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Abstract

Genomic selection is focused on prediction of breeding values of selection candidates by
means of high density of markers. It relies on the assumption that all quantitative trait loci
(QTLs) tend to be in strong linkage disequilibrium (LD) with at least one marker. In this con-
text, we present theoretical results regarding the accuracy of genomic selection, i.e., the
correlation between predicted and true breeding values. Typically, for individuals (so-called
test individuals), breeding values are predicted by means of markers, using marker effects
estimated by fitting a ridge regression model to a set of training individuals. We present a
theoretical expression for the accuracy; this expression is suitable for any configurations of
LD between QTLs and markers. We also introduce a new accuracy proxy that is free of the
QTL parameters and easily computable; it outperforms the proxies suggested in the litera-
ture, in particular, those based on an estimated effective number of independent loci (M,).
The theoretical formula, the new proxy, and existing proxies were compared for simulated
data, and the results point to the validity of our approach. The calculations were also illus-
trated on a new perennial ryegrass set (367 individuals) genotyped for 24,957 single nucleo-
tide polymorphisms (SNPs). In this case, most of the proxies studied yielded similar results
because of the lack of markers for coverage of the entire genome (2.7 Gb).

Introduction

During the last decades, investigators have mainly concentrated on linkage analysis to detect
the regions of DNA, so-called quantitative trait loci (QTLs), responsible for quantitative varia-
tion. The linkage analysis (LA) is specific because it relies on family data and on pedigrees: seg-
regation of a QTL is studied within a family by means of information related to the family.

In this context, the most popular statistical method for QTL mapping is interval mapping
[1]. It involves scanning the genome by means of genetic markers and testing for the presence/
absence of a QTL at every location in the genome. The mathematical theory behind this con-
cept has been extensively studied for many years and is now well established [2-4]. According
to [5], thousands of QTLs have been detected in plants, animals, and humans by means of
interval mapping as a statistical tool. For instance, [6] detected QTLs responsible for a
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reduction in grain shattering in cultivated rice, and [7] uncovered a QTL responsible for
tomato fruit size.

More recently, researchers moved on to genome-wide association studies (GWAS) that are
based on unrelated individuals, in contrast to LA. A GWAS allows researchers to analyze indi-
viduals without knowing their pedigree. One of the most popular methods relies on the model
proposed by [8]. Hundreds of SNP-trait associations have been discovered in humans [9, 10]
by means of GWAS: 30 loci are now known to be linked to Crohn’s disease [11], and approxi-
mately 40 loci are associated with human height [12, 13].

Nonetheless, both approaches have a drawback: QTLs with very small effects are difficult to
detect. Note that most traits of interest can be characterized as complex traits: they are presum-
ably governed by a large number of small-effect QTLs [14-16]. In a large number of studies,
the detected QTLs could not explain all genetic variation [17, 18]. It should be noted that this
phenomenon explains a part of the so-called missing heritability. Typically, predictions based
on selected SNPs have not been reliable.

At present, genomic selection (GS) is focused on prediction of breeding values of selection
candidates by means of high density of markers. In contrast to LA and GWAS, the main goal
of GS is not to detect QTLs anymore but to predict the future phenotype of young candidates
as soon as their DNA has been collected. GS relies on the expectation that some QTLs will be
in strong linkage disequilibrium (LD) with at least one marker [19]. From a theoretical point of
view, GS differs from LA and GWAS because GS can be viewed as a whole-genome regression
analysis [20, 21]: all the marker effects are estimated simultaneously. This way, it accounts for
the correlation among SNPs, which is not the case when each SNP is analyzed separately. GS
was first applied to animal breeding, especially dairy cattle (see [22]), where this new method
has been found to be particularly promising. It was later tested on plants [23], with recent stud-
ies on apple [24], sugar beet [25], pea [26], and on inbred lines of rice [27].

A large number of methods can be chosen to make predictions in GS: penalized regression
methods (see [28] for a review), Bayesian methods (see for instance [29]), and reproducing ker-
nel Hilbert spaces methods [30, 31] are the most popular tools. Quality of the prediction is usu-
ally evaluated by accuracy criteria, such as the correlation between predicted and true breeding
values. A large number of formulas for accuracy are now available in the literature. Most of
them are inspired by the work of [32] who derived the formulas while relying only on the
causal model with fixed effects and assuming independence of causal loci. Later, this work was
extended in [33], in order to allow for the presence of a large number of loci (in the genome)
that can not be considered independent due to linkage and a fixed genome size. The authors
proposed, in particular, to substitute the effective number of independent loci M, into the origi-
nal formula of [32]. Subsequently, a large number of research groups built on this concept and
proposed different ways of estimating M,. Those methods are either based on the effective pop-
ulation size (e.g., [34, 35]), or on the number of independent tests in association mapping [36].
A comparison among the methods relying on the effective population size is presented in [37].

There are many questions about GS. The choice of the training (TRN) population with
respect to the test (TST) population is a hot area of research. This procedure seems to have a
strong influence on predictions [38, 39]. In the mixed model framework, [40] proposed an
optimization method based on the coefficient of determination. Note that by choosing the
most informative individuals to phenotype (i.e., TRN individuals), researchers can use GS as a
tool for reducing phenotyping costs. Another area of active research is the long-term behavior
of GS [35, 41], for example, the influence of selection as a function of time, or the reliability of
the predicted model as a function of time when only the first generation is phenotyped. With
the increase in the number of genomic markers because of next-generation sequencing tech-
nologies, the question of selecting genomic regions, prior to the learning step has been
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addressed in simulation studies [42] as well as studies on real-life data [43]. It has been shown
that additional biological information can increase GS accuracy.

In the present study, we propose to focus on mathematical properties of the accuracy based
on the regression model called random regression best linear unbiased predictor (RRBLUP) or
genomic best linear unbiased predictor (GBLUP). This model, initially proposed by [44], is one
of the most popular methods for prediction of breeding values. We present here a closed-form
expression for the accuracy; this formula is suitable for any configurations of LD between
QTLs and markers. Theoretical developments are made possible by analyzing the causal model
and prediction model differently; this is generally not the case for investigators working on the
mixed model [34, 40], except [45]. Our theoretical formula enables identification of the terms
affecting the accuracy in GS, e.g., LD and the link between TRN and TST sets. Besides, with the
help of our formula, we can obtain the key result of [32] regarding the accuracy, when we use
the same assumptions that those authors used. Another interesting result in our paper is intro-
duction of a new proxy for the accuracy; this proxy is free of the QTL parameters and is easily
computable. We show that substituting an estimated effective number of independent loci
(M,) into [32]’s formula is not the appropriate way to work with the high dimensional frame-
work. Another quantity is suggested here. This way, our study can be viewed as an answer to
the article [37], where the authors expressed doubt about the existing proxies after comparing
145 accuracy values collected from 13 articles on GS.

In the text below, after a description of the mathematical theory, our theoretical results and
existing formulas are compared on simulated data. At the end, an illustration of real-life data is
presented. We analyzed GS in plant height in perennial ryegrass, using 24,957 SNPs obtained
via genotyping by sequencing (GBS) from 367 genotypes.

Materials and Methods
The theory

In this section, we assume, without a loss of generality, that coded genotypes at the markers
and at QTLs are centered, as well as the phenotypic observations.

The causal linear model. The quantitative trait is observed in #gy TRN individuals, and
we denote the observations as Y3, . . ., Y,,rrn. C QTLs are present in the genome and have an
effect on the quantitative trait. In the text below, 0; refers to the fixed QTL effect of the j-th
QTL and Q;, j denotes the corresponding coded genotype for individual i. We assume the fol-
lowing causal linear model for the quantitative trait:

c
Yi:ZQiJ()j—Fei (i=1," Ny
1

where e, ~ N(0, 6?) and ¢” denotes the environmental variance.
With matrix and vector notation, this model can be rewritten as

Y=Qf+e (1)

where Qs a nppy X Cmatrix, Y = (Y, . .., Yyrra)'> 0= (01, . . ., 00), e ~ N(0, afI,,TRN) and
L,tr is the identity matrix of size nrrn.

In the text that follows, g; denotes a vector of size C x 1 that refers to the “causal genome” of
individual i.

Introducing a TST individual. A supplementary individual, a so-called TST individual
(denoted as nrgry + 1) is genotyped but not phenotyped. With the same notation as in the TRN

population, g,rrn + 1 denotes the genome at QTL locations of individual gy + 1. As a result,
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the quantitative trait Y, ., can be expressed as
TRN

’
YnTRN+1 = anRN+10 + € rrn 1

wheree, ., ~ N (0, 6?). Next, g, + 1 Will be considered random. Recall that 6 is fixed.

"

Accuracy. In GS, we are interested in predicting either the genotypic value q'nTRN .10, or the
phenotypic value Y,try 4+ 1- In both cases, a predictor ?"TRN .1 is constructed by means of a pre-
diction model developed through learning on #rry TRN individuals. Then, the quality of the
prediction is evaluated according to some accuracy criteria. In particular, the phenotypic accu-
racy, p, and the genotypic accuracy, p, are defined as follows:

Cov (Y"’1‘11N+1’ Y"’I‘RI\' +1) - C0V<Y"TRN+17 q"TRN+1 0)
p= , = : (2)

\/Var (Y,,TRNJr1 ) Var (YnTRN+1) \/Var (YnTRN+1 ) Var (q’nTRNHO)

These two types of accuracy are linked by the relation p/p = h, where h is the square root of
the heritability of the trait:

y 6 Var (anRN +1> 0
0 Var (anRNH) 6 + Var (e"TRNH)

(3)

Next, we set 6, = 0’Var(anRN .1)0, and as a consequence, we have the relationship
h* = o2 /(6% + 6?). Depending on a research group, investigators focus either on phenotypic
accuracy p (e.g., [46]), or on genotypic accuracy p (e.g., [32, 33]).

The oracle situation. Suppose this situation denotes the settings where the QTL locations

and their effects are known. Then, the natural predictor, Y, .., of the quantity Y,rry + 1 is

!
pn+l T q”TRNHa '

As a result, the oracle accuracies, so-called pyraqe and p ;. for phenotypic and genotypic accu-
racy, satisfy the following equations:

Cov <

!
q”’l‘RN +1 0’ Y”TRN +1 )

Porace =
\/ Var (q'nTRN +10) Var (Ynnm +1>

A marker-based model. In practice, the QTL effects and their locations are typically
unknown. As a consequence, the prediction is based on information from p genetic markers
located in the genome. Suppose X denotes the TRN incidence matrix of size nrgry X p. The
TRN marker-based model is typically the following random effects model:

= h and ﬁoracle =1.

Y=Xp+¢&

where Y= (Y4, ..., Vo) s B= (By - -, B,) ~N(0,071,),& ~ N(0,02I, ). This setting

) Vet nrRN
allows to work with the high dimensional framework, i.e. the situation where p > nrn:. 0'?5 and
6?2 denote respectively the variance of the marker effects and the residual variance.
By the same token, x; is a vector of size p x 1 that refers to genomic markers of individual i.
Recall that g; represents the “causal genome” of individual i. Besides, in the text that follows,
we use the notation X;; for the coded genotype of individual i at the j-th marker.
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This model was initially proposed by [44]. In the literature, it is known as GBLUP or
RRBLUP. As a consequence, the estimated effects of SNPs are

~1
B=EP|Y.X) = (x’x + MP) XY where & = o%/’.

Suppose x,,rry + 1 denotes the random variable corresponding to the genomic markers of the
TST individual. Then, the prediction is

5 ’

pi] = xnm“/} = X, . (XX +M,)"' XY

(4)

/

= x X V1Y where V = XX + Al

nrpy+1 MTRN
The RRBLUP model is also called ridge regression and the parameter A is viewed as a regulari-
zation parameter (see for instance [47]).

The main result of this paper is the following. Recall that 0 is fixed, and that g,;rry + ; and
XnTRN + 1 are random. Conditionally on both the TRN incidence matrix X, and the TRN causal
matrix Q, the phenotypic accuracy is

0 E (001 ¥pp1 )X V'QO

q”TRN+1

Prr = (5)

(02 Bl %, XV I2) + 6QV ' XVar(x,, ., )X V') o2+ o)
where ||.|| is the L* norm, and Var(x,rgx + 1) is the covariance matrix of size p x p. The proof is
provided in S1 Text.

Finally, we want to emphasize that this closed-form expression for the accuracy was derived
without any assumptions on QTL locations and marker locations. In other words, the formula
deals with the configuration where QTLs match a few genetic markers as well as the configura-
tion where QTLs are not located on markers.

A new proxy (QTLs in perfect LD with some markers). Let us assume now that the C
QTLs are located exactly on genetic markers, but at the same time, let us allow the number of
genetic markers to be much larger than the number of QTLs (i.e., p > > C). Suppose that

!
x"TRN +1

Xv'Qe=q, 0.

This is an ideal situation where each QTL is in perfect LD with its associated marker, with
respect to the V ™! matrix. Besides, each QTL is in linkage equilibrium with other markers,
with respect to the V ™! matrix. This assumption is appropriate in a random mating population
(with a large number of individuals), evolving during a large number of generations because
the LD decreases at an exponential rate (e.g., [48, 49]).

Then, according to formula (5) and the proof provided in S1 Text, the accuracy becomes

h? /(1 — h?)
, /o 2 :
E (|| %, X V1) + 5

Ppp = h (6)

Contrary to the general accuracy presented in formula (5), this accuracy can be computed eas-
ily because it depends on known or estimable quantities: the heritability of the trait is usually
known, and the expectation on the denominator can be estimated using the empirical mean in
the TST sample. Finally, the tuning parameter A that is present in the expression for V, can be
estimated by several statistical methods. In this paper, we used Restricted Maximum Likelihood
(REML) [50] or deduced A from the heritability.
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The link with the work of [32]. In [32], a seminal formula for the accuracy is presented.
We would like to show here that with the help of our general formula (5), we can obtain this
previously published result, if we use the same assumptions that those authors used. In particu-
lar, [32] assumed that the QTL locations are known and that each QTL is in perfect LD with its
associated marker. The formula was obtained by performing regression analysis of the trait on
each QTL separately; this approach is equivalent to assuming that Q'Q is diagonal and thus
invertible. Even the case C >> nrgy can be analyzed because of this above assumption. Then,
the estimated QTL effects and the prediction are

B=(0QQ 'Qy .Y, ,1=4, . (QQ QY.

Note that # is obtained by assuming that A = 0 in formula (4). In this context, according to our
general formula (5) and calculations shown in S1 Text, the accuracies are the following:

R =)
= 5 s = h 5 . 7
g "'[f{N + 13'2 g "'rCRN + 1ﬁh2 ( )

This expression for p is suitable for any values of ¢, and ¢2. This is not the case in [32] because

those authors analyzed the case 62 + 6> = 1 and used the approximation 6> = 1. We refer
readers to S1 Text for more details.

Simulation study

In order to verify the validity of our theoretical results, a simulation study was performed.

Simulated data. Genomic data were generated by means of the hypred R package [51]. Pop-
ulations were simulated by random mating between haploid individuals, during (a) 30, (b) 50, or
(c) 70 generations. Recombination was modeled according to Haldane [52]. Mutations were not
taken into consideration. In generation zero, two haploid founder lines were crossed. These two
lines were completely different genetically. Generation 1 consisted of (a) 400 or (b) 800 haploid
offspring of these two founders. After that, the population kept evolving by random mating with
a constant size at each generation and no overlapping generation. This type of simulation mimics
recombinant inbred line (RIL) or double haploid (DH) evolving populations. In the final genera-
tion, 2 individuals were randomly selected, and 100 (resp. 200) full sibs were generated under the
400 (resp. 800) offspring scenario, in order to get some closely related individuals.

The focus was on one chromosome of length 1 Morgan. We considered 4 different densities
of genetic markers equally spaced on the chromosome: (a) 100, (b) 1,000, (c) 5,000, or (d)
10,000 SNPs. We considered two configurations for the phenotypic model: (a) 2 QTLs located
at 3cM and 80cM with effects +1 and -2, respectively, or (b) 100 QTLs located every centimor-
gan, with the same effect +0.15. The environmental variance o> was set to 1. Table 1 shows the
estimated heritabilities corresponding to the different scenarios studied. These heritabilities are
based on the overall population (TRN+TST). Indeed, although a few closely related individuals
were present in the TRN set, we did not observe a noticeable change in terms of heritability
between the TST set and the TRN set.

Genetic markers without polymorphism were filtered out. Besides, identical SNPs along the
chromosome were also filtered out; we kept only the first occurrence of that SNP on the
chromosome.

A set of either (a) 500 or (b) 1,000 TRN individuals was used for the learning step. Note that
in both cases, the TRN set included the full sibs: among the 500 (resp. 1,000) TRN, 100
(resp. 200) were full sibs. The prediction model was evaluated on 100 TST (in all cases), that
were produced in the last generation.
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Table 1. Estimated heritability (h?) as a function of the simulation setup.

Nb QTLs Nb Generations NianN h?
2 30 500 0.54
1,000 0.53
50 500 0.53
1,000 0.53
70 500 0.51
1,000 0.49
100 30 500 0.75
1,000 0.77
50 500 0.65
1,000 0.69
70 500 0.57
1,000 0.61

The average of 100 replicates. In each sample, heritability estimated using the estimator

Va@ 0)/ (VaF(E,’H) + 1) based on the overall population (ntry TRN + 100 TST).\Ta\r denotes empirical
variance.

doi:10.1371/journal.pone.0156086.t001

In the text that follows, an “architecture” is a fixed number of: (a) SNPs; (b) generations; (c)
QTL numbers, effects, and locations; (d) TRN individuals. A total of 100 replicates were gener-
ated according to a given architecture. Table 2 shows a summary of the different configurations
studied, and Table 3 provides the number of remaining markers after filtering. As in [53], the
QTL locations did not vary across replicates. Nonetheless, contrary to that article, the QTL
effects always had the same values here.

Regularization parameter A. For each replicate, predicted phenotypes of the TST dataset
were obtained by RRBLUP. The regularization parameter A was estimated in two ways. The
first method relies on variance components estimated by REML. Then, the corresponding reg-
ularization parameter called Aggyy is

_ A22
Mrersr, = as/ali

where 67 and 67 denote respectively the estimates of the environmental variance o2 and the
variance o}, of each SNP effect. The rrBLUP R package and in particular its function kin.blup
were used to compute these variance components.

The second method relies on the heritability of the quantitative trait assuming that the
genetic variance is spread out uniformly across all the genetic markers. Then, the tuning
parameter called A is defined as follows:

NTRN

1 _ 12 p )
7\’h2 - h2 Zl Zl Xi‘j
j= =

MpN

Table 2. The different configurations studied.

Nb markers 100/ 1,000/ 5,000/ 10,000
Nb Generations 30/50/70
Nb QTLs 2/100
NTRN 500/ 1,000

doi:10.1371/journal.pone.0156086.t002
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Table 3. The average number of markers after filtering (based on 100 replicates).

Nb generations Nb Markers NTRN Nb Markers after filtering
30 100 500 100
1,000 100
1,000 500 766.51
1,000 929.22
5,000 500 1,262
1,000 2,066.17
10,000 500 1,353
1,000 2,345.53
50 100 500 100
1,000 100
1,000 500 801.49
1,000 950.08
5,000 500 1,392.73
1,000 2,267.54
10,000 500 1,518
1,000 2,609.32
70 100 500 99.98
1,000 100
1,000 500 812.37
1,000 950.68
5,000 500 1,451.6
1,000 2,380.81
10,000 500 1,591
1,000 2,781.81

doi:10.1371/journal.pone.0156086.t003

where p is the number of markers after filtering, and 4 is the estimated heritability given in
Table 1.

Empirical accuracy and Theoretical accuracy. In the text below, nst denotes the number
of TST individuals, and x,;rrx + i means the genomic markers of the i-th TST individual. In
order to compute the so-called Theoretical accuracy, introduced in formula (5), we used the
following estimators:

1 st 9 , 1 st
! A ’ A

n— xn»lRN+iX 14 ) 0 n— E Do +i KX ti XV Q07

TST =1 TST =1

1 !
rer [anRN+1’ T x"TRN+"TST] X [anRN+17 t x"TRNJr"TST} ’

nTST ST 2

]. ! 0 ]- ’ 0
" Qi — » E L P )

TST =1 TST =1

/ ’

to estimate the quantities E(||x, HX' V%), 6 E(q, 1% H)X/ V1Q0, Var(x,rrx + 1)
and g2, respectively. Besides, the true value was used for the environmental variance, i.e.,
0? = 1. The empirical accuracy was computed in the R software, with the empirical correlation
between the predicted values and the true values.

Mean accuracy on replicates and the TRN incidence matrix. Recall that our theoretical
result in formula (5) was obtained conditionally on the TRN incidence matrix X and
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conditionally on the TRN causal matrix Q. In most of the simulation results presented in this
paper, X and Q are different across replicates. Indeed, for each replicate, a new population was
generated by random mating according to the given architecture. The accuracy was computed
according to formula (5) on each replicate, and finally, the mean accuracy was calculated on
the 100 replicates. As a consequence, the focus was on a mean accuracy corresponding to a
given architecture.

On the other hand, we also analyzed the case where X and Q do not vary across replicates.
In this case, X and Q were obtained by generating only one TRN population associated with a
given architecture. Only the TST incidence matrix was allowed to change across replicates. In
particular, TST individuals were regenerated by random mating between individuals from the
penultimate generation. New phenotypes (TRN+TST) were regenerated for every replicate,
and as previously, the mean accuracy on the 100 replicates was computed.

The effective number of segments M,. Most of the published proxies for the accuracy use
the so-called effective number of independent loci (M,). We focused on the three following rep-
resentations of M,:

ON,L ON,L ON.L

" Tog(4N) "2 T Tog (2N) * ¢ T Tog (NJ))

where L, [, and N, denote the genome length, average chromosome length, and effective popu-
lation size respectively. M,; was proposed by [35], whereas M,, and M, are from [34]. In our
simulation study, N, was estimated using theoretical results of [54]. In particular, the LD was
computed between all SNPs (in the TRN incidence matrix), and the estimated N, was the least-
squares estimate of the fitted nonlinear model (cf. S2 Text). Another approach developped to
handle the issue of multiple testing in association mapping studies [36] was also considered.
Later, this method was applied to GS (e.g. [55]). The drawback of this method is that it requires
that p < #rgrn + frst. TO overcome this problem, the chromosome was split into 2 parts for the
1,000 SNPs scenario, and into 3 parts when 5,000 SNPs or 10,000 SNPs were analyzed. After
that, the overall M, was obtained by summing up the numbers of independent tests obtained
separately for each part.

Real data study on perennial ryegrass

Our plant material belongs to the perennial ryegrass species (Lolium perenne L.), a diploid spe-
cies (2n = 14) with a haploid genome size of 2.7 Gb [56]. This genome size was estimated by
flow cytometry in picograms and transformed in to the number of bases assuming 978 Mb/pg
[57]. Lolium perenne L. is a highly heterozygous species with strong inbreeding depression and
a self-incompatibility system. Besides, the varieties are synthetics. The population was provided
by the private breeding company Gie GRASS. The dataset consisted of 367 genotypes obtained
after the multiplication by intercrossing of 12 genotypes during three generations. Moreover,
the 12 genotypes were obtained from pair-crosses involving 8 different genotypes. Seeds were
sown in individual pots in the first week of August 2013. They were cut regularly to promote
tillering and were cloned. On April 16th, 2014, four clones per genotype were planted in the
field at INRA Lusignan France (43°36’55.59”N; 4° 0°36.59”E) in randomized block design. On
August 21st, 2014, the plants were cut at approximately 5 cm and plant height was measured
immediately with a ruler. Plant height was remeasured on August 28th, 2014. The plant growth
rate was calculated as the difference in plant height between the two dates divided by the num-
ber of growing degree days, with the base temperature of zero (138.5°C.days).

Molecular data were obtained by GBS following the same protocol as in [58]. DNA was
extracted from 50 mg of dried leaves by the protocol described in [59]. PstI was used for
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complexity reduction. The sequencing was performed by means of the Hiseq 2500 (Illumina;
pair-end 2 x 150, but only one pair was used for analysis). Scythe (https://github.com/
vsbuffalo/scythe) was used to demultiplex the GBS raw reads and to trim adaptor contamina-
tion, using the prior contamination rate set to 0.40. Sickle (https://github.com/najoshi/sickle)
was used to quality-trim the demultiplexed reads using the parameters -q 20 -140. The demulti-
plexed and quality trimmed reads were aligned against a draft assembly of the perennial rye-
grass genome (48,415 scaffolds) in the BWA aln software [60]. The resulting BAM files were
further processed using the Genome Analysis Toolkit (GATK) version 2.7-4 [61]. Variant call-
ing was performed by means of GATK’s UnifiedGenotyper, and high-quality SNPs were
extracted. The resulting SNPs were quality-filtered according to several criteria, for example,
only variants with a quality score higher than 30 were retained. A total of 24,957 SNPs with the
minimum allele frequency of 5% were scored. Plink [62] was used to calculate the Pearson coef-
ficient of correlation between pairs of SNPs belonging to the same scaffold. Phenotypic and
SNP data are available at doi:10.5061/dryad.jb17n.

Results
Simulated data

This section starts by considering QTLs in perfect LD with some markers. Later, the case of
imperfect LD is also reviewed. We studied successively, with the help of simulated data, (a) reli-
ability of the Theoretical accuracy from formula (5), (b) sensitivity to the regularization param-
eter A, (¢) the effects of a fixed TRN incidence matrix, (d) the pertinence of the proxy suggested
by formula (6), and (e) a substitute for the effective number of segments. Note that in the fol-
lowing text, the TRN incidence matrix varies across replicates, unless stated otherwise.

Empirical accuracy versus Theoretical accuracy. Fig 1 shows a comparison between the
Empirical accuracy and Theoretical accuracy. The tuning parameter A was estimated by REML
in both cases. Each point on the graph corresponds to mean accuracy (based on 100 replicates)
associated with a given architecture.

According to the figure, the Theoretical accuracy matched the Empirical accuracy regardless
of the architecture being considered. Besides, readers can see that the accuracy increased with
the number of QTLs because the heritability increased. As expected, for given numbers of
QTLs, generations, and markers, the greater the number of TRN individuals, the higher the
accuracy was. For instance, when we considered 50 generations, 2 QTLs and 10K SNPs, the
Theoretical Accuracy was estimated to be 0.65 for nrry = 500 and 0.68 for nrry = 1,000,
although the heritability was the same.

To complete our simulation study, it is worth to consider the case of a mixture between
major genes and multiple small QTLs which mimics probably better the common architec-
ture for a lot of traits. This type of architecture was also used to investigate a larger range of
heritability. So, we generated two large QTLs located at 3cM and 80cM, and 98 small QTLs
located every centimorgan (except at 3cM and 80cM). We considered three scenarios: (a)
large QTLs with effects +0.5 and —0.6, small QTLs with the same effect +0.07, (b) large QTLs
with effects +1 and —0.7, small QTLs with the same effect +0.1, (c) large QTLs with effects +2
and -2, small QTLs with the same effect +0.1. In all cases, we focused on the configuration
1,000 SNPs, 500 TRN individuals, and 50 generations. The heritabilities associated to the dif-
ferent scenarios were: (a) h% = 0.34, (b) h* = 0.54, (c) h* = 0.71. According to our simulated
data, the Theoretical accuracy matched exactly the Empirical accuracy for scenario (a) (0.52),
and scenario (b) (0.68). A very good agreement was also observed for scenario (c): the Empir-
ical accuracy was found to be equal to 0.80, whereas the Theoretical accuracy took the value
0.79.
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Fig 1. Comparison between the Theoretical accuracy and the Empirical accuracy, as a function of the
number of TRN individuals and the number of QTLs. Tuning parameter A was estimated by REML in both
cases.

doi:10.1371/journal.pone.0156086.g001

Tuning parameter L. Fig 2 shows analysis of sensitivity of the Theoretical and Empirical
accuracies to the regularization parameter A. We focused on two ways of estimating A: one used
REML, whereas the second one relied on heritability of the trait. According to Fig 2A, the The-
oretical accuracy remained unchanged regardless of the method chosen for estimating A.
Because in practice, only approximated heritability is known to geneticists, we considered also
the case where the tuning parameter was based on wrongly inferred heritability (90% of the
true value). According to Fig 2B, the accuracy did not deteriorate: there was still good agree-
ment between an Empirical accuracy based on a false heritability, and a Theoretical accuracy
dependent on the true quantity.

QTLs in imperfect LD with some markers. Because our previous analysis implied that
QTLs were in perfect LD with some markers, here, we analyze the case of imperfect LD. To
mimic imperfect LD, the causal SNPs were unobserved in the TRN and TST populations. Fig
3A focuses on the 2 QTL scenario, and highlights the fact that our theoretical formula is also
suitable under imperfect LD. Indeed, for simulated data without the causal SNPs in the
marker-based model, the Theoretical accuracy matched the Empirical accuracy for all the dif-
ferent architectures. We also studied the effects of the presence/absence of the causal SNPs in
the marker-based model as a function of marker density (Fig 3B). Readers can notice that the
Theoretical accuracy was not affected by the absence of the causal SNPs, provided that the den-
sity of markers remained high (at least 1,000 markers). As explained in [63], on a dense map,
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each QTL tends to be in perfect LD with at least one SNP. In contrast, when the density of
markers is low, the Theoretical accuracy decreases due to the lack of markers. For instance,
according to Fig 3B, when 100 SNPs and 500 TRN individuals were considered, the accuracy
decreased respectively from 0.68 to 0.59, from 0.66 to 0.52, or from 0.64 to 0.46, when the pop-
ulation evolved during 30 generations, 50 generations and 70 generations respectively.

Only one TRN incidence matrix. Fig 4 shows analysis of the case where the TRN inci-
dence matrix X and the TRN causal matrix Q did not vary across replicates (for a given
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Fig 3. Theoretical accuracies and Empirical accuracies, as a function of the density of markers, and
depending on whether the causal SNP was observed. The focus was on the 2 QTL scenario. “QTL removed”
means the configuration where the causal SNP was not observed in the TRN and TST populations, whereas “QTL
included” means opposite. In all cases, the tuning parameter A was based on the heritability.

doi:10.1371/journal.pone.0156086.g003
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doi:10.1371/journal.pone.0156086.g004

architecture). Readers can see that the Theoretical accuracy and the Empirical accuracy were
still a good match. It is noticeable, however, that there was more variability than when X and Q
varied across replicates.

New proxy vs existing proxies. In order to predict the accuracy in genomic selection, most
of the methods are based on the original formula of [32]. They consist of replacing the number
of independent QTLs by the effective number of independent loci M,. In most cases, M, is com-
puted according to assumptions of population genetics [34, 35]. Note that M, can also be com-
puted by inferring the number of independent tests in association mapping studies [36].

In this context, Fig 5 shows a comparison of performance of five different proxies in terms
of the accuracy. Three of these proxies, the ones based on M,;, M,,, and M., rely on the effec-
tive population size, whereas the fourth, an M;;-based proxy, comes from association studies.
The fifth proxy is the one suggested in this paper (formula 6). In Fig 5A, the TRN incidence
matrix X varies across replicates, whereas it is fixed in Fig 5B. In both cases, we can notice that
the proxy based on M;; underestimated the Empirical accuracy. Table 4 shows the mean
squared errors (MSE) corresponding to each method. As expected, the Theoretical accuracy
yielded the best performances. Recall that it cannot be computed in practice because it depends
on unknown quantities: the QTL effects and their locations. Furthermore, our new proxy out-
performed the existing proxies. In comparison with the MSE corresponding to the best proxy
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(the M,;-based one), our proxy MSE were 2.3- and 1.8-fold smaller, respectively when X varied
and when X did not vary across replicates. Note also that for each method, the MSE was smaller
when X varied than when X was fixed (Fig 5).

Comparison between the effective number of segments and the quantity
1w E(| %X V7' [|?). According to our theoretical analysis, we should substitute the

/

X' V1|*) into [32]’s formula, instead of the number of independent
XV'*) and M., M,
M5 and M are completely different quantities. Note that we focused on the configuration
nrrn = 500 (the case nrry = 1,000 is shown in S1 Table). In particular, we can see that

X V!||*) varied with the number of QTLs considered; this was not the case for

other quantities. Table 6 shows analysis of the case where the TST population evolved during
30, 40, or 70 generations, where we kept a TRN population that evolved during 30 generations.

quantity LV E ( | | anRN +1

loci, which is usually computed. Table 5 shows that n E([|x,

”TRN]E( ||x:1TRN+1

Table 4. Mean squared error (with respect to the Empirical accuracy) corresponding to 5 proxies. The
MSE corresponding to the Theoretical accuracy is also shown (A is based on the heritability). MSE =

¥ (AccP, — AccE,)* /48 where 48 is the number of studied architectures. AccE, and AccP, are averages
on 100 replicates, and denote respectively, for architecture a, the Empirical Accuracy and the Accuracy
based on the chosen proxy.

Fixed TRN matrix TRN matrix varied
Theoretical accuracy 3.6710 x 107 4.204 x 1075
Our proxy 5.9858 x 10~* 4628 x 107
Proxy based on M, 1.2643 x 1072 1.228 x 1073
Proxy based on M, 1.207 x 1073 1.157 x 1073
Proxy based on M3 1.1335x 1072 1.0669 x 1072
Proxy based on M, 2.1906 x 1073 1.474 x 1073

doi:10.1371/journal.pone.0156086.t004
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Table 5. Comparison among different estimators (Me1, Me2, M3 and M, ) of the number of effective loci and the quantity n.;, E( Hxnm“x’ v HZ). For
a given architecture, a mean was computed on 100 replicates (variance is shown in brackets) and the TRN incidence matrix did not vary across replicates
(ntrn =500, A is based on the heritability).

Nb QTLs Nb generations Nb Markers N E(]IX, - xv Hz) My Mg Mg, Mgs
2 30 100 47.16 (0.75) 50.13 (0.67) 11.96 14.02 16.92
5,000 46.98 (0.58) 177.45 (4.72) 11.76 13.78 16.66
50 100 53.63 (1.39) 59.73 (0.56) 17.71 20.43 2412
5,000 55.32 (0.61) 233.49 (7.36) 18.52 21.32 25.12
70 100 51.26 (0.76) 64.39 (0.34) 22.68 25.93 30.27
5,000 56.56 (0.67) 258.63 (7.89) 22.46 25.70 30.02
100 30 100 71.85 (2.40) 50.13 (0.70) 11.96 14.02 16.92
5,000 74.83 (1.93) 177.45 (4.71) 11.76 13.78 16.66
50 100 66.94 (2.31) 59.73 (0.50) 17.71 20.43 24.12
5,000 70.66 (1.18) 233.49 (7.36) 18.52 21.32 25.12
70 100 58.49 (1.06) 64.39 (0.34) 22.68 25.93 30.27
5,000 66.68 (1.04) 258.63 (7.89) 22.46 25.70 30.02

doi:10.1371/journal.pone.0156086.t005

This scenario is particularly realistic in plants, where a large number of generations can be
obtained easily, and typically, the prediction model is not refitted with time. According to the
e X V! |?) increased with the
number of generations in the TST populations. In contrast, the usual quantities M., M,,, and
M,; could not capture the changes regarding the TST population because they depend only on
the TRN population.

’

table, for a given number of markers, the quantity n, E(||x

Real data

Accuracy. Fig 6A shows the Empirical accuracy estimated by means of the perennial rye-
grass dataset, as a function of the TRN/TST samples under study. Readers will recall that 90%
of the individuals were chosen randomly for the TRN set, and that the remaining 10% were
considered TST individuals. According to the graph, there are large fluctuations between the
different samples; this result points to the importance of a good match between TRN and TST
sets (see [19, 38] regarding maize data, and [39] regarding simulated data).

Fig 6B illustrates results from 5-fold cross-validation. Readers can see that there is less var-
iablity between the empirical accuracies than when the TRN incidence matrix is fixed for a
given sample (see Fig 6A). This is in agreement with conclusions based on our simulation

’

Table 6. Comparison among different estimators (M1, Me2, M3 and M, ) of the number of effective loci and the quantity nTRNIE(HanHNHX’ v Hz) asa
function of the number of generations during which the TST population evolved (TRN population is always based on 30 generations). For a given
architecture, a mean was computed on 100 replicates (variance is shown in brackets) and the TRN incidence matrix did not vary across replicates (ntgrn =
500, and A is based on the heritability).

Nb Markers Nb generations for TST N (1%, - xv! Hz) My Mg Mg, M3
100 30 47.16 (0.75) 50.13 (0.67) 11.96 14.02 16.92
40 52.17 (0.93) 52.55 (0.84) 11.96 14.02 16.92
70 58.17 (0.89) 55.95 (0.63) 11.96 14.02 16.92
5,000 30 46.98 (0.58) 177.45 (4.72) 11.76 13.78 16.66
40 51.46 (0.60) 197.62 (5.21) 11.76 13.78 16.66
70 52.86 (0.45) 229.45 (9.56) 11.76 13.78 16.66

doi:10.1371/journal.pone.0156086.t006
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Fig 6. Empirical accuracy and proxies obtained for the perennial ryegrass dataset. (A) 90% TRN and 10% TST. (B) 5 fold
cross-validation.
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study because the cross-validation process can be viewed as an “unfixed” TRN matrix case, as
opposed to the 90% TRN/10% TST process, which is a case of a fixed TRN matrix. As expected,
the mean accuracy on all those samples was fairly similar in both analyses: it was estimated to
be 0.35 for the 90% TRN/10% TST configuration, and 0.33 for the 5-fold cross-validation.

We computed the oracle accuracy (h), that is to say, the accuracy that would be achieved if
the QTL locations and the QTL effects were known. The square root of the heritability was esti-

mated to be 0.67 (sz = 0.45), because of the observed clones. This parameter was later evalu-
ated for every TST sample, and only slight changes were observed (data not shown).

Next, we assessed perfomance of our new proxy. Although the proxy was reestimated for
each TRN/TST configuration, we did not notice any fluctuations among the samples. The
proxy should be regarded only as an upper bound: it is the optimal accuracy that can be
achieved if the QTLs are in perfect LD with markers.

Because we suspected that the marker density was insufficient to cover the entire perennial
ryegrass genome, our proxy was later adapted to the case of imperfect LD. In particular, we
considered the work of [55], which is a generalization of [32]. Those authors assumed a con-
stant LD r* between each QTL and its associated marker, and they assumed the independence
of each marker-QTL pair. In this context, our proxy can be rewritten as follows:

/(1 — k)
’ a — 2 2 !
E(H X XV ) +pr

(8)

Ppp = r'h

The r* was estimated with the Pearson coefficient of correlation between pairs of SNPs belong-
ing to the same scaffold. Due to the GBS method and the high level of polymorphism in peren-
nial ryegrass (1 SNP/15 bp, see [64]), the distance between successive SNPs within a scaffold
was not constant. Many SNPs were grouped within 150 bp because this value corresponded to
the read length. The average distance between pairs of SNPs within the scaffolds separated by at

PLOS ONE | DOI:10.1371/journal.pone.0156086 June 20, 2016 16/283



@’PLOS ‘ ONE

On the Accuracy of Genomic Selection

least 150 bp was estimated to be 25,000 bp. In other words, blocks of several SNPs were sepa-
rated on average by 25,000 bp. Assuming that these blocks are randomly distributed in the
genome, the maximal distance between a QTL and a marker (SNP) is approximately 12,500 bp
(25,000/2). As a consequence, the average r* between pairs of SNPs separated by less than
12,500 bp, was computed: it was estimated to be 0.26 from the values of r* as a function of geno-
mic distance in base pairs (see S1 Fig). This value was later substituted into formula (8). Note
that the method we used for calculating the quantity 7* is largely inspired by the work of [55].

According to Fig 6A, there is now a fairly good agreement between the proxy adapted for
imperfect LD and the mean accuracy. This finding confirms our orginal supposition: the lack
of markers must be responsible for the difference between our upper bound and the observed
Empirical accuracy.

Discussion
General aspects

We present here a theoretical formula for the accuracy of GS. The theoretical advances were
possible because we analyzed a causal model different from the prediction model (so-called
marker-based model); this is usually not the case for investigators working on the mixed mod-
els (e.g. [34, 40]). Due to the recent progress in molecular biology, more and more genetic
markers are becoming available, and it seems reasonable to assume that there are fewer QTLs
than genetic markers in the genome. Recently, [53] incorporated this idea into the mixed-
model framework. Nevertheless, those authors had to make approximations in order to obtain
analytical formulas. In particular, those authors assumed that the TRN genomic relationships
at causal loci were known, and then proposed to perform the regression of genomic relation-
ships based on markers, on those based on causal loci. This idea was motivated by [65].
Although this concept seems interesting, it is not easy to implement and remains an empirical
approach. In contrast, our proposed theoretical formula was derived rigorously, without
approximations. The marker-based model chosen for our study, is the one corresponding to
RRBLUP, also known as ridge regression. In other words, we considered the same high-dimen-
sional prediction model and the same sparse causal model as those addressed in some recent
statistical studies [66, 67].

With the help of our general formula (5), we are now able to quantify the influence of vari-
ous parameters on the accuracy. The theoretical result depends on the QTL effects, QTL loca-
tions, TRN causal matrix, TRN incidence matrix, TST causal matrix and the TST incidence
matrix. Although [68] highlighted the difficulty of decoding GBLUP, the final result is some-
what more complicated than what we expected and the results in the literature. For instance,
according to our study, the average LD between markers is not proportional to the accuracy,
contrarely to the results of [34]. In particular, we show that it is the quantity X V" Q that has
an impact (that is to say, the LD between markers and QTLs in the TRN population with
respect to the metric V). This weighted LD can be viewed as an extension of the work of [69]
where the authors introduced new LD measures corrected for population structure and related-
ness. Moreover, according to our formula, the covariance between SNPs in the TST population
affects the accuracy.

Our present study can be viewed as an answer to the analysis of [37], where the authors
raised important questions regarding accuracy in GS. They compared 145 accuracy values
extracted from 13 articles, either based on simulated data or real data. An analysis of variance
model was fitted to the data, in order to test effects of 4 existing formulas and parameters, on
the accuracy. The number of TRN individuals #rry and the effective number of segments M,
were found to have a strong influence on the accuracy. Besides, a “big formula effect” was
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observed, and those authors were unable to demonstrate superiority of one method to the oth-
ers. One criticism voiced by those authors was that the different formulas in the literature did
not take into account the relation between TRN and TST populations. Our theoretical formula
now involves explicitly the link between the two populations.

The Theoretical accuracy depends on unknown parameters such as the QTL effects and
their locations. It may be useful to first perform an association study on the TRN population in
order to identify the QTLs. After that, the detected QTLs could be plugged into our theoretical
formula (5), to approximate the accuracy. In the simulation study, since QTLs were perfectly
known, such analysis was not considered relevant. Nonetheless, for the perennial ryegrass set,
we could have explored this topic.

Most of the existing methods for computation of the accuracy are inspired by the work of
[32] and [33]. In [33], the authors proposed to substitute the effective number of independent
loci M, into the original formula of [32]. Then, a large number of research groups elaborated
on this concept, and proposed different ways of estimating M,, using either the effective popu-
lation size (e.g. [34, 35]), or the number of independent tests [36].

Our theoretical analysis shows that plugging M, into [32]’s formula is not the way to prop-
erly work with the high dimensional framework. We propose to use of another quantity,

Ao B (|2 X V1||*). We were able to show on simulated data that our corresponding

nrpy+1
proxy for the accuracy outperforms existing proxies. In the ryegrass dataset, however, most of
the proxies studied yielded similar results because of the lack of markers to cover the entire
genome.

An important question in GS is the choice of the TRN population. Various studies have
shown sensitivity of the accuracy to relatedness between individuals. [38] focused on a popula-
tion of maize and demonstrated that predictions are much more reliable when they are per-
formed within families than across different families. Nevertheless, if we are willing to predict
breeding values of a somewhat general TST population (not necessarily linked to the TRN pop-
ulation), [39] showed with the help of simulated data, that it is more advantageous to keep
large variability in the TRN set.

Similarly, [19] proposed to merge populations belonging to different groups. Similar con-
clusions are also present in studies on sugar beets [25] and oats [70]. If we assume a limited
budget (and as a consequence, a fixed number of TRN individuals), then an interesting finding

/

in our study is the following: by minimizing the quantity E([|x, HX/ V1*), we can choose
the optimal TRN and TST sets, that maximize the accuracy. This protocol is an alternative to
the “CDmean” method proposed by [40] that is based on the coefficient of determination (CD)
to optimize the calibration sets. However, CDmean has a shortcoming: it does not differentiate
the causal model from prediction model. In that sense, our approach to choosing the TRN and
TST sets is expected to be more reliable than the one from [40]. This is a topic for future
research. Concerning the computational burden, the Theoretical accuracy requires the inver-

sion of a nrry X nrry Matrix (complexity of O(n, ).

GS in perennial ryegrass

In forage grasses, traits related to leaf growth (e.g., leaf length, plant height, and leaf elongation
rate measured on spaced plants) are correlated with forage productivity measured in a dense
canopy (i.e., sward; regarding short-term intake by cows and plant survival in a sward, see [71-
73]). In perennial ryegrass, these traits represent a complex genetic architecture: many genes
are involved in the overall variability. The corresponding heritability can be either medium
(0.4) or high (0.7) [59, 74]. In this case, marker-assisted selection can detect only a small part
of the genetic variation and very quickly becomes inefficient after fixation of the largest QTLs.
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In contrast, GS, which analyzes all the markers simultaneously, is potentially fruitful. Another
interesting characteristic of GS is that it can reduce costs of phenotyping. In perennial ryegrass,
the phenotyping of traits related to forage productivity is expensive and requires 2 or 3 years
[75]. LD decreases rapidly with r, generally below 0.2 after less than 1kb [64].

In our study, we wanted to evaluate the accuracy of GS in a specific population created from
elite material with a narrow genetic base (8 genotypes intercrossed during three generations).
In this specific population, LD was expected to decrease slowly due to relatedness. In that case,
we thought that a relatively small number of markers would be sufficient to cover the genome
if the LD was large enough. According to our study, the mean accuracy is approximately 0.35.
This value is similar to the results obtained on rice [27] and wheat [76]. The estimated accuracy
was below that of our suggested proxy, which acted as an upper bound of the accuracy. Con-
trary to our original thoughts, the relatedness does not help to increase the accuracy and to
compensate for the lack of markers. Indeed, our theoretical analysis shows that the accuracy
depends on a weighted LD, X V™! Q, which can be viewed as LD corrected for the relatedness.
On the other hand, GBS can also be considered as limiting factor for the accuracy. Although
20,000 markers were obtained by GBS, the number of independent markers is actually much
smaller (approximately 4,500). Recall that a large number of markers is required to capture the
genetic variability from many QTLs in the genome of perennial ryegrass. Finally, the accuracy
was found to be strongly affected by the configuration of TRN and TST sets: the same phenom-
enon was observed in other studies (e.g., on oats [70]).

For all these reasons, in order to improve the accuracy of GS in perennial ryegrass, we pro-
pose to perform denser genotyping, and to select individuals to be phenotyped by minimizing

/

the quantity E(||x X V71|*), according to our theoretical analysis. Fig 6A) shows that our

nppN+1
suggested proxy was not very sensitive to the choice of the TRN set; we expect that an increase

in the marker density will introduce some variability and help to choose the optimal TRN set.

Supporting Information

S1 Text. It includes the mathematical proof of the various formulas introduced in the sec-
tion Materials and Methods.
(PDF)

S2 Text. Explanation of how to estimate N, using the Hill and Weirr formula [54], and the
LD computed between all SNPs.
(PDF)

S1 Table. This table is similar to Table 5 dealing with the case nry = 1,000.
(PDF)

S1 Fig. LD, measured with 2, computed for the perennial ryegrass dataset, and associated
with each pair of SNPs within scaffolds.
(PDF)
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