Inc., 
Centennial CO). On-site temperature sensors (HOBO®​ TidbiT v2, Onset, Cape Cod MA) were planted at each 
station at a depth of 5 cm during sample collection in August 2012 and resulting measurement data (30 min. 
intervals continuously throughout the year) retrieved during subsequent sample collections. Due to malfunction 
of three sensors (Table 2), additional ones were installed 27 October 2013 and data collected during subsequent 
sample expeditions (with no additional failures). Annual means were calculated based on the daily median, max-
imum and minimum temperatures for each day in a complete year (26/8 2013–25/8 2014). Similar averages were 
calculated for the closed 30 day interval previous to each sample collection. The parameter “days under snow 
cover” was extrapolated by counting the number of occurrences where temperature consistently stayed below 
5 °C with under 1 °C daily range of ground temperature (Δ​GT) throughout a full (24 h) day. These cut-offs were 
manually chosen from inspecting annual graphs of Δ​GT and mean temperature, since taking into account both 
can improve accuracy of snow cover prediction23.

Plant community characterisation (presence/absence of species) was carried out during the sample collection 
on 25 August 2013, using three random plots of 0.5 ×​ 0.5 m at each station. Quadrants were thrown randomly 
from the temperature sensor points. Identification of floral species was challenging due to grazing and being done 
late in summer, and is to be considered incomplete.

Elevation (m.a.s.l.) Orientation Slope (°) Parent rock* Vegetation type** Vegetation cover (%) Zone

1547 SSW 31.1 S Dense mesophilic pastures (Euphrasio-
Plantaginetum mediae) 100 Montane

1604 SSW 13.9 S Boxwood bushes (Rhamno saxatilis-
Buxetum sempervirentis) 100 Montane

1705 S 22.3 S Dense Festuca eskia grasses (Carici 
pseudotristis-Festucetum eskiae) 100 Monante/Subalpine

1810 S 21.7 C “ 100 Subalpine

1902 SSW 18.1 S Rocky limestone pasture (Oxytropido 
pyrenaicae-Festucetum scopariae) 100 Subalpine

2001 S 22.0 C “ 100 Subalpine

2097 S 22.2 S “ 65 Subalpine

2209 SSW 30.1 S “ 65 Subalpine

2312 S 18.6 S “ 50 Subalpine/Alpine

2390 S 11.4 S Alchemillo flabellatae-Nardetum strictae 85 Alpine

2522 SSW 12.1 C
Culminate calcicole pasture 

(Oxytropido foucaudii-Elynetum 
myosuroidis)

85 Alpine

2596 SSW 33.3 C “ 70 Alpine

Table 1.   Overview of the studied elevational gradient. *​S =​ Siliciclastic, C =​ Carbonate *​*​According to Benito60.

Sampling 
date

Stations 
sampled

Spatial 
replicates

Temp. 
monitored*

Abiotic soil 
properties**

Functl. profiling 
(Biolog)

16S amplicon 
seq.***

ITS amp. 
seq.***

18S amp. 
seq***

2011–08–31 All None No Yes Yes No No No

2012–08–30 All 4 ×​ 1700 m, 
4 ×​ 2400 m No Yes Yes Yes Yes (−​2) Yes (−​4)

2013–08–19 1700 m None Yes† No No Yes No Yes

2013–08–25 All 4 ×​ 1700 m, 
4 ×​ 2400 m Yes† Yes Yes e.r. Yes Yes Yes

2013–09–06 1700 m None Yes† No No Yes No Yes

2013–10–27 1700 m, 
2400 m 2 ×​ 4 Yes† Yes Yes Yese.r. No Yese.r.

2014–05–08 2400 m None Yes No No Yes No No

2014–09–10 All 15 ×​ 1700 m, 
15 ×​ 2400 m Yes Yes Yes e.r. Yese.r. No No

Table 2.   Sample and analysis overview. *​Soil temperature data available from on-site sensors previous to 
sampling. *​*​Soil texture (sand, silt and clay), temperature during sampling, humidity, pH, organic matter (%), 
soil organic matter (SOM), total nitrogen (%). *​*​*​Number of samples or replicates for which sequencing failed 
indicated in parentheses if applicable. †During 2012–2013 temperatures were not measured at the 1500, 1600 
or 2000 m stations due to equipment failure. e.r. Excluding replicates. 16S amplicon sequencing was however 
carried out for 7 replicates from 2014 taken at 2400 m.
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Soil physicochemical and Biolog Ecoplate measurements.  Soils were sieved (2 mm) and air dried 
at ambient temperature prior to measurements of physicochemical parameters (except humidity). For Biolog 
Ecoplate analysis, soils were instead stored fresh at 4 °C. Soil humidity was measured by drying at 105 °C for 24 h 
and re-weighing; and pH measured in deionised water at a soil solution ratio of 1:2.5. Soil particle size distribu-
tion (clay, sand and silt) was determined using laser diffraction analysis (Mastersizer 2000, Malvern Instruments, 
Worcestershire, UK). Soil organic matter (SOM) was measured according to Nelson et al.24 and total nitrogen (N) 
according to ISO3878 (1998).

Functional diversity of heterotrophic bacteria was estimated using Biolog EcoPlates (Biolog, Inc., Hayward 
CA) by counting the number of utilized substrates (NUS) after a 45 h incubation, corresponding to the time of 
maximal microbial growthfresh at 4 °C for a maximum of two months until analysi25.

DNA extraction and amplicon sequencing.  DNA extraction was carried out from 0.25 g soil aliquots 
from all samples using PowerSoil DNA Isolation kit (Mo-Bio Laboratories, Carlsbad CA), following the manu-
facturer’s instructions. Prior to DNA extraction, samples were centrifuged (5 min. at 350 ×​ g), the supernatant 
discarded and the pellet washed with 1×​ TE buffer and centrifuged again (repeated twice), in order to remove the 
RNALater solution. Samples were thereafter washed with 20 mM K2HPO4 to remove extracellular DNA.

Amplification was carried out using a dual indexing tag-tailed design as described by d’Amore et al.26. Briefly, 
adapter-linked primers (with N5 between forward adapter and primer) were used in the first amplification step 
using the following reaction to a total of a 20 μ​l volume: 1 μ​l template community DNA; 1 μ​M each of forward 
and reverse primers; and 1×​ HotStar PCR mix (QIAGEN, Hilden, Germany). For 18S rRNA amplicons, 1 μ​l of 
bovine serum albumin was also added to improve PCR efficiency. The following PCR parameters were used: 
initial denaturation at 95 °C for 15 min, followed by 25 cycles of 95 °C for 20 s, 55 °C for 30 s, 72 °C for 30 s with 
a final extension at 72 °C for 7 min. Amplicon libraries were then cleaned using AMPure XP (Beckman Coulter 
Genomics) and eluted in 25 μ​l DEPC-treated water. Barcoded primers were used in the second amplification step 
using the folllowing reaction to a total of 50 μ​l volume: 5 μ​l template (cleaned amplicons resulting from ampli-
fication step 1), 1 μ​M each of barcoded forward and reverse primers (adapter-specific), 1×​ HotStar PCR mix. 
The same PCR parameters were used as in step 1, except for higher annealing temperature (61 °C), for 10 cycles. 
Resulting amplicons were visualised on a 1% agarose gel next to products from the first PCR, to verify a unique 
product and incorporation of barcoded linkers.

The following adapter-linked primer pairs were used: 519F (CAGCMGCCGCGGTAA) adapted from Øvreås 
et al.27 and 806R (GGACTACHVGGGTWTCTAAT)26, targeting the prokaryotic 16S rRNA hypervariable region 
V4; 566F and 1200R targeting the eukaryotic 18S region V428; ITS1F (CTTGGTCATTTAGAGGAAGTAA)29 and 
ITS2R (GCTGCGTTCTTCATCGATGC)29 targeting the fungal ITS1 region.

Pair-ended sequencing was carried out using an Illumina MiSeq with the V2 kit (approximately 2 ×​ 250 nt 
length) at the Center for Genomic Research of the University of Liverpool (3 ×​ 16S rRNA, 1 ×​ 18S rRNA and 
2xITS sequencing runs) and Tecnalia Corporation, Miñano, Spain (1 ×​ 16S rRNA and 1xITS runs).

Sequence data analysis and statistics.  Read-pairs from 16S rRNA and ITS amplicons were 
quality-filtered and overlapped using usearch30 (options fastq_maxdiff =​ 5, fastq_maxee =​ 0.5). Overlapped 16S 
rRNA sequences were then truncated from both ends in order to remove N5 and primer sequences (to a length 
of 252 nt; discarding shorter sequences). Overlapped ITS amplicon sequences were instead trimmed using cut-
adapt31 to remove the reverse primer, because of their variable length. 18S rRNA reads could not be overlapped 
due to the larger amplicon length (>​600 nt) and therefore reverse reads were discarded, while forward reads were 
otherwise quality filtered and cropped as described above (fastq_maxee =​ 0.5) to a length of 221 nt after removing 
forward linker and primer sequences. Reads not matching the forward primer exactly were discarded.

All quality-filtered overlapped sequences from 16S rRNA, 18S rRNA and ITS amplicons, respectively, were 
merged across datasets and clustered into OTUs at 97% sequence similarity using vsearch32. Clustering included 
de-replication, sorting by abundance (descending and not retaining singletons), then clustering into OTUs at 
97% sequence similarity and finally chimera filtering using the uchime reference-based followed by the uchime 
de novo method. As reference databases for chimera filtering, we used the ChimeraSlayer gold.fa (for 16S rRNA), 
UNITE33 (for ITS) and SilvaMod v106 (for 18S rRNA)34.

Representative OTU sequences were aligned to the SilvaMod v106 (16S and 18S rRNA) and UNITE (ITS) 
reference databases using blastn (v.2.2.25 +​ task megablast) and taxonomically classified using CREST using 
default parameters34. Resulting taxon distributions were studied at order rank as determined by CREST. 18S 
rRNA taxon data was also divided further into fungi, metazoa and protists (all eukaryotic taxa considered uni-
cellular, except for metazoa or fungi). Relative OTU and taxon abundances were used in further analysis (sum of 
read abundances mapped to an OTU, or taxon including child nodes, in a particular sample classified, divided 
by total sample reads). This approach was motivated by the fact that sequence-based relative abundance has 
been demonstrated to provide meaningful semi-quantitative information when comparing community structure 
between samples35, in spite of being affected by issues such as ribosomal copy number variability and preferential 
amplification.

Multivariate statistics, calculation of rarefied richness and visualization was performed using the R package 
vegan36. Rarefied richness estimates interpolating the expected richness at the lowest sample-specific sequencing 
depth were used to compensate for variation in read numbers across samples. OTU distributions were trans-
formed into relative abundances using the function decostand. These were subjected to Hellinger transformation 
before calculation of Bray-Curtis dissimilarity matrices comparing community composition between samples. 
Non-metric multidimensional scaling (NMDS) using function metaMDS and Mantel-tests were performed 
using these dissimilarity matrices. The later was used to compare dissimilarity matrices between the different 
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communities/markers (e.g. fungal ITS-based to prokaryotic 16S rRNA-based), limited to the subset of samples 
for each such pairwise comparison where sequence data existed for both markers.

Continuous variables were fitted to the resulting NMDS space using the function envfit. For this purpose, 
parameters were divided into groups based on availability of data, since certain measurements were only avail-
able for a subset of samples, and each such group compared independently to the NMDS. The function bioenv 
in vegan was used to find the subset of parameters that together showed maximum correlation with community 
dissimilarity. This and subsequent analysis was limited to samples where such parameter measurements were 
available. Multivariate analysis of variance (MANOVA) and multiple regression on dissimilarity matrices (MRM) 
models were assessed based on this variable selection, as implemented in the vegan function adonis and the 
function MRM of the ecodist37 package, respectively. ANOSIM (analysis of similarity) was carried out based on 
Bray-Curtis dissimilarities in order to evaluate the effect of factors (sampling year, orientation and parent rock) 
on community structure.

Correlation analyses were carried out in order to compare: (1) all soil physicochemical and climate-related 
parameters to elevation; (2) diversity data (including relative shares of eukaryotic groups, and NUS) with ele-
vation; (3) diversity data to soil physicochemical and climate-related parameters; (4) different diversity esti-
mates to each other; and (5) relative taxon abundances with elevation, soil physicochemical and climate-related 
parameters. Correlations between continuous variables were determined using Kendall’s rank correlation; and 
between continuous variables and factors using group-wise ANOVA and Tukey’s Range Test (Honest Significant 
Difference). Coefficients of determination (adjusted R2) were determined using linear regression. All correlation 
analyses were subjected to Bonferroni correction and not reported unless p <​ 0.05 after correction.

Results
Temperature and physicochemical parameters.  Soil temperature during sampling (T0) ranged from 
8 to 26 °C; annual means of daily median soil temperature ranged from 3 to 10 °C, and estimated annual snow 
coverage from 57 to 219 days, along the studied gradient (Fig. 1, Supplementary Table S1). These variables cor-
related significantly to elevation, as expected (Table 3), although not monotonically (see Fig. 1), and less strongly 
for T0 as expected given the inclusion of samples from other seasons. Temperature variation throughout the year 
was relatively consistent between the two years measured, with strong variations in daily minima, medians and 
maxima, especially during spring and summer (Supplementary Figure S2).

Soil humidity (ranging between 11–24%), pH (4.5–7.7) or carbon-to-nitrogen ratio (C/N; ranging between 
7–19) showed no significant correlation with elevation (Table S1); however, sites with carbonate parent rock har-
boured soils with significantly higher pH, as expected (p <​ 10−15). On the other hand, soil texture correlated sig-
nificantly with elevation, as more elevated sites tended to contain more sand and less clay (Table 3, Supplementary 
Figure S3). Supplementary Table S2 lists all correlations between measured parameters. Climatic parameters 
(annual soil temperature averages and predicted days of snow) did not correlate significantly with any other 
parameters apart from those correlating with elevation.

Influence of climate and environmental parameters on microbial alpha-diversity.  Amplicon 
sequencing resulted in over 10 M prokaryotic 16S rRNA reads clustered into 22,231 OTUs (n =​ 60 samples; mean 
sequence length 252 bp), 5 M eukaryotic 18S rRNA reads clustered into 8,957 OTUs (n =​ 39; mean length 253 bp), 
and 9 M fungal ITS reads clustered into 6,035 OTUs (n =​ 37; mean length 221 bp), after quality filtering and 
removal of singletons (Supplementary Table S3). Only rarefied (interpolated) OTU richness was considered fur-
ther, in order to compensate for differences in sequencing depth (number of reads) between samples. Rarefied 
richness estimates varied between 2275–5260 for prokaryotes, 704–2767 for eukaryotes and 310–1102 for fungi 
(Table S3. No correlation between elevation and rarefied richness could be identified.

Figure 1.  Annual mean of daily minimum, median and maximum soil temperatures (2013–2014), and 
predicted days under snow coverage, along the studied gradient. 
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As opposed to elevation, two diversity estimates correlated significantly with soil physicochemical parameters 
(see Table 3): Number of Utilised Substrates (NUS) with soil humidity, and prokaryotic rarefied richness with 
C/N (Fig. 2).

Influence of climate and physicochemical parameters on soil microbial community composition.  
A linear regression between vertical distance and 16S rRNA-based Bray-Curtis dissimilarity indicated that prokar-
yotic communities (“beta-diversity”) was structured by elevation (p =​ 2 ×​ 10−5, see Supplementary Figure S4).  
The correlation between vertical distance and difference in annual average of daily maximum soil temperature was 
stronger, indicating that the elevational pattern could likely be explained by climatic differences (Supplementary 
Figure S4). The relationship between community dissimilarity and different climatic and physicochemical soil 
parameters was further investigated using multivariate statistics.

NMDS based on compositional dissimilarity between samples did not result in any clear clustering pattern in 
relation to elevation or year for any dataset (Fig. 3). However, fitting of environmental parameters to the resulting 
NMDS indicated that elevation correlated with both prokaryotic and fungal community dissimilarities (the later 
only significant for the ITS dataset, see Fig. 3).

C/N ratio showed the strongest correlation with prokaryotic OTU composition, and also correlated with 
protist and fungal NMDS coordinates (based on 18S rRNA amplicon subsets; Fig. 3 and Supplementary Table 
S4). Prokaryotic composition also correlated to soil pH, annual soil temperature averages (based both on daily 
medians and maxima), predicted days of snow coverage, and recent soil median temperature 1–30 days prior to 
sampling (Fig. 3). BIOENV analysis, excluding the incomplete data of recent temperature data, indicated that 
prokaryotic community dissimilarity was best explained by a combination of C/N ratio, pH and annual average of 
daily maximum soil temperature. A MANOVA/adonis model, as well as MRM, verified that each of these param-
eters contributed significantly to explain community dissimilarity, together accounting for 28% or 12% of vari-
ation, respectively (see Table 4). Modifying these models to use elevation or daily median instead of maximum 
temperature consistently resulted in slightly larger residuals and lower significance. No corresponding, significant 
models of fungal or total eukaryotic communities could be obtained.

ANOSIM indicated that prokaryotic composition also differed significantly depending on sampling year, par-
ent rock and orientation; whereas eukaryotic composition differed between years (Table 5). Results from protist, 
fungal and metazoan subsets were essentially identical to total eukaryotes (data not shown).

Taxonomic composition.  We chose to study taxonomic distribution at order rank where loss of informa-
tion regarding rarer OTUs could be compensated by a relatively higher taxonomic resolution for more abundant 
OTUs. Out of the quality-filtered reads, 91, 76 and 68% could be taxonomically classified to this rank for 16S 

Response variable
Explanatory 

variable D.f. Adj. R2 Kendall τ
Comparison no. 

(see Methods)

Clay (%) Elevation 93 0.26 −​0.28*​*​ 1

Sand (%) “ 93 0.26 0.23*​ 1

Temp. during sampling (T0) “ 37 0.42 −​0.54*​*​*​ 1

Snow cover previous winter “ 21 0.87 0.84*​*​*​ 1

Mean daily temp. 0–30 days prior to sampling “ 21 0.30 −​0.51*​ 1

Annual mean temperature “ 10 0.96 −​0.91*​*​*​ 1

Mean annual snow cover (days) “ 10 0.82 0.79*​*​ 1

NUS (Biolog) Soil humidity 64 0.78 0.34*​ 3

Prokaryotic rarefied richness (RS) C/N ratio 47 0.24 0.38*​ 3

Prokaryotic RS Fungal RS (18S) 35 0.51 0.56*​*​*​ 4

“ Fungal RS (ITS) 34 0.43 0.50*​*​ 4

“ Eukaryotic RS 35 0.38 0.53*​*​*​ 4

“ Protist share 35 0.30 0.41*​ 4

Eukaryotic RS Fungal RS (18S) 37 0.92 0.84*​*​*​ 4

Fungal RS (ITS) 31 0.75 0.76*​*​*​ 4

“ Protist share 37 0.75 0.76*​*​*​ 4

“ Fungal share 37 0.39 −​0.59*​*​*​ 4

“ Protist RS 37 0.34 0.41*​ 4

Fungal RS (ITS) Fungal RS (18S) 31 0.82 0.80*​*​*​ 4

“ Fungal share (18S 
reads) 31 0.61 −​0.62*​*​*​ 4

“ Protist share 31 0.58 0.64*​*​*​ 4

Fungal RS (18S) Fungal share 37 0.54 −​0.64*​*​*​ 4

“ Protist share 37 0.70 0.66*​*​*​ 4

“ Protist RS 37 0.29 0.42*​*​ 4

Table 3.   Correlations between physicochemical and biological parameters measured (asterisks represent 
strength of significance after Bonferroni correction).
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rRNA, 18S rRNA, and ITS amplicons, respectively, representing 73, 28 and 33% of unique OTUs. Based on classi-
fication at phylum rank (96% of reads), 18S rRNA data was further subdivided into Metazoa, Fungi and “protists” 
(non-fungal taxa dominated by unicellular organisms). Fungi dominated most samples (contributing to 76% of 
total reads), followed by protists (10%) and Metazoa (7%; see Table S3). However, protist communities appeared 
most diverse with 2,729 OTUs.

Figure 4 illustrates the relative abundances of the most abundant taxa at order rank for each taxonomic 
subset (prokaryotes, protists and metazoa) or amplicon-specific subset (fungi as assessed using ITS and 18S 
rRNA). Prokaryotic communities appeared less heterogeneous compared to eukaryotes. Nonetheless, there was 
a relatively large variability in dominating bacterial taxa. The most common taxa were Rhizobiales, followed by 
Acidobacteriales , Chthoniobacterales (of the Verrucomicrobia) and Frankiales (Fig. 4A). Archaea contributed 
only 0.14% of prokaryotic abundance.

ITS and 18S amplicon data provided very similar taxonomic profiles of the fungal communities 
(Fig. 4B,C). Both datasets agreed about fungal communities being dominated by Mortierellales, followed by 
Archaeorhizomycetales and Agaricales. Together, these three taxa contributed between 60–95% of relative abun-
dance, but their individual abundances varied strongly between sites and spatial or temporal replicates.

Four taxa together dominated the protist communities in most samples (Fig. 4D): Euglyphida (filose amoebae 
of the Cercozoa), Haptorida (ciliates), Chromulinales (flagellates of the Chrysophycae), and Sporadotrichida 
(ciliates). Taxa with a typical parasitic lifestyle belonging to the Apicomplexa or Oomycetes were also common 
(marked in Fig. 4D) and some samples were dominated by the Pythiales or Eucoccidiorida . All reads from 
the former taxon could be classified as Pythium monospermum–a saprotroph capable of opportunistic infec-
tion of free-living nematodes38. Apicomplexans could be classified at family level to Cryptosporidiidae and 
Monocystidae, constituting roughly one and two thirds, respectively, of apicomplexan abundance. The former are 
well-known parasites of Annelida while the later are typically associated with vertebrate hosts.

The most abundant metazoan taxa were Oribatida (moss mites), the Eutardigrade order Parachaela and the 
parasitic nematode order Tylenchida (Fig. 4E). Several other orders of nematodes and arthropods were also iden-
tified, as well as rotifers and Platyhelminthes (flatworms). The majority of Oribatida sequence reads were classi-
fied as Tectocepheus sarekensis.

No correlation between abundances of individual taxa and elevation could be identified, but 44 taxa correlated 
significantly with other parameters (Supplementary Table S5). All taxa except Group I.1c Thaumarchaeota were 
bacterial, corresponding to as many as 25% of all bacterial taxa. Of these, most (n =​ 41) correlated with C/N, 
notably Rhizobiales and Acidobacteriales (both negatively). Group I.1c abundance also correlated with C/N, 
negatively (Table S5). Two taxa correlated with pH (Corynebacteriales and Chloroflexi Subdivision 10: P2-11E) 
and one with slope (Desulfuromonadales).

Correlation of bacterial, archaeal, fungal, protist and metazoan communities.  Mantel tests com-
paring Bray-Curtis dissimilarity matrices from different amplicon types revealed strong correlation between the 
prokaryotic, total eukaryotic and fungal community composition (0.69 ≤​ R ≤​ 0.75; p <​ 10−3; see Fig. 3). Fungal 
community profiles using 18S rRNA vs. ITS correlated yet more strongly (R =​ 0.81). Comparing the three eukar-
yotic organism groups revealed that fungal and protist communities were most correlated (R =​ 0.93; Fig. 3). 
Prokaryotic, total eukaryotic and fungal rarefied richness estimates also correlated significantly (Table 3). Further, 
samples with a higher relative abundance of protists compared to total eukaryotes appeared to harbour more 
diverse prokaryotic as well as fungal communities, whereas fungal abundance appeared negatively correlated with 
fungal richness (Table 3). Comparing rarefied richness of fungi between 18S rRNA and ITS amplicon datasets 
revealed strong correlation between the two approaches, with 18S rRNA-based estimates being significantly lower 
(n =​ 31, slope 0.57 ±​ 0.05, intercept 140 ±​ 27, p <​ 10−12; see Table 3 and Supplementary Figure S5).

Figure 2.  Identified correlations between alpha-diversity estimates and physicochemical parameters. 
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Figure 3.  Non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarities of microbial 
community composition. Composition was based on Hellinger-transformed relative OTU abundances from 
prokaryotic 16S, eukaryotic 18S and fungal ITS amplicon data. 18S data was also divided into organism groups. 
Sites are labelled according to legend and red vectors indicate fitted environmental parameters significantly 
correlated to NMDS coordinates. Where parameter measurements were only available for a subset of samples, 
this is indicated in parenthesis (samples/total), whereas thick lines indicate that measurements were available 
for the complete dataset. Black bidirectional arrows illustrate Mantel tests for similarity between community 
dissimilarity matrices.

Variable R2 (adonis) R2 (MRM)

C/N ratio 0.18*​*​*​ 0.02*​*​*​

pH 0.06*​*​ 0.03*​*​*​

Daily max. temp. 0.04*​ 0.009*​*​

Residuals (unexplained 
variation) 0.72 0.88

Table 4.   Results from a MANOVA (adonis) and multiple regression on similarity matrix (MRM) model. 
Total prokaryotic community Bray-Curtis dissimilarity was modelled as response variable. Asterisks indicate 
significance strength.

Factor H0 R (16S) R (ITS) R (18S) R (plants)

Year effect 2012 =​ 2013 =​ 2014 0.47** 0.07 0.13* N/A

Parent rock siliclastic =​ carbonate 0.17* −​0.07 −​0.02 −​0.13

Orientation SSE =​ SE 0.06* 0.00 0.00 −​0.02

Table 5.   Results from Analysis of Similarities (ANOSIM) between communities (Bray-Curtis dissimilarity). 
Asterisks indicate significance strength.



www.nature.com/scientificreports/

9Scientific Reports | 6:28257 | DOI: 10.1038/srep28257

Plant community structure.  NMDS based on plant composition (Supplementary Table S6) resulted in three 
clear clusters of samples (Fig. 5), roughly corresponding to the overlapping vegetation zones observed (Table 1), 
except the subalpine site at 1800 m clustering with montane zone sites. Elevation and associated parameters (soil 
temperature and days under snow cover) correlated significantly with plant community NMDS coordinates (Fig. 5). 
Plant composition showed no significant correlation to neither prokaryotic, total eukaryotic or fungal communities 
(Mantel p >​ 0.3). Neither did plant richness to soil microbial diversity estimates, nor to other parameters.

Influence of weather and temporal variation.  Compared to annual mean soil temperature, the mean 
temperature during the last 30 days before sampling correlated more strongly to the prokaryotic community 
NMDS coordinates (see Supplementary Table S3). To compensate for missing temperature data, elevation 
was also fitted to the NMDS coordinates where such data was available, resulting in no significant correlation 
(R2 =​ 0.05, p =​ 0.4). This may indicate a degree of temporal instability in prokaryotic composition, with rela-
tively recent weather patterns influencing the soil microbial communities significantly. However, according to 
MANOVA or MRM, neither recent nor annual mean temperatures contributed significantly to explain commu-
nity dissimilarities in the subset of samples where all such data was available.

Discussion
Several different elevational patterns of microbial OTU richness have been described, including increasing15, 
decreasing7,8, hump-backed13 and hollow trends14. However, such patterns may be better explained by plant com-
munity structure, or parameters such as soil pH, C/N, humidity or nutrients co-varying with elevation. The gra-
dient studied here was selected in order to minimise such covariance, with the result that no clear trend in soil 
microbial richness could be identified. This is consistent with a previous study where an elevation gradient was 
selected in a similar manner21. As opposed to elevation, OTU richness along the gradient studied here correlated 
positively with C/N. Such correlations have also been described previously11, as well as negative ones10. Further, 
soil humidity correlated with the functional diversity of heterotrophic bacteria (NUS), as indicated by Biolog 
EcoPlates (Table 3 and Fig. 2).

Figure 4.  Distribution of most abundant taxa across samples. Relative abundances of taxa at order level 
are presented as bar-charts for each individual sample, grouped by elevation (in 100 m) for the three specific 
amplicon library types prepared. Total 18S amplicon results are divided by organism type into fungi, “protists” 
and metazoa. Typically parasitic taxa are marked with asterisks.
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As opposed to alpha-diversity, elevation appeared to influence the composition-based dissimilarity 
(beta-diversity) of prokaryotic and fungal communities. It thus provided an acceptable proxy for climatic param-
eters, some of which were also measured. Of these, annual averages of daily maximum soil temperature explained 
community structure best (Table 4). This influence appeared to be independent of the physicochemical parame-
ters C/N and pH (Table 4). Regardless, C/N appeared to affect prokaryotes and protists more strongly than direct 
climatic parameters, whereas results based on 18S and ITS amplicons disagreed about the relative strengths of the 
influences of C/N vs. climate on fungal communities (Table S4). An impressive number of bacterial taxa, nearly 
one out of four, also correlated directly to C/N (Supplementary Table S5). Thus, C/N appeared as the major driver 
of prokaryotic and protist community structure along the studied gradient.

Soil pH has often been singled out as the most important influence on soil bacterial communities in studies of 
elevational gradients8,10,14 and habitats similar to ours39–40. It also appears to be a key influence on fungal17,20 and 
microeukaryote16 composition. In the gradient studied here, pH also appeared to influence prokaryotic composi-
tion, although not as strongly as C/N. Similar results were obtained in a recent study of arctic tundra soils, when 
excluding samples from wet sedge41. Curiously, neither C nor N concentration in itself appeared to influence 
community structure, as opposed to previous studies11,41.

It is difficult to put the influence of the C/N ratio in ecological context without better knowledge of the soil 
ecosystem dynamics. Carbon and nitrogen availability is associated with the complex interactions between cli-
mate, plants, meso- and macrofauna and microbial communities, and involve the ecologically linked processes 
of litter provision and decomposition, and nitrogen cycling42,43. It is also probable that grazing contributed to 
decrease C/N44. In the present study, measured C/N ratios were consistently below 20, traditionally interpreted 
as a net mineralisation of nitrogen45. However, soils with lower C/N may also be nitrogen limited45, which is 
supported by the relatively high abundances of Rhizobiales throughout the gradient, indicating an important role 
for N2-fixation. Curiously, relative abundance of Rhizobiales correlated negatively with C/N, indicating higher 
nitrogen availability where the putative N2-fixing rhizobia were more abundant. Thus, other factors than feed-
back inhibition from nitrate or ammonium were likely most relevant for controlling N2-fixation in the studied 
ecosystem46.

Prokaryotic community assembly was also influenced by parent rock (siliclastic vs. carbonate), and orienta-
tion (facing south vs. SSW). However, no indicator taxa could be identified for either factor, and differences in 
parent rock were confounded by pH differences. Sunlight intensity associated with orientation may have affected 
belowground communities directly or via plants. South-facing sites were also relatively warmer (p <​ 0.001 using 
a linear model compensating for elevation), thus indirectly influencing prokaryotic and fungal communities as 
demonstrated by the influence of average annual soil temperatures on community structure.

Water availability is important for ecosystem functioning. Therefore it is somewhat surprising that soil humid-
ity only correlated to NUS, as opposed to community structure. Biolog profiling has been suggested to mainly 
reflect functional diversity of currently dominant heterotrophic taxa, as opposed to rare and dormant organ-
isms47, perhaps making it a more sensitive indicator to transient changes in community structure due to weather 
related shifts in soil humidity.

Eukaryotic communities, particularly metazoa, appeared less correlated to environmental parameters than 
prokaryotes. This can probably be explained by the larger heterogeneity in the composition of these communities 
(Fig. 4). This may be an effect of the micro-scale patchiness one would expect from larger organisms compared to 
prokaryotic cells. It is possible that more accurate community structure estimates can be obtained by increasing 
the amount of soil used for DNA extraction (here 0.25 g), or by replication.

Figure 5.  Non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarities of 
plant community composition. Sites are labelled with elevation in metres and red vectors indicate fitted 
environmental parameters significantly correlated to NMDS coordinates.
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In addition to elevation, it is possible that spatial distance in itself contributed to the observed differences in 
microbial communities. The existence of such spatial diversity patterns independent of climate or environmental 
parameters has been indicated previously, even at similar spatial scale47, adding to a growing evidence that life 
history and dispersal is relevant also to microbial biogeography48. However, this cannot be assessed using the data 
presented here, since we used a single gradient where spatial distance was dependent on elevation.

Both richness and composition appeared to correlate between the prokaryotic and eukaryotic communities, 
particularly fungi with prokaryotes as well as with protists (Table 3, Fig. 3). Similar responses to environmental 
parameters may have contributed to this. However, it is also likely that part of the explanation is related to syner-
gistic, trophic or competitive interactions between members of these communities. Bacteria-fungal interactions 
are known to play important roles in the soil ecosystem49 and strong correlation between these communities has 
been observed previously in similar environments40,50. Examples of possible interactions among the taxa encoun-
tered here are the oomycete Pythium infecting free-living nematodes37 and apicomplexan Monocystis infecting 
annelids. We also expect that bacterial ecto- and endosymbionts of metazoans contributed to the correlation 
between eukaryotic and prokaryotic communities.

Relatively high abundances of Oomycetes have previously been encountered in a study of grassland soils using 
a metatranscriptomic approach, thus not subjected to primer and other amplification biases described by Geisen 
et al.51. However, the mentioned study encountered relatively low abundances of Apicomplexa compared to ours. 
As opposed to transcribed rRNA, we also expect to have targeted oocysts51, possibly originating from grazing ver-
tebrates infected by cryptosporidiosis, consistent with the classification of the majority of Apicomplexa encoun-
tered (although Monocystis was also present).

Overall community structure at higher taxonomic ranks was similar to that encountered by Geisen et al.51, 
with Rhizaria, followed by Alveolata and Stramenopiles, dominating. Rhizaria was dominated by Cercomonadida 
followed by Silicofilosea consistent with the same study, as well as low abundance (in average 0.1%) of the typical 
marine group Choanoflagellida in all samples studied. As expected due to primer mismatch and other issues 
associated with targeting Amoebozoa51, abundances of this group were relatively low, although both Tubulinida, 
Echinamoebidae and Acanthamoebidae were encountered among the 25 most abundant protist taxa (Fig. 4D).

Fungal community structure (Fig. 4B,C) appeared very similar to mountain and valley pastures in Gorbeia 
Natural Park in the SW Basque Country (Spain), studied using the same ITS profiling protocol40. The same seven 
taxa dominated with conserved ranking overall in both studies, except for Filobasidales, being more abundant in 
the present study. The high abundance of Archaeorhizomycetes is particularly interesting, considering the recent 
debate about its global significance52,53. The data presented here strengthens previous findings suggesting that it is 
relatively dominant in alpine grasslands40 with evidence from both ITS and 18S rRNA amplicons (mean relative 
abundance 22% and 21% respectively). However, an alternative explanation could be an unusually high ribosomal 
gene copy number.

In general, ITS and 18S rRNA amplicon profiling of fungal communities resulted in very consistent results. 
Together with the broad coverage of protist and metazoan taxa, this illustrates the suitability of the “universal” 
eukaryotic primers used here. However, lower fungal richness encountered targeting 18S rRNA is consistent with 
previous comparisons of these markers, indicating lower phylogenetic resolution compared to ITS54.

It is well known that above- and belowground communities are tightly interlinked, and involve processes 
such as root exudation, litter deposition, and interactions ranging from mutualistic symbiosis to plant pathogens 
and root herbivores42. Thus, plant species composition is expected to influence microbial community structure 
and function (as well as the opposite) and such correlations have been observed on a regional scale, including 
in Alpine meadows and similar ecosystems41,55,56. However, it is not always possible to assess this effect due to 
covariation between plant composition with elevation or other environmental parameters influencing both vege-
tation and belowground communities directly8–10. Plants also influence parameters such as soil pH and nitrogen 
availability50.

In this study plant and belowground communities did not appear correlated.  According to 
ANOSIM (Table 5), both prokaryotic and total eukaryotic community structure differed significantly between the 
years when samples were collected and samples from 2014 appear to group together in NMDS space (Fig. 3). There 
was also considerable variability in C/N, soil humidity and NUS between the years (Supplementary Figure S6).  
Considering the importance of C/N, it is likely that these changes were related. We propose that this physico-
chemical and biological variation was related to weather patterns such as temperature and rainfall. Consistent 
with this, averages of recent soil temperature (based on daily medians 1–30 days before sampling) appeared to 
correlate more strongly to NMDS models of prokaryotic community structure, compared to yearly temperature 
averages, or elevation. However, more data is necessary to properly assess this hypothesis that could not be con-
firmed with MANOVA or MRM, likely because temperature data was incomplete. It is also interesting to note that 
for whole-year estimates of soil temperature, using the daily maxima rather than medians appeared to explain 
prokaryotic community composition better.

Together, these findings illustrate the importance of long-term studies for understanding the influence of cli-
mate change on complex and dynamic ecosystems such as mountainous grasslands, where samples are collected 
during several years. However, it also underscores the value of continuous monitoring of parameters like soil 
temperature, rainfall and snow cover, coupled with seasonal monitoring of biological communities. In the present 
study, we collected a small number of such samples: a week before and after gradient samples in 2013, from late 
autumn in October, and during snowmelt in May. Unfortunately, it was not possible to separate seasonal temporal 
variation in community structure from the considerable spatial and inter-annual heterogeneity, even between 
samples taken from the same sampling station (elevation) and time point.
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However, many examples exist of dynamic above- belowground interactions, controlling the activity and 
abundance of microorganisms over seasonal and shorter time-scales, and seasonal variation in soil microbial 
composition has been confirmed in several studies6,57–59.

In conclusion, this study illustrates that microbial communities can be used successfully as indicators of 
potential impacts from climate change, providing complementary ecological insights. However, it also illustrates 
the limitations of this approach, such as heterogeneity making results challenging to interpret, particularly for 
fungi, protists and metazoans. This can hopefully be overcome at least in part by larger scale studies and improved 
experimental design, such as more frequent sample collection, larger number of replicates, increased sequencing 
effort and quality. However, we are convinced that the ongoing rapid technological development in terms of 
throughput and automatisation of molecular techniques will continue, overcoming some of these limitations in 
a near future.
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