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Abstract

Deep-sequencing of bacterial transcriptomes using RNA-Seq technology has made it possible to

identify small non-coding RNAs, RNA molecules which regulate gene expression in response to

changing environments, on a genome-wide scale in an ever-increasing range of prokaryotes.

However, a simple and reliable automated method for identifying sRNA candidates in these large

datasets is lacking. Here, after generating a transcriptome from an exponential phase culture of

Mycobacterium tuberculosis H37Rv, we developed and validated an automated method for the

genome-wide identification of sRNA candidate-containing regions within RNA-Seq datasets based

on the analysis of the characteristics of reads coverage maps. We identified 192 novel candidate

sRNA-encoding regions in intergenic regions and 664 RNA transcripts transcribed from regions

antisense (as) to open reading frames (ORF), which bear the characteristics of asRNAs, and vali-

dated 28 of these novel sRNA-encoding regions by northern blotting. Our work has not only pro-

vided a simple automated method for genome-wide identification of candidate sRNA-encoding

regions in RNA-Seq data, but has also uncovered many novel candidate sRNA-encoding regions

in M. tuberculosis, reinforcing the view that the control of gene expression in bacteria is more

complex than previously anticipated.

Key words: RNA-Seq, transcriptome, non-coding RNA, Mycobacterium tuberculosis

Introduction

The causal agent of tuberculosis (TB), Mycobacterium tuberculosis,
is one of the most ancient and successful pathogens and causes sub-
stantial mortality worldwide [1]. New approaches in both drug and

vaccine development, urgently needed to reduce the global burden
of TB, will be greatly facilitated by a greater understanding of the
basic biology underlying the response of this pathogen to the harsh
environments it encounters during pathogenesis. An increasing
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number of studies have demonstrated that bacterial small non-
coding RNAs (sRNAs) play an important role in the fine-tuning of
gene expression in response to environmental changes [2,3] and
stress conditions [4,5] such as those encountered during host inva-
sion, but the study of sRNAs in M. tuberculosis is still in its infancy.

sRNAs are classified according to their genomic location: anti-
sense (as) or cis-encoded sRNAs which are oriented antisense to
their target protein-encoding mRNA, and intergenic region (IGR) or
trans-encoded sRNAs which are located in IGRs and act in trans on
targets that can be located at some distance from the sRNA [4,6,7].
Earlier studies on sRNAs in M. tuberculosis using classical experi-
mental and computational approaches [8–10] identified 26 sRNAs,
including IGR sRNAs, asRNAs and potential regulatory untrans-
lated regions (UTRs). Deep sequencing has subsequently been applied
to identify novel sRNA candidates in M. tuberculosis [11–13],
increasing the total number of sRNAs identified in M. tuberculosis
to 59 (reviewed in Ref. [14]).

Although RNA-Seq has now been applied for genome-wide iden-
tification of sRNAs in a broad range of bacteria, a simple, effective,
and systematic method for identifying potential sRNA candidates for
further investigation within RNA-Seq datasets is not yet available.
Arnvig et al. [15], for example, identified sRNA candidates in
M. tuberculosis based on visual examination of reads coverage maps
after mapping RNA-Seq data to the H37Rv reference genome.
Cortes et al. [16] later applied the dRNA-Seq approach for global
mapping of transcription start sites (TSS) to M. tuberculosis. In addi-
tion to providing information on TSS and regulatory mechanisms
associated with already annotated genes or operons, dRNA-Seq also
facilitates the discovery of novel regulatory elements, including
sRNAs expressed from IGRs or antisense to ORFs [16–19]. Cortes
et al. [16] identified 4164 TSS, and reported that 8% of IGRs had a
TSS that was not associated with a previously reported ncRNA.
They identified 758 annotated CDSs that were associated with anti-
sense TSS, but did not provide additional verification of these tran-
scripts. Pellin et al. [12], also working on M. tuberculosis, developed
a more systematic method for genome-scale identification of sRNA
candidates, which integrates examination of the characteristics of
RNA-Seq reads coverage maps and ‘conservation maps’ (based on
the conservation of nucleotides in each candidate sRNA sequence
across the mycobacteria). However, only a relatively small portion
(258/1373; 19%) of the candidate sRNAs identified using their
method could be validated in a later study using microarrays [13].

Here, we describe and validate an alternative method for
genome-wide identification of sRNA candidate-encoding regions
within RNA-Seq datasets based on sequencing libraries of different
lengths to capture the whole cellular transcriptome and subsequent
analysis of the characteristics of reads coverage maps.

Materials and Methods

Bacterial strains and culture conditions

Mycobacterium tuberculosis H37Rv was cultured in Middlebrook
7H9 medium (Difco Laboratories, Detroit, USA) with 10% oleic
acid-albumin-dextrose-catalase (OADC) enrichment. Cultures were
harvested at an OD600 of about 0.6.

RNA extraction and purification

Total RNA was extracted using a FastRNA™ Pro Blue kit (MP
Biomedicals, Santa Ana, USA). Frozen cell pellets were thawed
on ice, resuspended in 1ml RNApro™ solution, lysed using a

FastPrep-24 (6.0M/s, 45 s) (MP Biomedicals), and centrifuged at
12,000 g for 10min at 4°C according to the manufacturer’s instruc-
tions. RNA was then precipitated at −80°C overnight using an
equal volume of isopropanol, 1/10 volume of 3M sodium acetate
(pH 5.3), and 2 μl glycogen (5 mg/ml). RNA was quantified after
every manipulation step using a NanoDrop 1000 spectrophotometer
(NanoDrop Technologies, Houston, USA). Samples containing RNA
were treated with RNA-free DNase I (Fermentas, Glen Burnie, USA)
to remove any residual DNA and purified by TRIzol (Invitrogen,
Carlsbad, USA) extraction according to the manufacturer’s instruc-
tions. Ten micrograms of total RNA was subject to further purifica-
tion; 16S and 23S rRNA were depleted using a MICROBExpress Kit
(Ambion, Foster City, USA) according to the manufacturer’s instruc-
tions. Purified RNA samples were finally resuspended in 6 μl of
RNase-free water and stored at −80°C until required.

cDNA library construction and sequencing

Total RNA was separated into three fractions of different lengths
using 6% 7M urea polyacrylamide gel electrophoresis (PAGE).
Fraction 1 contained RNAs of 18–40 nt in length, fraction 2 con-
tained RNAs of 40–80 nt in length, and fraction 3 contained RNAs
of 80–140 nt in length. The remaining rRNA-depleted RNA (frac-
tion 4) was sheared into smaller fragments of ~140 nt at elevated
temperatures using divalent cations.

To prepare for Illumina single-end sequencing, RNAs from frac-
tions 1 and 2 were first isolated from total RNA by PAGE. After
ligation of 5′ and 3′ RNA adapters, cDNA constructs were prepared
by reverse transcription followed by low cycle polymerase chain
reaction (PCR) amplification (initial denaturation at 98°C for 30 s,
followed by 15 cycles of 98°C for 10 s, 60°C for 30 s, and 72°C for
15 s, and then 72°C for 10min). PCR products were collected by gel
purification and sequenced on an Illumina Genome Analyzer II
(Illumina, San Diego, USA) platform according to the manufac-
turer’s instructions (45 cycles for 18–40 nt library and 81 cycles for
40–80 nt library).

For Illumina paired-end sequencing, strand-specific libraries were
constructed for RNA from fractions 3 (80–140 nt) and 4 (>140 nt)
(isolated by PAGE as above) according to a previously reported
dUTP method [20] with some modifications. Briefly, 200 ng of total
RNA was fragmented by heating at 98°C for 40min in 0.2mM
sodium citrate, pH 6.4 (Ambion). After concentration to 5 μl, the
RNA was mixed with 3 μg random hexamers, incubated at 70°C for
10min, and then chilled on ice. First-strand cDNA was synthesized
with this RNA primer mix by adding 4 μl of 5× first-strand buffer,
2 μl of 100mM DTT, 1 μl of 10mM dNTPs, 4 μg of actinomycin D,
200 U of SuperScript III and 20 U of SUPERase-In, incubating at
room temperature for 10min followed by incubation at 55°C for 1 h.
The first-strand cDNA was purified by PCIA extraction (twice)
and ethanol precipitation with 0.1 volume 5M ammonium acetate
to remove dNTPs, and then resuspended in 104 μl H2O. Second-
strand cDNA was synthesized by adding 4 μl of 5× first-strand buf-
fer, 2 μl of 100mM DTT, 4 μl of 10mM dNTPs [dTTP was replaced
by dUTP (Sigma, St Louis, USA)], 30 μl of 5× second-strand buffer,
40 U of Escherichia coli DNA polymerase, 10 U of E. coli DNA
ligase, and 2 U of E. coli RNase H, and then incubating at 16 °C for
2 h. The paired-end library for Illumina sequencing was prepared
using a TruSeq mRNA kit (Illumina) according to the instructions
provided, with the following modifications: (i) five times less adapter
mix was added to the cDNAs; (ii) the dsDNA product was incu-
bated with 1 U Uracil-DNA Glycosylase (Invitrogen) at 37°C for
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15min followed by 5min of incubation at 95°C before PCR to excise
dUTP; (iii) PCR was performed with Phusion High-Fidelity DNA
polymerase (New England Biolabs, Ipswich, USA) with GC buffer
and 2M betaine; and (iv) PCR primers were removed using
1.8 volumes of AMPure beads (Beckman-Coulter, Brea, USA).
Sequencing of 91 bp paired-end reads was then carried out on the
Illumina Genome Analyzer II following the manufacturer’s protocols,
and image analysis and base calling were performed on the Genome
Analyzer pipeline (Illumina) using default parameters.

Processing and analysis of sequenced reads

Trimmomatic (v 0.32) [21] was used to filter reads as follows:
(i) adapter sequences were removed; (ii) reads with a mean Phred
quality score <15 or a Phred quality score <15 across the whole read
(4-bp sliding window) were discarded; (iii) reads <16 nt in length
were discarded. Trimmed reads were then aligned to the
M. tuberculosis H37Rv reference genome (NC_000962.3) using
Bowtie2 [22] with default parameters, allowing up to two mis-
matches. Strand-specific reads coverage maps were generated for each
genomic base based on Bowtie2 alignments [22] using SAMtools [23]
and BEDTools [24]. Sequence coverage at each genomic position was
visualized with integrated genome browser (IGB) [25].

Identification of candidate sRNA-encoding regions

Candidate sRNA-encoding regions were identified based on cover-
age depth at each base. Each library was screened for putative
sRNA-encoding regions with a customized Perl script (unpublished
work) according to the following principles: (i) coverage depth at
each base should be higher than a certain cut-off value (100);
(ii) mean coverage of the selected regions should be at least twice as
high as the cut-off value; (iii) 5′/3′ ends of the transcript should be
at least 100/60 bp, respectively, from the nearest protein-encoding
ORFs (to avoid misclassification of UTRs as sRNAs); and (iv) tran-
scripts should be ≥40 nt and ≤500 nt in length. sRNA candidate-
encoding regions from the four libraries, which had overlapping
genome coordinates, were then merged and the distance between the
5′ and 3′ ends of the merged fragments and the nearest coding
ORFs was reexamined. Those that met criteria (iii) were retained as
candidate sRNA-encoding regions.

To determine whether any highly expressed sRNA-encoding
regions were misclassified as UTRs (i.e. the 5′/3′ ends were <100/60 bp,
respectively, from the nearest protein-encoding ORFs), further
rounds of screening were performed at progressively higher coverage
depth cut-off values (1000, 10,000, and 100,000). sRNA candidate-
encoding regions from further rounds of screening that met the above
criteria were added to the list of candidate sRNA-encoding regions.

sRNA secondary structure conservation analysis

RNAz [26], a program for predicting structurally conserved and
thermodynamically stable RNA secondary structures, was used with
default parameters to detect conserved secondary structures in
sRNA-encoding regions. An RNAz score of 0.5 was considered to
indicate secondary structure conservation.

Calculation of the expression of sRNA-encoding regions

Raw counts for putative sRNA candidate-encoding regions were
obtained for each library using featureCounts (version 1.4.6-p3)
[27], with the following parameters: (i) –M: multi-mapping reads/
fragments were counted N times, where N is the number of reported

mapping locations; (ii) –fraction: a fractional count 1/N was gener-
ated for each multi-mapping read; and (iii) –O: multi-overlapping
features were allowed. Transcripts per million (TPM) was
calculated for each sRNA-encoding region as described by
Wagner et al. [28].

Northern blotting

Northern blotting was performed as described by Miotto et al. [13].
Oligonucleotides used are shown in Supplementary Table S1.

Analysis of nucleotide conservation in candidate

sRNA-encoding regions across Mycobacterium spp.

Conservation of candidate sRNA-encoding region nucleotide
sequences was assessed across 65 complete mycobacterial genomes
(Supplementary Table S2) downloaded from the NCBI ftp server
(ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Bacteria/;
August 1, 2015) using Blast-Like Alignment Tool v 36 (BLAT) [29]
according to Shinhara et al. [30]. An sRNA-encoding region was
considered ‘conserved’ in another organism if its sequence had:
(i) an E-value of <0.01; (ii) >70% identity with the sRNA sequence
in the other organism; and (iii) its length was >70% of the length
of the sRNA sequence in the other organism. Conservation scores
were calculated using the formula: [(nucleotide match-length) ×
(nucleotide identity/100)]/(nucleotide length of candidate sRNA). A
given candidate sRNA-encoding region was considered to be con-
served within the Mycobacterium tuberculosis complex (MTBC) if
its nucleotide sequence was conserved in >90% of the MTBC strains
and <10% of the non-MTBC strains included in this analysis.
Hierarchical clustering of the conservation scores of candidate
sRNAs was performed using the pheatmap package in R [31].

Results and Discussion

Method development and validation—detection of

tRNAs and previously reported sRNAs

The success of any RNA-Seq strategy for global identification of
sRNAs will depend on whether: (i) the initial cDNA library that cap-
tures the transcriptome is an accurate reflection of cellular sRNA
expression and (ii) the analytical approach taken is able to accu-
rately identify sRNAs within the dataset generated. A variety of
cDNA library construction strategies for transcriptome capture are
available; however, using standard library construction procedures a
portion of cellular RNAs (sRNA sequencing: 18–40 nt and mRNA
sequencing: >200 nt) cannot be detected in a single cDNA library
due to technical limitations such as RNA ligation efficiency and the
read length of Illumina sequencers. Our goal was to capture a tran-
scriptome that reflected the sRNA composition of bacterial cells as
closely as possible, bearing RNA processing and degradation in
mind [32]. We thus chose to split total RNA into fractions accord-
ing to RNA length and prepare cDNA libraries of different lengths
(18–40 nt, 40–80 nt, 80–140 nt, and >140 nt) in order to capture
the full length of all RNAs within the bacterial cell. We then
designed a systematic strategy for analyzing the RNA-Seq data
captured in this way from an M. tuberculosis H37Rv transcriptome
(a profile of which is presented in Table 1) to automatically select
putative sRNA-encoding regions (see ‘Materials and Methods’ sec-
tion; Fig. 1) based on selection parameters that describe the likely
length (40–500 nt), expression characteristics (coverage depth at
each base of >100 and a mean coverage of >200), and genomic
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location (5′/3′ ends >100/60 bp, respectively, from flanking protein-
encoding ORFs) of sRNAs. To take RNA processing and degrada-
tion into consideration, we merged putative sRNA-encoding regions
from the four cDNA libraries according to genome coordinates in
order to determine their full length, based on the fact that RNAs of
different lengths derived from the same transcript were likely pre-
sent within the transcriptome. Having retrieved putative sRNA-
encoding regions in this automated manner, we characterized each
candidate region using the RNAz algorithm [26], which identifies
RNA structures based on both structural conservation and thermo-
dynamic stability, and nucleotide conservation analysis [30] to
assess its conservation among Mycobacterium spp. Selected sRNA

candidate-encoding regions were subsequently validated by north-
ern blotting.

The parameters and analytical process used in our method were
optimized by testing their ability to accurately retrieve M. tuberculosis
tRNA coding sequences, known to be stable and conserved, and
59 previously reported M. tuberculosis sRNAs, from our RNA-Seq
dataset. The expression of all 45 tRNAs was detected in our tran-
scriptome, and the 5′ and/or 3′ ends of 35 of the 45 tRNAs were
found to be identical with genome annotations (±3 bp; Fig. 2 and
Supplementary Table S3). Expression of 37 of the 59 previously
reported sRNAs was also detected (Fig. 3 and Supplementary
Table S4). Visual examination of reads coverage maps using IGB
[25] indicated that the expression of 19 of the 22 remaining pre-
viously reported sRNAs was not captured in any of the libraries,
and they were thus likely not expressed in the growth phase or
under the culture conditions sampled in this study (Fig. 4). Twelve
of the 37 previously reported sRNAs detected here had coding
regions that were too close to flanking genes (<60/100 bp) and thus
did not meet our criteria for identifying sRNA-encoding regions.
The eight sRNAs whose 5′ end genome coordinates were previously
determined by rapid amplification of cDNA end (RACE) were
detected with good accuracy (5′ to ±1 bp and 3′ to ±15 bp)
(Supplementary Fig. S1). For example, MTS0997 (named as
ncRv11264Ac here according to the nomenclature proposed in
Ref. [33]), one of three sRNAs involved in pathogenesis identified
by Arnvig et al. [15] and reported to be a 116 nt transcript, was
identified by our analytical method as a 117 nt sRNA whose 5′ end
was identical to that previously reported.

The value of our strategy of using RNA libraries of different
lengths and then merging putative sRNA-encoding regions from
these libraries can be seen using MTS2823 (named ncRv13661B
here) as an example (Supplementary Fig. S1). Its 5′ end was mapped
to genome position 4,100,669 by Arnvig et al. [15] and reported to
be 300 nt in length. Here, visual examination of RNA-Seq reads
from <140 nt libraries showed that they mapped to both ends of the
ncRv13661B encoding region and formed multiple short peaks
(from 4,100,684 to 4,100,979) that could easily be mistakenly
called as sRNAs if only one library was considered. Reads from the
>140 nt library, however, were distributed in the middle of the
ncRv13661B encoding region and formed one peak (from

Table 1. RNA sequencing profiles for an exponential phase culture of M. tuberculosis H37Rv

Readsa which map to

Library Total mapped
reads

rRNA Antisense to
rRNA

tRNA Antisense to
tRNA

mRNAb Antisense to
mRNAb

IGR Known
sRNAc

Novel
sRNAd

18–40 nt 10.33 0.51 0.04 1.15 0.04 3.60 2.36 2.63 0.85 2.05
40–80 nt 13.03 1.14 0.00 0.56 0.00 7.44 1.15 2.74 0.72 1.82
80–140 nt 4.27 2.26 0.00 0.41 0.00 0.54 0.16 0.90 0.29 0.35
>140 nt 14.94 11.79 0.02 0.00 0.02 1.87 0.24 0.98 0.31 0.57

% of total mapped reads

18–40 nt 4.93 0.39 11.10 0.39 34.85 22.84 25.50 8.24 19.83
40–80 nt 8.72 0.01 4.29 0.01 57.14 8.81 21.02 5.52 13.96
80–140 nt 52.84 0.01 9.62 0.01 12.70 3.82 20.99 6.76 8.15
>140 nt 78.94 0.16 0.02 0.16 12.54 1.61 6.57 2.07 3.84

aNumber of reads given in millions (the read count for reads that mapped to multiple sites was divided equally between the sites).
bProtein CDSs in the reference genome.
cFifty nine previously reported sRNAs (M. tuberculosis H37Rv).
dEight hundred and fifty six novel candidate sRNA-encoding regions identified using our approach.

Figure 1. Outline of our procedure for identifying sRNA candidate-encoding

regions After constructing and sequencing cDNA libraries containing RNAs

(>18 nt) of different lengths, sequenced reads from each library were mapped

to the H37Rv reference genome. Reads coverage maps were generated and a

cut-off value (>100) was used to identify putative 5′ and 3′ ends of sRNA

candidate-encoding regions in each library. sRNA candidate-encoding regions

from the four libraries with overlapping genome coordinates were merged

and then classified as putative antisense (as) or intergenic (IGR) sRNA

candidate-encoding regions, depending on their location in the genome.

Candidates were evaluated using RNAz [26]. Forty sRNA candidate-encoding

regions were selected for validation by northern blotting.
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4,100,692 to 4,100,950), connecting the peaks observed in the
other libraries. Merging the sRNA-encoding regions from all four
cDNA libraries yielded an sRNA-encoding region whose full length
was 296 nt (consistent with the band observed by northern blotting),
and its 5′ end mapped to 4,100,684. RNA-Seq reads for the
ncRv11264Ac-encoding region mentioned above showed a similar
distribution (Supplementary Fig. S1). Generally speaking, informa-
tion derived from the <140 nt libraries can be used to determine the
5′/3′ borders of longer (approximately >100 nt) sRNA-encoding
regions, and that from the >140 nt library to determine their full
length (i.e. to determine whether adjacent peaks in reads maps are
derived from the same or different sRNA-encoding regions).

During method optimization, we noted that some previously
reported sRNAs that did not meet our sRNA genomic location cri-
teria were highly expressed and well-validated sRNAs. As UTR
length varies with gene, and cut-off values are therefore somewhat
arbitrary, we added further rounds of selection at progressively
higher reads coverage cut-off values to detect such highly expressed
sRNAs more accurately in the RNA-Seq dataset. For example, a
919 nt candidate sRNA-containing region that overlapped with
Rv1535 was predicted using a cut-off value of 100, but was not
classified as an sRNA-encoding region due to this overlap. When
the cut-off value was raised to 10,000, we identified a 50 nt

sRNA-encoding region, named here as ncRv11534A, transcribed
from the Rv1534-Rv1535 intergenic region. This sRNA was pre-
viously reported by Miotto et al. [13] and validated by northern
blotting (Supplementary Table S4). Further rounds of selection thus
improved the accuracy of our approach and prevented misclassifica-
tion of sRNAs.

Multiple isoforms of the one sRNA were evident in some cases.
For example, two isoforms were identified in the B11 encoding
region (ncRv13660Ac: 237 nt; ncRv13660Bc: 83 nt; Supplementary
Fig. S1 and Table S4), previously reported to produce an sRNA of
93 nt in length [8]. Interestingly, the expression of the ~80 nt sRNA-
encoding regions (ncRv13660Bc) was 140 folds more than that of
ncRv13660Ac (237 nt) (Supplementary Table S5), implying differ-
ences in the regulation or processing of these transcripts. Multiple
bands (~80, ~100, ~240) were also detected by northern blotting
(Supplementary Fig. S1). These results imply that transcription of
multiple sRNAs from the same region can be detected using our
method. Further in-depth analysis is required to unravel the func-
tions of different isoforms and the mechanisms underlying this com-
plex pattern of regulation.

The above results suggest that our method can accurately detect
the expression of sRNA-encoding regions, giving a good indication
of the likely 5′ and 3′ ends, and can also detect the presence of

Figure 2. Reads coverage maps of four representative tRNA coding regions The coverage maps from the four RNA-Seq libraries are for RVNt01 (A), Rvnt25 (B),

Rvnt03 (C) and Rvnt13 (D). Red: + strand; blue: – strand. Dashed lines indicate the predicted 5′/3′ ends of the tRNAs, black arrows indicate the tRNAs identified

using the approach used in this study. The 5′ or 3′ ends of 35/45 tRNAs were almost identical to their genome annotations (±3 bp, Supplementary Table S3).
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sRNAs of different lengths transcribed from the same location.
Accurate determination of 5′ and 3′ ends, however, requires further
validation by 5′ and 3′ RACE. Taken together, these validation
steps demonstrate that while our method will not detect all sRNAs
due to the stringent criteria used, it is useful and reliable for
detecting a high proportion of the sRNA-encoding regions in RNA-
Seq data.

Genome-wide prediction of sRNA-encoding regions in

M. tuberculosis H37Rv

We applied the above approach to detect sRNA-encoding regions in
an M. tuberculosis H37Rv transcriptome, discovering 883 putative
sRNA-encoding regions (including 27, which correspond to the
25 previously reported sRNAs discussed above; Figs. 3 and 5, and
Supplementary Table S5). Of the remaining 856 novel candidate
sRNA-encoding regions (length: 40–449 nt; mean length: 75 nt;
median length: 57 nt), 192 (22.5%) were classified as candidate

IGR sRNA-encoding regions and 664 (77.5%) as candidate
asRNA-encoding regions. The 10 longest sRNA-encoding regions
were asRNA-encoding regions, and 86% (734 of 856) of all sRNA-
encoding regions were 40–100 nt in length. Of the 20 most highly
expressed sRNA-encoding regions in this transcriptome (Supplementary
Table S5), 14, including ncRv2656A, the most highly expressed sRNA,
were novel sRNA-encoding regions identified using our approach.

The high number of candidate asRNA-encoding regions detected
here deserves further discussion. In recent years, pervasive antisense
transcription has been widely reported in bacterial species as diverse
as E. coli, Helicobacter pylori, Synechocystis sp. PCC6803, and
Staphylococcus aureus [17,34–37], and it has been confirmed by
independent studies using a range of techniques in some species. For
example, pervasive transcription has been detected in E. coli using
DNA microarray-based transcriptomics [38], promoter-reporter
fusion assays [39], and RNA-Seq [34]. Although the functional sig-
nificance of pervasive transcription is still a source of debate, a
growing body of evidence (reviewed in Ref. [32]) suggests that

Figure 3. Distribution of sRNA-encoding regions identified in this study on the M. tuberculosis H37Rv chromosome Novel sRNA-encoding regions validated

by northern blotting are indicated on the outermost ring. Ring 2 shows the genomic positions of previously reported sRNAs (H37Rv); red: 25 sRNAs validated

using our approach; green: 12 sRNAs that were expressed but did not meet the criteria here to be classified as sRNAs; black: sRNAs not identified here due to

very low abundance of RNA-Seq reads. Ring 3 shows all the sRNA-encoding regions identified using our analytical approach. The innermost ring shows the dis-

tribution of high (red) and low (green) GC content across the genome.
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RNAs resulting from pervasive transcription are more than ‘tran-
scriptional noise’ and have important functions in gene regulation
and genome evolution. Many examples of asRNAs that regulate the
expression of an overlapping gene have been reported [40], some of
which exert their effects even though unstable. The high proportion
of reads in our dataset that map to the antisense strand (9%–23%)
likely points to an abundance of ‘real’ antisense transcripts that
have a regulatory function in addition to those which may be
derived from transcriptional noise or RNA degradation. In the
absence of further widely accepted criteria that can discriminate
between functional antisense transcripts and those representing
‘noise’, it is not possible to predict exactly how many of the candi-
date sRNA-encoding regions identified here play a genuine func-
tional role. While structural stability (RNAz score) and sequence
conservation are not definitive criteria as such (not all known
sRNAs have high RNAz scores, only 20 of the 27 regions corre-
sponding to previously reported M. tuberculosis sRNAs identified
here had RNAz scores >0.5) or are highly conserved, asRNA-
encoding regions that meet these criteria are perhaps more likely to
represent genuine functional asRNAs. Here, 318/856 candidate
sRNA-encoding regions identified (246 asRNAs and 72 IGR
sRNAs) had an RNAz score >0.5, indicating that they have highly
stable secondary structures. That more than one-third of asRNA-
encoding regions identified here have high RNAz scores adds further
confidence to their designation as sRNAs. To evaluate nucleotide

Figure 4. Box-plot showing the expression of previously reported sRNAs in

H37Rv More than two-thirds (37/59) of the previously reported highly

expressed sRNAs were detected using the methodology developed here.

(A) The 25 previously reported sRNAs detected here had an average TPM of

1574.1. (B) The 12 other previously reported sRNAs, which did not meet the

criteria here for classification as sRNAs, had an average TPM of 127.7.

(C) The 20 previously reported sRNAs not detected here had an average TPM

of 0.94. Low expression of these 20 sRNAs was the main reason that they

were not detected using our approach.

Figure 5. Two novel sRNA-encoding regions identified in this study (A,B) Reads coverage maps from the 18–40 nt, 40–80 nt, 80–140 nt, and >140 nt RNA-Seq

libraries for ncRv13241B (A) and ncRv0356A (B). Red: + strand; blue: – strand. Dashed lines indicate the predicted 5′/3′ ends of the sRNAs. (C,D) Genomic loca-

tions of the two sRNA-encoding regions. (E,F) Validation of the two sRNA candidates by northern blotting.
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conservation, we assessed the candidate sRNA-encoding regions
against 65 complete Mycobacterium spp. genomes (NCBI, 2015-08-
01) using BLAT. The vast majority of the 59 previously reported
M. tuberculosis H37Rv sRNAs (48, 81.4%) and 560 candidate
asRNA-encoding regions, including 206 that had highly stable sec-
ondary structures, was highly conserved in the 34 MTB complex
strains, but not in other Mycobacterium spp. strains (Supplementary
Table S5), further demonstrating that they likely are genuine
asRNA-encoding regions. In addition, comparison of our results
with the M. tuberculosis TSS data reported by Cortes et al. [16] indi-
cates that 56 candidate asRNA-encoding regions (24 of which had
an RNAz score >0.5) had at least one TSS that mapped within
±1 bp of their 5′ ends (Supplementary Table S5), further indicating
that they are likely to be genuine asRNAs.

We selected 40 putative sRNA candidate-encoding regions that
represented the diversity within our dataset for verification by north-
ern blotting, selecting randomly within categories to include a range of
sizes (short, 23; longer, 17), types (IGR, 14; asRNA, 26), expression
levels (low, 7; medium, 18; high, 15), and RNAz scores (RNAz >0.5:
21). Of these, bands corresponding to 28 (i.e. 70%) of the candidates
(13 IGR sRNAs and 15 asRNAs; RNAz >0.5: 16) were detected
(Supplementary Fig. S2), 22 of which corresponded closely to the pre-
dicted length of the sRNA-encoding region. For example,
ncRv13241B was predicted to be 45 nt in length (Supplementary
Table S5) and a ~50 nt band was detected on northern blots (Fig. 5),
and ncRv0356A was predicted to be an asRNA-containing region of
171 nt in length and a band of ~150 nt was detected (Fig. 5).
Discrepancies in band size for the remaining sRNAs, with bands
observed generally being significantly larger than expected, raise the
possibility that some relatively short sRNA candidate-encoding regions
identified here may be derived from longer transcripts that have under-
gone processing or even degradation during RNA sample preparation.
The high percentage of putative sRNA candidate-encoding regions
yielding positive northern blotting results further confirms the

feasibility and accuracy of the analytical approach developed here for
identifying sRNA candidate-encoding regions in RNA-Seq data.

As a preliminary investigation of the putative functions of the
28 validated sRNAs, we compared their expression in H37Rv with
expression data obtained in a separate RNA-Seq study on the viru-
lent strain H37Ra (cultured under the same conditions; unpublished
data). Six of the 12 sRNAs present in both the H37Rv and H37Ra
transcriptomes showed significantly higher expression in H37Rv
relative to H37Ra (Supplementary Table S6). For example, highly
expressed sRNA ncRv2656A, transcribed from the antisense strand
of Rv2656c, a gene that probably encodes a PhiRv2 phage protein,
was significantly down-regulated in H37Ra to only 7.68% of its
level in H37Rv (P = 2e−16). In addition, all 28 novel sRNA-
encoding regions were highly conserved in the 34 MTB complex
strains, but not in other Mycobacterium spp. strains (Fig. 6 and
Supplementary Table S7). The possible roles of these differentially
expressed sRNAs in M. tuberculosis virulence are worthy of further
investigation.

Comparison of our approach with previous work

A previous report by Pellin et al. [12] described a bioinformatic
pipeline that was used to identify sRNAs in an M. tuberculosis
RNA-Seq dataset based on analysis of expression and conservation
maps. Only a relatively low percentage of the sRNAs predicted (19%),
however, could be validated in a later study using microarrays [13].
Here, we were able to validate 28 of 40 candidate sRNA-encoding
regions (70%) examined by northern blotting. While both methods are
based on the evaluation of RNA-Seq reads coverage maps, our
approach, by using multiple cDNA libraries that cover the full range of
RNA lengths (>18nt) in cellular RNA and improved selection para-
meters, may have facilitated more accurate determination of the full
length of sRNA-encoding regions. For example, 277 of the sRNA-
encoding regions identified here had similar genome coordinates to

Figure 6. Sequence conservation of the 28 novel sRNA-encoding regions identified in this study Sequence conservation of the 28 novel sRNA-encoding

regions across the 65 mycobacterial strains that have complete genome sequences in NCBI. Red indicates high nucleotide conservation and blue indicates no

conservation. The name of each sRNA-encoding region is shown on the right and the order of the genomes is shown at the bottom (see Supplementary

Tables S1 and S7).
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304 [267 Type A (high reads coverage), 16 Type B (medium reads
coverage and conservation), and 21 Type C (highly conserved)] of the
1948 sRNA candidates identified by Pellin et al. In a number of cases,
sRNA-encoding regions identified here to encode single sRNAs corre-
sponded to several adjacent sRNA candidate regions identified by
Pellin et al. For example, sRNA candidates 561, 562, and 654 were
all designated here as having originated from the MTS2823 coding
region: they cover a 294 nt region of the genome (4,100,684–
4,100,977) almost identical to the genomic region covered by
ncRv13661B (4,100,684–4,100,979) identified here (Supplementary
Fig. S1, and Supplementary Table S4). In our method, the step of mer-
ging and reexamining sRNA-encoding regions with overlapping gen-
ome coordinates from the four libraries to determine the borders of
sRNA-encoding regions helps to avoid the miscalling of multiple
sRNAs arising from the same region.

In summary, our study has shown that systematic evaluation
of reads coverage maps alone provides a simple and reliable
method for identifying sRNA candidate-encoding genomic regions
in M. tuberculosis and can accurately detect their expression and
give a good indication of the likely 5′ and 3′ ends of candidate
sRNA-encoding regions. This method should greatly simplify the
task of analyzing RNA-Seq data for the presence of sRNAs. In addi-
tion, functional investigation of novel sRNA candidates identified
here will help to unravel the complexity of sRNA-mediated regula-
tion of gene expression in M. tuberculosis.

NCBI short read archive accession number

Raw sequencing data in *.bedgraph format is available under
Accession Number SPR015765.
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Supplementary data is available at ABBS online.
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