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Abstract

Autism spectrum disorder (ASD) is characterized by core sociocommunicative impairments. Atypical intrinsic
functional connectivity (iFC) has been reported in numerous studies of ASD. A majority of findings has indicated
long-distance underconnectivity. However, fMRI studies have thus far exclusively examined static iFC across
several minutes of scanning. We examined temporal variability of iFC, using sliding window analyses in selected
high-quality (low-motion) consortium datasets from 76 ASD and 76 matched typically developing (TD) partic-
ipants (Study 1) and in-house data from 32 ASD and 32 TD participants. Mean iFC and standard deviation of the
sliding window correlation (SD-iFC) were computed for regions of interest (ROIs) from default mode and sa-
lience networks, as well as amygdala and thalamus. In both studies, ROI pairings with significant underconnec-
tivity (ASD<TD) were identified. Mediation analyses showed that decreased mean iFC in the ASD groups was
significantly affected by increased SD-iFC. Our study is the first to identify temporal variability across time as a
significant contributing factor to the common finding of static underconnectivity in ASD. Since peak connectiv-
ity across time was not significantly reduced in ASD, static underconnectivity findings may have to be reinter-
preted, suggesting that connections are not actually ‘‘broken’’ in ASD, but subject to greater intra-individual
variability across time. Our findings indicate the need for dynamic approaches to iFC in clinical functional con-
nectivity MRI (fcMRI) investigations.

Key words: autism spectrum disorder; default mode network; fMRI; functional connectivity; intra-individual
variability; mediation analysis; resting state

Introduction

Autism spectrum disorder (ASD) is a developmental
disorder of increasing prevalence (CDC, 2015), with

core deficits in the sociocommunicative domain. There is
growing consensus that brain anomalies underlying ASD
can be found at the level of distributed networks and connec-
tivity (Geschwind and Levitt, 2007; Wass, 2011). One
method of choice in the study of network anomalies in
ASD has been functional connectivity magnetic resonance
imaging (fcMRI). In its most common form, intrinsic
fcMRI has been proven a powerful technique for identifying
distributed functional networks based on synchronized spon-
taneous low-frequency (<0.1 Hz) fluctuations of the blood
oxygen level-dependent (BOLD) signal (Buckner et al.,

2013; Van Dijk et al., 2010). The validity of the technique
is supported by links with neuronal activity changes (Schöl-
vinck et al., 2010; Wang et al., 2012) and with experience-
driven (‘‘Hebbian’’) malleability of synchronized networks
( Jolles et al., 2013; Lewis et al., 2009; Stevens et al.,
2010), as well as by correspondence with known anatomical
connectivity (Honey et al., 2009).

However, in its application to ASD, fcMRI has generated
highly inconsistent findings, ranging from exclusive under-
connectivity (Gotts et al., 2012; Just et al., 2004; Kana
et al., 2007; Kleinhans et al., 2008) to mixed effects (Abbott
et al., 2015; Di Martino et al., 2014; Doyle-Thomas et al.,
2015; Fishman et al., 2014, 2015; Lynch et al., 2013;
Monk et al., 2009; Washington et al., 2013) and even pre-
dominant overconnectivity (Cerliani et al., 2015; Di Martino
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et al., 2011; Shih et al., 2011; Supekar et al., 2013). Some of
these inconsistencies may be due to methodological differ-
ences (Müller et al., 2011; Nair et al., 2014) and age-related
changes (Uddin et al., 2013b), as well as cohort effects due to
heterogeneity within the disorder. However, the question of
how differences in cognitive state and its variability across
time may affect observed group differences has not been
tested empirically. This presents a crucial gap in the current
understanding of connectivity anomalies in ASD, given that
the focus on static connectivity has been solely due to limita-
tions in conventional analysis techniques, whereas the dynamic
nature of brain network processing is broadly recognized, both
in the range of milliseconds (Buzsáki and Freeman, 2015) and
seconds (Mason et al., 2007).

In conventional fcMRI, BOLD time series correlations are
determined across an entire time series of 5 min or longer,
yielding a static measure of functional connectivity. How-
ever, despite the technique’s modest temporal resolution, dy-
namic analyses are possible, usually by implementing a
sliding window correlational approach (Chang and Glover,
2010; Hutchison et al., 2013). This dynamic fcMRI approach
has been found to be sensitive to physiological changes dur-
ing resting-state scans (Chang et al., 2013b; Hutchison et al.,
2013), including those associated with caffeine intake (Rack-
Gomer and Liu, 2012), and to ongoing changes in mental
state (Allen et al., 2014). Changes in fcMRI across time
have also been shown to correspond to electrophysiological
changes (Chang et al., 2013a; Jann et al., 2012; Laufs et al.,
2003; Sadaghiani et al., 2010; Tagliazucchi et al., 2012).

To our knowledge, the present study is the first to examine
dynamic changes in intrinsic functional connectivity (iFC)
across time in ASD and their relation with conventional
static fcMRI effects. We focused on several networks with
previous reports of anomalous connectivity in ASD. These
included regions of the default mode network (DMN)
(Doyle-Thomas et al., 2015; Kennedy and Courchesne,
2008; Monk et al., 2009; Washington et al., 2013), the sa-
lience network (Abbott et al., 2015; Ebisch et al., 2011;
Uddin et al., 2013a), as well as amygdala (Abrams et al.,
2013; Grelotti et al., 2005; Kleinhans et al., 2011; Murphy
et al., 2012) and thalamus (Cerliani et al., 2015; Hardan
et al., 2008; Nair et al., 2013, 2015). These regions of interest
(ROIs) were selected to test the general questions described
below, without any assumption of exclusive impairment in
ASD (which would be unwarranted, given the breadth of re-
gional findings implicating almost every network and brain
region in ASD).

Our analysis was performed in two cohorts. In the first
study, we analyzed a high-quality (low-motion) subsample
from the Autism Brain Imaging Data Exchange (ABIDE)
(Di Martino et al., 2014), including groups of ASD and typ-
ically developing (TD) participants that were tightly matched
on head motion and relevant demographic variables. In the
second study we included in-house low-motion datasets
from ASD and matched TD cohorts.

Given some previous findings of increased intra-individual
variability (IIV) in ASD in task performance and associated
brain responses (Dinstein et al., 2012; Geurts et al., 2008;
Haigh et al., 2014), our study aimed to address two empirical
questions: (1) Is iFC variability across time atypically in-
creased in ASD? (2) Are group differences in static iFC driven
by differences in the variability of iFC across time? At the

broader conceptual level, our study represents a first step in
answering the question: Does reduced static iFC (undercon-
nectivity) observed in many fcMRI studies of ASD reflect
an organizational impairment (such as reduced network integ-
rity) or simply more frequent fluctuations in mental state
across time (e.g., drifting in and out of default mode)?

Materials and Methods

Participants

For Study 1, we used datasets from the ABIDE (http://
fcon_1000.projects.nitrc.org/indi/abide/) (Di Martino et al.,
2014), which includes resting-state fMRI data from 1112
participants, collected across 17 sites. This large initial
sample allowed us to opt for high data quality—given the
known sensitivity of intrinsic fcMRI analyses to motion ar-
tifacts and noise (Power et al., 2014, 2015; Satterthwaite
et al., 2013)—while still exceeding sample sizes of most
published ASD fcMRI studies. The data were visually
inspected and any datasets exhibiting artifacts, signal drop-
out, suboptimal registration or spatial normalization, or ex-
cessive motion were excluded. Subjects that passed this first
quality control stage were put through an additional motion
censoring stage. Frame-wise displacement (FD) was used
to measure motion at each time point in each participant
(Power et al., 2012, 2014). Any data point with FD greater
than 0.25 mm was censored, and participants with fewer
than 150 time points remaining were excluded.

Two hundred twenty-one participants (76 ASD, 145 TD),
who met all the aforementioned criteria and had at least
4 min of data after censoring, were put through the matching
process to form two optimally matched groups using an R
package for multivariable group matching (Sekhon, 2011).
Final ASD and TD samples (76 ASD, 76 TD) were matched
on age, sex, NVIQ, FIQ, PIQ, handedness, amount of motion,
and eye status at scan (Table 1). The matched subjects were
from six sites, all of which acquired data with a repetition
time (TR) of 2 seconds.

For Study 2, we included 82 (41 TD, 41 ASD) participants
from our in-house dataset who had passed mock scanning.
After exclusion based on quality control criteria (see details
in the ‘‘Motion censors’’ section), ASD and TD groups were
then matched analogous to Study 1, for final samples of 32
per group (Table 1).

fMRI data processing

AFNI, FSL, and MATLAB were used for MRI data pre-
processing (Cox, 1996; Smith et al., 2004). High-resolution
anatomical images were bias field corrected and then skull
stripped. Tissue segmentation was applied to estimate
white matter (WM) and cerebrospinal fluid (CSF) partial vol-
ume fractions. WM and CSF masks were derived by thresh-
olding the partial volume fraction maps at 0.99 and then
eroded by 1 voxel to minimize the partial volume effect
with gray matter ( Jo et al., 2010). Functional data were
time-shift and motion corrected, coregistered to the anatom-
ical image and resampled to 3 mm3 isotropic voxels.

Nuisance regressors removed from resting data using
AFNI 3dDeconvolve included: (1) linear and quadratic
trends, (2) six motion parameters and their first derivatives,
and (3) mean WM and CSF signals and their first derivatives
( Jo et al., 2010). Each functional volume was then spatially
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smoothed to 6 mm FWHM, and transferred to standard space
(MNI). For each subject a censor time series was generated
for BOLD signal outliers using AFNI 3dToutcount, which
identifies data points that are far from the median. In addi-
tion, motion censors were defined using the motion regres-
sors (see ‘‘Motion censors’’ section). Average time series
were extracted from ROIs in the DMN, salience network,
amygdala, and thalamus. Data were lowpass filtered with a
cut-off frequency of 0.1 Hz.

Motion censors

To minimize the effects of motion in the BOLD signal, we
censored the affected data points. We used FD to evaluate the
amount of motion at each time point (Power et al., 2012,
2014). Motion censors were defined using slightly different
thresholds for the two studies, given the different sample
sizes. In study 1, we applied a more conservative censoring
threshold. Data points with FD larger than 0.25 mm were
censored, including one time point immediately preceding
and two time points following motion-contaminated points.
Any time series segments with less than 10 consecutive sur-
viving time points were also discarded (Power et al., 2014).
In study 2, procedures were identical, but a relaxed FD
threshold of 0.5 mm was used to preserve statistical power
in the overall smaller in-house sample.

In addition to the main analysis described above, we also re-
peated the analysis in Study 1 using a relaxed censoring crite-
rion of FD >0.5 mm. Using this relaxed criterion minimized
the overall censored points to about 2% and consequently
more data points remained in the time series. One hundred
ninety-seven participants (70 ASD, 127 TD) had at least
6 min of data after these new censoring criteria. Using the
same matching criteria we formed two optimally matched
groups of 70 ASD and 70 TD (with 94 subjects out of 140 re-
quiring no censoring at all), with 6 min of data for each subject.

Regions of interest

We extracted mean time series from ROIs in the DMN, sa-
lience network, amygdala, and thalamus. Coordinates from
previous studies were used to identify the seeds for the follow-
ing regions: posterior cingulate cortex (PCC), medial prefron-
tal cortex (mPFC), left (L)/right (R) hippocampal formation
(Hipp), L/R lateral parietal cortex (LP) (Van Dijk et al.,
2010), pregenual anterior cingulate cortex (Prg ACC) (Di
Martino et al., 2009), dorsal anterior cingulate cortex (Abbott
et al., 2015), and L/R anterior insula (Ins) (Ebisch et al., 2011).
All ROI masks, except for the Prg ACC, were defined as
10 mm radius spheres centered on the seed coordinates. To
avoid overlap between ROIs, the Prg ACC ROI was defined
as 6 mm radius sphere (see Supplementary Table 1 for coordi-
nates; Supplementary Data are available online at www
.liebertpub.com/brain). We used anatomical parcellation
masks (MNIa_caez_ml_18) for L/R amygdala and L/R
thalamus (Thal). ROI average time series were computed
using these masks on preprocessed data. Sliding window
correlation analysis was performed on the ROI time series.

Sliding window correlation analysis

Sliding window correlation was performed between ROI
time series with a window length of 30 sec and time shift

of 8 sec (Handwerker et al., 2012; Hutchison et al., 2013).
Any window with more than 6 sec (20% of the time points)
of censored data was excluded. Any subject with fewer
than 28 useable windows, that is, with less than 4 min of
data (30 + 27 · 8 = 246 sec = 4 min and 6 sec), was excluded.
For all remaining subjects, the first 28 windows were se-
lected to form the sliding window correlation time series.
For each subject, the standard deviation of the sliding win-
dow correlation (SD-iFC) was calculated for further group
comparisons (Chang and Glover, 2010; Rack-Gomer and
Liu, 2012). Standard deviation served as a summary mea-
sure of the variability of BOLD correlations across time.

It is important to note that temporal dependencies are not
taken into account when calculating the correlation co-
efficient (i.e., the correlation coefficient is invariant with re-
spect to the temporal ordering of the data). The calculation of
the standard deviation is also invariant with respect to tempo-
ral ordering. Given this invariance with respect to temporal or-
dering, the use of censoring represents a suitable approach to
minimizing the inclusion of data that are potentially corrupted
by motion. Therefore, censoring would not have a major effect
when calculating the correlation coefficients, except that it re-
duces the number of time points used in the analysis.

For each subject, ‘‘iFC’’ was calculated as the static corre-
lation (r) between the time series. Additionally, we identified
the window with highest correlation for each subject and
compared the maximum connectivity values between the
two groups. However, no gold standard for window length
is currently available, and we, therefore, additionally ran
the main analyses in Study 1 using slightly longer windows
(40, 50, and 60 sec) that have been reported in the fcMRI lit-
erature (Handwerker et al., 2012; Hutchison et al., 2013).

Sliding window motion analysis

For each subject, FD time series derived from the motion
regressors were used to evaluate the changes in motion over
time. A sliding window FD time series was formed by calcu-
lating the mean of FD values over the window length of 30 sec
with a time shift of 8 sec. The standard deviation of the sliding
window FD (Std FD) was used as a covariate in our analysis.

Group comparison

A two-sample t-test was used to compare both iFC and its
dynamics (SD-iFC) between the two groups.

Mediation analysis

Mediation analysis evaluates the effect of a third variable
(mediator) on the relation between the dependent and indepen-
dent variables (MacKinnon et al., 2007). A commonly used
approach to assess mediation forms three linear models as fol-
lows and then performs the mediation statistical analysis:

(1) Y = i1þ cXþ e1

(2) Y = i2þ c¢ Xþ bMþ e2

(3) M = i3þ aXþ e3,

where Y is the dependent variable, X is the independent var-
iable, M is the mediator, i1, i2 and i3 are intercepts, c is the
coefficient relating the independent variable and the depen-
dent variable, c¢ is the coefficient relating the independent

406 FALAHPOUR ET AL.



variable to the dependent variable adjusted for the mediator,
b is the coefficient relating the mediator to the dependent var-
iable adjusted for the independent variable, a is the coeffi-
cient relating the independent variable to the mediator, and
e1, e2, and e3 are residuals (MacKinnon et al., 2007). The
causal steps approach fits these three models, checks the fol-
lowing four conditions to be met, and tests whether the prod-
uct ab is significantly different from zero (MacKinnon et al.,
2007):

(a) A significant relation exists between the independent
variable and the dependent variable in Equation 1
(i.e., c is significantly different from zero).

(b) A significant relation exists between the independent
variable and the mediating variable in Equation 3
(i.e., a is significantly different from zero).

(c) The mediating variable must be significantly related to
the dependent variable when both the independent
variable and mediating variable are predictors of the
dependent variable in Equation 2 (i.e., b is signifi-
cantly different from zero).

(d) The coefficient relating the independent variable to
the dependent variable in Equation 1 must be larger
(in absolute value) than the coefficient relating the in-
dependent variable to the dependent variable in Equa-
tion 2. that is, (jcj >j c¢j).

The significance of the mediated effect was tested using the
Sobel product coefficient statistic test (MacKinnon et al.,
2007) to investigate whether underconnectivity in ASD partic-
ipants was mediated by temporal variations in functional con-
nectivity, that is, higher SD-iFC. Therefore, we used the
grouping factor (e.g., ASD or TD) as the independent variable
(X), SD-iFC as the mediator (M), and static iFC as the depen-
dent variable (Y). Using this analysis we investigated whether
adding the mediator (SD-iFC) in the model (Equation 2)
would significantly change the relation between the dependent
and independent variable, that is, the difference in static iFC
between the two groups.

Results

Study 1

As compared to the TD group, the ASD group showed signif-
icantly lower iFC for a number of ROI pairings: PCC–R Hipp,
L Lp–mPFC, PCC–mPFC, Prg ACC–PCC, R Amyg–L LP, R
Amyg–R Ins, L Amyg–L LP, and L Thal–R Thal. The ASD
group also showed significantly higher SD-iFC for PCC–
mPFC, L LP–mPFC, and L Thal–R Thal, and significantly
lower SD-iFC for L LP–R Thal (Table 2 and Fig. 1A).
Figure 1B illustrates the relation between iFC t-statistics
(from Fig. 1A, lower triangle) and the SD-iFC t-statistics
(Fig. 1A, upper triangle), with a significant negative correla-
tion (r =�0.34, p = 0.0007) observed across the 91 ROI pairs.

We performed a mediation analysis across subjects on the
three ROI pairs that exhibited significant differences in both
iFC and SD-iFC, that is, PCC–mPFC, L Thal–R Thal, and
mPFC–L LP and, thus, met the first two requirements for the
mediation analysis. Further analysis confirmed that the addi-
tional two requirements were also met for these ROI pairs.
The other pairs were excluded from further analysis because
they did not meet the first two requirements for the mediation
analysis. Figure 2A shows the relation between iFC and SD-
iFC for PCC–mPFC across subjects. We found a negative cor-
relation between iFC and SD-iFC for both ASD (r =�0.43,
p = 9.7 · 10�5) and TD (r =�0.60, p = 5 · 10�9) groups. The
red and blue horizontal lines show the iFC group means for
ASD and TD, respectively. The distance between them, that
is, the mean differences, equals the total effect (denoted as c
in Equation 1) of the grouping factor on iFC. The red and
blue vertical lines indicate the SD-iFC group means for ASD
and TD, respectively. The distance between these lines is
equal to the effect of the grouping factor on the mediator
SD-iFC (denoted as a in Equation 3). The slanted lines repre-
sent the relation between iFC and SD-iFC in each group.

The mediation analysis showed a significant mediated ef-
fect using the Sobel test (nab =�2.24; p = 0.02), meaning that
a significant portion of the difference in the iFC between the
two groups (the total effect) could be accounted for by

Table 2. ROI Pairs with Significant Difference in iFC (Upper Section) and SD-iFC (Lower Section)

for Study 1 on the Left and Study 2 on the Right

Study 1 Study 2

ROI pairs t-stats (ASD–TD) p ROI pairs t-stats (ASD–TD) p

iFC iFC
PCC–R Hipp �2.1 0.03 L LP–R Hipp �2.3 0.02
L LP–mPFC �1.99 0.04 PCC–mPFC �2.3 0.03
PCC–mPFC �2.5 0.01 Prg ACC–R Hipp �2.5 0.01
Prg ACC–PCC �2.5 0.01 Prg ACC–L Hipp �2.3 0.02
R Amyg–L LP �2.0 0.04 Prg ACC–mPFC �2.0 0.04
R Amyg–R Ins �2.0 0.04 L Amyg–PCC �2.0 0.04
L Amyg–L LP �2.3 0.02
L Thal–R Thal �2.4 0.01

SD-iFC SD-iFC
PCC–mPFC 2.3 0.01 PCC–mPFC 2.8 0.005
L LP–mPFC 2.0 0.04 L LP–L Ins �2.8 0.006
L LP–R Thal �2.4 0.01 PCC–L Thal �2.1 0.03
L Thal–R Thal 2.0 0.04

Hipp, hippocampal formation; iFC, intrinsic functional connectivity; LP, lateral parietal cortex; mPFC, medial prefrontal cortex; PCC,
posterior cingulate cortex; ROI, regions of interest.
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differences in SD-iFC (Fig. 2B). In a single mediator model,
the mediated effect ab is equivalent to (c–c¢) (MacKinnon
et al., 2007), which is shown in Figure 2B. To account for
the effect of motion, age, gender, and multiple sites in the me-
diation analysis, we added those as covariates in the model.
Performing the mediation analysis on these data we again

found a significant mediated effect (nab=�2.11; p = 0.03).
Figure 2C shows a similar result for the left/right Thal pair.
A negative relation between iFC and SD-iFC was found for
both ASD (r =�0.51, p =1.8 · 10�6) and TD (r =�0.57,
p = 6.2 · 10�8) groups. Mediation analysis revealed a signifi-
cant mediated effect (nab =�1.96; p = 0.045) between these

FIG. 1. Connectivity matrix for Study 1, showing t-statistics for iFC in lower triangle in (A) ( p < 0.05, uncorrected, denoted by
cyan asterisks), and for SD-iFC in upper triangle in (A) ( p < 0.05, uncorrected, denoted by yellow asterisks). Black asterisks in-
dicate ROI pairs that exhibited significant differences in both iFC and SD-iFC. (B) Scatterplot showing relation between the com-
puted t-statistics (for iFC and SD-iFC) across all ROI pairs in the matrices above. The x-axis corresponds to the t-statistics for iFC
shown in the lower triangle, while the y-axis corresponds to the t-statistics for SD-iFC shown in the upper triangle. Green vertical
line and blue horizontal lines show the threshold for significance. Cyan circled points show ROI pairs with a significant difference
only in iFC, yellow circled points indicate those with a significant difference only in SD-iFC (indicated by yellow asterisks), and
black circled points are ROI pairs that exhibited significant differences in both iFC and SD-iFC [indicated by black asterisks in
(A)]. iFC, intrinsic functional connectivity; ROIs, regions of interest. Color images available online at www.liebertpub.com/brain

FIG. 2. (A) Relation be-
tween static iFC and SD-iFC
for the PCC and mPFC ROI
pair across subjects; (B)
zoomed-in view showing
total effect (c = difference in
mean iFC) and mediated ef-
fect (c–c¢); (C) relation be-
tween static iFC and SD-iFC
for the left Thal and right Thal
ROI pair across subjects; (D)
relation between static iFC
and SD-iFC for the mPFC and
L LP ROI pair across sub-
jects. The red and blue hori-
zontal lines show the iFC
group means for ASD and
TD, respectively, and the
vertical lines indicate the SD-
iFC group means. Participants
were from the ABIDE data-
base (76 ASD, 76 TD). ASD,
autism spectrum disorder; LP,
lateral parietal cortex; mPFC,
medial prefrontal cortex;
PCC, posterior cingulate cor-
tex; TD, typically developing.
Color images available online
at www.liebertpub.com/brain
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pairs as well. After adding the aforementioned covariates, that
is, motion (Std FD), age, gender, and site in the model, the
significance of the mediated effect became marginal (nab =
�1.74; p = 0.055). Figure 2D illustrates the results for the
mPFC-L LP pair. We found negative correlations between
iFC and SD-iFC for both ASD (r =�0.25, p = 0.02) and
TD (r =�0.54, p = 4 · 10�7) groups. Mediation analysis on
this pair showed a marginal mediated effect (nab =�1.91;
p = 0.055), which was, however, significant after adding
the covariates in the model (nab =�2.1; p = 0.03).

Finally, we compared correlation maxima for the two DMN
hubs (PCC–mPFC) across the entire time series in each partic-
ipant. There was no significant difference (t =�1.04, p = 0.2)
in peak connectivity between the TD group (M = 0.92) and
the ASD group (M = 0.91).

To investigate the effect of window length on the results,
we ran some additional analyses using some longer windows,
that is, 40, 50, and 60 sec. While window size had minor ef-
fects, the overall pattern of results remained the same (Sup-
plementary Figure S1). Performing mediation analysis also
showed a significant mediated effect between all ROI pairs
that showed significant difference in both iFC and SD-iFC.
The ROI pairs that met the first two requirements for the me-
diation analysis are indicated by black asterisks in Supple-
mentary Figure S1.

Effects of minimal censoring and data length on the main
results were also investigated in an additional analysis, in-
cluding only longer time series (6 min per subject), with a re-
laxed FD threshold. As shown in Supplementary Figure S2,
results were consistent with those from the initial analysis.
Mediation analysis was also performed on the two ROI
pairs (PCC-mPFC and L Thal-R Thal) that showed signifi-
cant difference in both iFC and SD-iFC. We found a signif-
icant mediated effect for both PCC-mPFC (nab=�2.48,
p = 0.01), and L Thal-R Thal (nab=�2.4, p = 0.017), which
remained significant after adding the covariates to the
model (Supplementary Fig. S2).

Study 2

Sixty-four subjects from the in-house dataset, who passed
all the aforementioned criteria, were optimally matched in
two groups (32 ASD and 32 TD), and used for further analysis.
As compared to TD participants, ASD participants exhibited
both underconnectivity and overconnectivity for different
pairs (See Table 2 and Figure 3A for details). Figure 3B
shows the t-statistics for iFC differences (shown in Fig. 3A,
lower triangle) versus the t-statistics in SD-iFC differences
(shown in Fig. 3A, upper triangle). As in study 1, we found
a significant negative correlation (r =�0.21, p = 0.04) between
the iFC and SD-iFC t-statistics across different ROI pairs.
Mediation analysis was performed on PCC-mPFC, which
was the only pair that showed significant differences in both
iFC and SD-iFC. Figure 4 shows the relation between iFC
and SD-iFC for PCC-mPFC across subjects. We found a sig-
nificant negative correlation between iFC and SD-iFC for
both ASD (r =�0.63, p = 1.0 · 10�4) and TD (r =�0.63,
p = 8.1 · 10�5) groups. Mediation analysis also showed a sig-
nificant mediated effect (nab =�2.6; p = 0.008). Adding cova-
riates to the model did not change the significance of the
mediated effect (nab =�2.4; p = 0.011).

Testing again for differences in peak connectivity (corre-
lation maxima across time series), we did not find a signifi-
cant difference (t =�0.49, p = 0.6) between the ASD group
(M = 0.92) and the TD group (M = 0.93).

Discussion

Our study is the first to investigate the temporal dynamics
of functional connectivity in ASD using fcMRI and to relate
the common finding of underconnectivity from static fcMRI
studies to increased IIV across time. In two independent an-
alyses, using first a selective high-quality (low-motion) sub-
set from ABIDE and then an in-house dataset, we found that
mean (static) iFC was negatively correlated with the variabil-
ity (standard deviation) across time series in both ASD and

FIG. 3. Connectivity matrix showing t-statistics for iFC in lower triangle in (A) ( p < 0.05, uncorrected, denoted by cyan as-
terisks), and for SD-iFC in upper triangle in (A) ( p < 0.05, uncorrected, denoted by yellow asterisks). Black asterisks indicate
ROI pairs that exhibited significant differences in both iFC and SD-iFC. (B) Scatterplot showing relation between the computed
t-statistics (for iFC and SD-iFC) across all ROI pairs in the matrices above. Green vertical line and blue horizontal lines show the
threshold for significance. Cyan circled points show ROI pairs with a significant difference in only iFC (indicated by cyan as-
terisks), yellow circled points indicate those with a significant difference in only SD-iFC (indicated by yellow asterisks), and the
black circled points are ROI pairs that exhibited significant differences in both iFC and SD-iFC (indicated by black asterisks).
Participants were from in-house database (32 ASD, 32 TD). Color images available online at www.liebertpub.com/brain
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TD groups, indicating that participants with high iFC levels
showed the lowest levels of variability across time. More
specifically, convergent evidence from both datasets showed
that reduced static iFC in ASD (‘‘underconnectivity’’) was
related to increased temporal variability. Selecting an ROI
pair (PCC-mPFC), for which underconnectivity findings
have converged in the literature (Abbott et al., 2015; Assaf
et al., 2010; Doyle-Thomas et al., 2015; Monk et al., 2009;
von dem Hagen et al., 2012; Washington et al., 2013), medi-
ation analysis showed that reduced static iFC was signifi-
cantly impacted by increased temporal variability. The
research questions motivating the current study were thus
mostly affirmed by our findings: (1) iFC variability across
time was atypically increased in ASD for several ROI pair-
ings, that is, for PCC–mPFC, L LP–mPFC, and L Thal–R
Thal pairs in Study 1 and for PCC–mPFC pair in Study 2;
and (2) group differences in static iFC were significantly im-
pacted by differences in the variability of iFC across time.
Our results thus indicate that reduced static iFC (undercon-
nectivity) in ASD may, in part, reflect frequent fluctuations
in mental state across time.

The findings suggest that the common observation of func-
tional underconnectivity from fMRI studies in ASD (reviewed
in Hughes, 2007; Just et al., 2012) may have to be re-
examined. If underconnectivity is partially accounted for by
variability across time (as shown here) and if underconnectiv-
ity is generally related to temporal variability (as shown for a
large number of ROI pairs in two independent datasets; Figs. 1B
and 3B), this implies that the most common finding in fcMRI
studies of ASD may, in part, reflect dynamic aspects of neuronal
activity that have been neglected in the large autism fcMRI lit-
erature thus far. More specifically with regard to the commonly
used resting-state fcMRI approach and the specific findings for
DMN hubs in PCC and mPFC, our results imply that—rather
than being broken or consistently reduced—connectivity simply
varies more substantially between periods of high iFC lev-
els (close to those found in TD brains) and those of unusu-

ally low iFC levels. This interpretation was also supported
by our analyses of iFC peaks, across entire time series,
which suggested that people with ASD reach normal or
near-normal levels of iFC at some point(s) during c. 6 min-
utes of scanning, whereas comparably high levels are main-
tained more consistently in neurotypical people (see also
examples in Fig. 5). In our interpretation, this implies that
in ASD the neural architecture supporting the connections
in question, rather than being grossly deficient, may not
function at high levels as consistently as in the TD brain.

However, for full corroboration, data with higher temporal
resolution (shorter TR) may be needed. In the present study,
sliding windows were rather wide (30 sec) to ensure adequate
power (15 time point measurements per window). Expected
(but unresolved) variability within these wide windows
would have lowered the detected peak iFC in ASD partici-
pants, resulting in lower groupwise mean of these peaks, com-
pared to the TD group. Indeed, the limited temporal resolution
of our sliding window analyses leaves open the possibility
that the impact of temporal variability on static underconnec-
tivity findings may have been substantially underestimated.
Temporal variability may, in fact, fully account for static
underconnectivity in ASD, but this hypothesis can only be
tested with fMRI data acquired at much shorter TR or with
electrophysiological techniques, such as magnetoencepha-
lography.

Our findings are consistent with some previous reports of
increased IIV in ASD, which has been shown for behavioral
measures (Geurts et al., 2008), as well as for fMRI BOLD re-
sponses (Dinstein et al., 2012; Haigh et al., 2014) and evoked
EEG responses (Milne, 2011) to sensory stimuli. However,
they are also different and novel in important ways. First,
whereas previous work has focused on trial-by-trial variabil-
ity of stimulus-driven responses, our findings suggest compa-
rable IIV in ASD for spontaneous (nonstimulus-driven)
BOLD fluctuations. Second, our findings show that IIV
does not only affect regional activity, but also interre-
gional cooperativity. This indicates that underlying neural

FIG. 4. Relation between static iFC and SD-iFC of PCC
and mPFC across subjects. The red and blue horizontal lines
show the iFC group means for ASD and TD, respectively,
and the vertical lines indicate the SD-iFC group means. Partic-
ipants were from the in-house database (32 ASD, 32 TD).
Color images available online at www.liebertpub.com/brain

FIG. 5. Sliding window correlation time series between PCC
and mPFC for two representative participants from each group.
Color images available online at www.liebertpub.com/brain
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mechanisms may be shared between trial-by-trial IIV and
IIV of iFC. It has been shown that DMN deactivation (Anti-
cevic et al., 2010; Hinds et al., 2013) and strength of anticor-
relation between DMN and task-positive networks (Kelly
et al., 2008) are positively correlated with task performance.
More general evidence suggests that intrinsic neuronal fluc-
tuations captured in iFC are functionally relevant, impacting
trial-by-trial variability of both BOLD and behavioral re-
sponses (Fox et al., 2006, 2007; Mennes et al., 2011).
These findings imply that greater variability of iFC states
in ASD, as detected in the present study, may have serious
functional implications, affecting the brain’s readiness for
cognitive and sensorimotor processing. Indeed, IIV of behav-
ioral and neural responses has been observed in different
types of disorders and may be indicative of subtle anomalies
in gray matter, WM connectivity, or modulatory (e.g., dopa-
minergic) control systems (MacDonald et al., 2006).

It should be noted, however, that BOLD changes mea-
sured in a resting state probably reflect a mixture of intrinsic
fluctuations and online cognitive processing or mind-
wandering. It has been acknowledged (Buckner et al.,
2013) that resting-state fMRI actually involves tasks (not
thinking of anything in particular, not moving, not falling
asleep, etc.), and performance on any of these may differ be-
tween TD and ASD cohorts. Head motion can be measured,
but other aspects such as mind-wandering are hard or impos-
sible to monitor. While implementation of resting states in
fcMRI has been empirically productive, with strong evidence
of validity and reliability (Buckner et al., 2013; Honey et al.,
2009; Shehzad et al., 2009; Van Dijk et al., 2010), the fact
remains that its use violates fundamental principles of exper-
imental psychology (e.g., tight control over strictly defined
task conditions). With the exponential growth of the fcMRI
literature in ASD, it has often been overlooked that crucial
methodological basics are not fully established (Nair et al.,
2014). The field has made great advances, but it is easy to
overlook that some of the very first steps have never been
taken. In other words, the field of ASD connectivity research
has embraced resting-state fcMRI in the absence of a com-
plete understanding of what happens in the brains of people
with ASD when they are in a task-free and ill-defined, but
constrained and uncomfortable situation, how this may differ
from what happens in neurotypical control participants, and
how such differences might affect iFC measurements. The
present study makes one step toward this goal, by showing
that IIV across time contributes significantly to abnormalities
detected in static iFC studies.

Our study had a number of limitations. Aside from issues
related to low temporal resolution of dynamic iFC analyses,
as discussed above, the need for participants who hold very
still during several minutes of scanning restricts inclusion
mostly to people at the higher-functioning end of the autism
spectrum. Abnormalities in lower-functioning people with
ASD may not be simply more severe, but may differ qualita-
tively. Recent development of fMRI protocols with greater
protection from motion artifacts (Olafsson et al., 2015) may
permit inclusion of lower-functioning participants in the fu-
ture. In addition, limitations of data available from ABIDE
created trade-offs between data quality, time series length,
and sample size. In particular, 4-min time series used in the
primary analysis were shorter than in previously published dy-
namic fcMRI studies. Although this may be problematic, our

main findings were replicated in supplementary analyses
using only longer 6-min time series. It is further notable that
group differences in functional connectivity, as shown in
Figures 1A and 3A, were not robust enough to survive correc-
tion for large numbers of comparisons within the entire ROI
matrix. This may be attributed to several factors combined:
First, iFC abnormalities in ASD may be generally not very
pronounced when strictly quality-controlled and motion-
matched datasets are used (Tyszka et al., 2014). Second, the
use of ROIs from established parcellation schemes is prag-
matically advantageous, but locally specific group differ-
ences in iFC may be watered down when time series
across numerous voxels are averaged within each ROI. Spe-
cifically with respect to ABIDE, the use of multisite data
may have further weakened effects due to added factors
of variability (related to different scanners, protocols, co-
hort demographics, etc.).

A growing number of iFC studies have reported static
overconnectivity in ASD (e.g., Abbott et al., 2015; Di Mar-
tino et al., 2011; Fishman et al., 2014; Khan et al., 2015;
Supekar et al., 2013). ROI pairs tested in the present study
did not show robust overconnectivity and the dynamic as-
pects of such effects could thus not be investigated here.
The question whether overconnectivity also reflects differ-
ences in temporal variability in ASD therefore remains open.

Conclusion

In this fcMRI study investigating dynamic functional connec-
tivity changes across time, we found that commonly reported
underconnectivity in ASD is, at least in part, driven by greater
variability across time. Connections that appear reduced may
thus not be broken in ASD, but simply subject to more frequent
changes across several minutes of fMRI scanning.
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