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ABSTRACT

Modeling the properties and functions of DNA se-
quences is an important, but challenging task in the
broad field of genomics. This task is particularly dif-
ficult for non-coding DNA, the vast majority of which
is still poorly understood in terms of function. A pow-
erful predictive model for the function of non-coding
DNA can have enormous benefit for both basic sci-
ence and translational research because over 98%
of the human genome is non-coding and 93% of
disease-associated variants lie in these regions. To
address this need, we propose DanQ, a novel hy-
brid convolutional and bi-directional long short-term
memory recurrent neural network framework for pre-
dicting non-coding function de novo from sequence.
In the DanQ model, the convolution layer captures
regulatory motifs, while the recurrent layer captures
long-term dependencies between the motifs in or-
der to learn a regulatory ‘grammar’ to improve pre-
dictions. DanQ improves considerably upon other
models across several metrics. For some regula-
tory markers, DanQ can achieve over a 50% relative
improvement in the area under the precision-recall
curve metric compared to related models. We have
made the source code available at the github reposi-
tory http://github.com/uci-cbcl/DanQ.

INTRODUCTION

The recent deluge of high-throughput genomic sequencing
data has prompted the development of novel bioinformat-
ics algorithms that can integrate large, feature-rich datasets.
Deep learning algorithms are attractive solutions for such
problems because they are scalable with large datasets and
are effective in identifying complex patterns from feature-
rich datasets (1). They are able to do so because deep learn-

ing algorithms utilize large training data and specialized
hardware to efficiently train deep neural networks (DNNs)
that learn high levels of abstractions from multiple layers
of non-linear transformations. DNNs have already been
adapted for genomics problems such as motif discovery (2),
predicting the deleteriousness of genetic variants (3), and
gene expression inference (4).

There has been a growing interest to predict function di-
rectly from sequence, instead of from curated datasets such
as gene models and multiple species alignment. Much of
this interest is attributed to the fact that over 98% of the
human genome is non-coding, the function of which is not
very well-defined. A model that can predict function directly
from sequence may reveal novel insights about these non-
coding elements. Over 1200 genome-wide association stud-
ies have identified nearly 6500 disease- or trait-predisposing
single-nucleotide polymorphisms (SNPs), 93% of which are
located in non-coding regions (5), highlighting the impor-
tance of such a predictive model. Convolutional neural net-
works (CNNs) are variants of DNNs that are appropriate
for this task (6). CNNs use a weight-sharing strategy to cap-
ture local patterns in data such as sequences. This weight-
sharing strategy is especially useful for studying DNA be-
cause the convolution filters can capture sequence motifs,
which are short, recurring patterns in DNA that are pre-
sumed to have a biological function. DeepSEA is a re-
cently developed algorithm that utilizes a CNN for pre-
dicting DNA function (7). The CNN is trained in a joint
multi-task fashion to simultaneously learn to predict large-
scale chromatin-profiling data, including transcription fac-
tor (TF) binding, DNase I sensitivity and histone-mark pro-
files across multiple cell types, allowing the CNN to learn
tissue-specific functions. It significantly outperforms gkm-
SVM (8), a related algorithm that can also predicts the regu-
latory function of DNA sequences, but uses a support vec-
tor machine instead of a CNN for predictions. To predict
the effect of regulatory variation, both gkm-SVM (9) and
DeepSEA use a similar strategy of predicting the function
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of both the reference and allele sequences and processing
the score differences.

Another variation of DNNs is the recurrent neural net-
work (RNN). Unlike a CNN, connections between units
of an RNN form a directed cycle. This creates an internal
state of the network that allows it to exhibit dynamic tem-
poral or spatial behavior. A bi-directional long short-term
memory network (BLSTM) is a variant of the RNN that
combines the outputs of two RNNs, one processing the se-
quence from left to right, the other one from right to left. In-
stead of regular hidden units, the two RNNs contain LSTM
blocks, which are smart network units that can remember a
value for an arbitrary length of time. BLSTMs can capture
long-term dependencies and have been effective for other
machine learning applications such as phoneme classifica-
tion (10), speech recognition (11), machine translation (12)
and human action recognition (13). Although BLSTMs are
effective for studying sequential data, they have not been
applied for DNA sequences.

Hence, we propose DanQ, a hybrid framework that com-
bines CNNs and BLSTMs (Figure 1). The first layers of
the DanQ model are designed to scan sequences for mo-
tif sites through convolution filtering. Whereas the convo-
lution step of the DeepSEA model contains three convolu-
tion layers and two max pooling layers in alternating order
to learn motifs, the convolution step of the DanQ model is
much simpler and contains one convolution layer and one
max pooling layer to learn motifs. The max pooling layer
is followed by a BLSTM layer. Our rationale for including
a recurrent layer after the max pooling layer is that mo-
tifs can follow a regulatory grammar governed by physical
constraints that dictate the in vivo spatial arrangements and
frequencies of combinations of motifs, a feature associated
with tissue-specific functional elements such as enhancers
(14,15). Following the BLSTM layer, the last two layers of
the DanQ model are a dense layer of rectified linear units
and a multi-task sigmoid output, similar to the DeepSEA
model.

DanQ surpasses other methods for predicting the proper-
ties and function of DNA sequences across several metrics.
In addition, we show that the convolution kernels learned
by the model can be converted to motifs, many of which sig-
nificantly match known motifs. We expect DanQ to provide
novel insights into non-coding genomic regions and con-
tribute to understanding the potential functions of complex
disease- or trait-associated genetic variants.

MATERIALS AND METHODS

Features and data

The DanQ framework uses the same features and data as
the DeepSEA framework. Briefly, the human GRCh37 ref-
erence genome was segmented into non-overlapping 200-bp
bins. Targets were computed by intersecting 919 ChIP-seq
and DNase-seq peak sets from uniformly processed EN-
CODE (16) and Roadmap Epigenomics (17) data releases,
yielding a length 919 binary target vector for each sample.
Each sample input consists of a 1000-bp sequence centered
on a 200-bp bin that overlaps at least one TF binding ChIP-
seq peak, and is paired with the respective target vector.

Figure 1. A graphical illustration of the DanQ model: an input sequence is
first one hot encoded into a 4-row bit matrix. A convolution layer with rec-
tifier activation acts as a motif scanner across the input matrix to produce
an output matrix with a row for each convolution kernel and a column
for each position in the input (minus the width of the kernel). Max pool-
ing reduces the size of the output matrix along the spatial axis, preserving
the number of channels. The subsequent BLSTM layer considers the ori-
entations and spatial distances between the motifs. BLSTM outputs are
flattened into a layer as inputs to a fully connected layer of rectified linear
units. The final layer performs a sigmoid non-linear transformation to a
vector that serves as probability predictions of the epigenetic marks to be
compared via a loss function to the true target vector.

Based on this information, we expected that each target vec-
tor would contain at least one positive value; however, we
found that about 10% of all target vectors were all nega-
tives. Each 1000-bp DNA sequence is one-hot encoded into
a 1000 × 4 binary matrix, with columns corresponding to A,
G, C and T. Training, validation and testing sets were down-
loaded from the DeepSEA website. Samples were stratified
by chromosomes into strictly non-overlapping training, val-
idation and testing sets. The validation set was not used for
training or testing. Reverse complements are also included,
effectively doubling the size of each dataset.

For evaluating performance on the test set, the predicted
probability for each sequence was computed as the average
of the probability predictions for the forward and reverse
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complement sequence pairs, similar to DeepSEA’s evalua-
tion experiments.

DanQ model and training

For detailed specifications of the architectures and hyper-
parameters used in this study, see Supplementary Note.
Dropout (18) is included to randomly set a proportion of
neuron activations from the max pooling and BLSTM lay-
ers to a value of 0 in each training step to regularize the
DanQ models.

All weights are initialized by randomly drawing from
unif(−0.05,0.05) and all biases are initially set to 0. In ad-
dition to random initialization, an alternative strategy is to
initialize kernels from known motifs: a random subsection
of a kernel is set equal to the values of the position frequency
matrix minus 0.25 and its corresponding bias is randomly
drawn from unif(−1.0,0.0). We tried both in our implemen-
tation.

Neural network models are trained using the RMSprop
algorithm (19) with a minibatch size of 100 to minimize the
average multi-task binary cross entropy loss function on the
training set. Validation loss is evaluated at the end of each
training epoch to monitor convergence. The first model we
trained contains 320 convolution kernels with random ini-
tial weights, referred to as DanQ, took 60 epochs to fully
train and each epoch of training takes ∼6 h. The second
model we trained, which we designated as DanQ-JASPAR
because half of the kernels are initialized with motifs from
the JASPAR database (20), contains 1024 convolution ker-
nels, took 30 epochs to fully train, and each epoch of train-
ing takes ∼12 h.

Our implementation utilizes the Keras 0.2.0 library
(https://github.com/fchollet/keras) with the Theano 0.7.1
(21,22) backend. An NVIDIA Titan Z GPU was used for
training the model.

Logistic regression

For benchmark purposes, we also trained a logistic regres-
sion (LR) baseline model. Unlike the DanQ and DeepSEA
models, the LR model does not process raw sequences as in-
puts. Instead, the LR model uses zero-mean and unit vari-
ance normalized counts of k-mers of lengths 1–5 bp as fea-
tures. The LR model was regularized with a small L2 weight
regularization of 1e-6. Similar to the training of the DanQ
models, the LR model was trained using the RMSprop al-
gorithm with a minibatch size of 100 to minimize the av-
erage multi-task binary cross entropy loss function on the
training set. Validation loss is evaluated at the end of each
training epoch to monitor convergence. We note that this
method of training is equivalent to training 919 individual
single-task LR models.

Functional SNP prioritization

The DanQ functional SNP prioritization framework shares
the same datasets, features and training algorithm as the
DeepSEA functional SNP prioritization framework, essen-
tially exchanging DeepSEA chromatin effect predictions
with DanQ chromatin effect predictions. Briefly, we down-
loaded positive and negative SNP sets for training and

testing. We also downloaded DeepSEA functional SNP
scores for these variants for benchmarking purposes. Posi-
tive SNPs include expression quantitative trait loci (eQTLs)
from the genome-wide repository of associations between
SNPs and Phenotypes (GRASP) database (23) and non-
coding trait-associated SNPs identified in GWAS studies
from the US National Human Genome Research Insti-
tute (NHGRI) GWAS Catalog (24). Negative SNPs con-
sist of 1000 Genomes Project SNPs (25) with controlled
minor allele frequency distribution in 1000 Genomes pop-
ulation. The negative SNPs are further split into training
and testing sets, the former consisting of 1,000,000 ran-
domly selected non-coding 1000 genomes SNPs with mi-
nor allele frequency distribution matched with the eQTL
or GWAS positive standards and the latter consisting of
negative SNPs of varying distances to positive standard
SNPs. We trained two boosted ensemble classifier models,
one for the GRASP set and one for the GWAS set, using
the XGBoost implementation (https://github.com/tqchen/
xgboost). For a detailed specifications of the hyperparame-
ters, see Supplementary Note. Features were computed as
in Zhou and Troyanskaya (7), replacing DeepSEA chro-
matin effect predictions with DanQ chromatin effect pre-
dictions. All features were standardized to mean 0 and vari-
ance 1 before training. Unequal positive and negative train-
ing sample sizes were balanced with sample weights. The
performance of each model was estimated by 10-fold cross-
validation and across several negative groups.

RESULTS

We first train a DanQ model containing 320 convolution
kernels for 60 epochs, evaluating the average multi-task
cross entropy loss on the validation set at the end of each
epoch to monitor the progress of training. To regularize
the model, we also include dropout to randomly set a pro-
portion of neuron activations from the max pooling and
BLSTM layers to a value of 0 in each training step. For de-
tailed specifications of the hyperparameters and model ar-
chitecture, see Supplementary Note.

For benchmarking purposes, we compare a fully trained
DanQ model to a LR baseline model and the published
DeepSEA model. To compare performance among mod-
els, we first calculated the area under the receiver operat-
ing characteristics curve (ROC AUC) for each of the 919
binary targets on the test set (Figure 2). In terms of the
ROC AUC score, DanQ outperforms the DeepSEA model
for two of the targets as shown in the examples at the top
of Figure 2, although this performance difference is rela-
tively small. This pattern extends to the remaining targets as
DanQ outperforms DeepSEA for 94.1% of the targets, al-
though the difference is again comparatively small with an
absolute improvement of around 1–4% for most targets. De-
spite the simplicity of the LR models, the ROC AUC statis-
tics suggests that LR is an effective predictor, with ROC
AUC scores typically over 70%. Given the sparsity of posi-
tive binary targets (∼2%), the ROC AUC statistic is highly
inflated by the class imbalance, a fact overlooked in the orig-
inal DeepSEA paper.

A better metric to measure the performance is the area
under precision-recall curve (PR AUC) (Figure 3). Neither

https://github.com/fchollet/keras
https://github.com/tqchen/xgboost


e107 Nucleic Acids Research, 2016, Vol. 44, No. 11 PAGE 4 OF 6

Figure 2. (Top) ROC curves for the GM12878 EBF1 and H1-hESC SIX5
targets comparing the performance of the three models. (Bottom) Scat-
terplot comparing DanQ and DeepSEA ROC AUC scores. DanQ outper-
forms DeepSEA for 94.1% of the targets in terms of ROC AUC.

Figure 3. (Top) PR curves for the GM12878 EBF1 and H1-hESC SIX5
targets comparing the performance of the three models. (Bottom) Scatter-
plot comparing DanQ and DeepSEA PR AUC scores. DanQ outperforms
DeepSEA for 97.6% of the targets in terms of PR AUC.

A

B C

Figure 4. (A) Three convolution kernels (bottom) visualized and aligned
with EBF1, TP63 and CTCF motif logos (top) from JASPAR using TOM-
TOM. Significance values of the match are displayed below motif names.
(B) All 320 convolution kernels are converted to sequence logos and
aligned with RSAT. The heatmaps are colored according to the informa-
tion content of the respective nucleotide at each position. (C) Same as (B),
except the heatmap is colored by the sum of the information content of
each letter.

the precision nor recall take into account the number of true
negatives, thus the PR AUC metric is less prone to infla-
tion by the class imbalance than the ROC AUC metric is.
As expected, we found the PR AUC metric to be more bal-
anced, as demonstrated by how the LR models now achieve
a PR AUC below 5% for the two examples at the top of
Figure 3, far below the performance of the other two mod-
els. Moreover, the performance gap between DanQ between
DeepSEA is much more pronounced under the PR AUC
statistic than under the ROC AUC statistic. For the two ex-
amples shown, the absolute improvement is over 10% and
the relative improvement is over 50% under the PR AUC
metric and 97.6% of all DanQ PR AUC scores surpass
DeepSEA PR AUC scores. These results show that adding
recurrent connections significantly increases the modeling
power of DanQ.

Using a similar approach described in the DeepBind
method (2) we converted the kernels from the convolution
layer of the DanQ models to position frequency matrices, or
motifs. Then, we aligned these motifs to known motifs using
the TOMTOM algorithm (26). Of the 320 motifs learned by
the DanQ model, 166 significantly match known motifs (E
< 0.01) (Figure 4A, Supplementary Figure S1 and Supple-
mentary File). Next, we aligned and clustered the 320 motifs
together into 118 clusters using the RSAT matrix clustering
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tool (27), and confirmed that the model learned a large vari-
ety of informative motifs (Figure 4B and C; Supplementary
Figure S2).

Given the large scope of the data, we conjectured that
our current model did not exhaust the entire space of use-
ful motif features despite the large variety of motifs learned.
Moreover, weight initialization is known to play crucial role
for the performance neural networks (28) and we hypoth-
esized that a better initialization strategy can further im-
prove the performance of our neural network. Therefore, we
trained a larger model containing 1024 convolutional ker-
nels of which about half are initialized with known motifs
from JASPAR (20) and found this alternative way of ini-
tialization can further improve the performance of DanQ
(Supplementary Table S1 and Figure S3).

Finally, we extended DanQ to prioritize functional SNPs
based on differences of predicted chromatin effect sig-
nals between reference and allele sequences. Specifically,
we downloaded training and testing SNP sets (7) that
we used to train and evaluate boosted ensemble classi-
fiers. The positive SNPs are annotated ‘functional’ non-
coding positive SNPs are eQTL SNPs from the GRASP
database (23) and non-coding trait-associated SNPs identi-
fied in GWAS studies from the US NHGRI GWAS Catalog
(24). Negative ‘non-functional’ variant standards consist of
1000 Genomes Project SNPs (25) with controlled minor al-
lele frequency distribution in 1000 Genomes population.
These variant sets are the same sets used by the DeepSEA
functional SNP prioritization framework for training and
testing. The DanQ framework outperforms the DeepSEA
framework across most of the testing sets, with the perfor-
mance difference being 0.5–2% in terms of the ROC AUC
metric (Supplementary Figure S4).

DISCUSSION

In conclusion, DanQ is a powerful method for predicting
the function of DNA directly from sequence alone, mak-
ing it a valuable asset for studying the function of non-
coding DNA. Its hybrid architecture allows it to simulta-
neously learn motifs and a complex regulatory grammar
between the motifs. The additional modeling capacity af-
forded by the recurrent connections allows DanQ to sig-
nificantly outperform DeepSEA, a pure CNN model that
lacks recurrent modeling. This performance gap is demon-
strated across several metrics, including a direct compari-
son of AUC statistics between the two models. We argue
that the PR AUC statistic is a much more balanced met-
ric than the ROC AUC statistic to assess performance in
this case due to the massive class imbalance. In fact, the
performance gap can be quite drastic under the PR AUC
statistic, reaching well over a 50% relative improvement for
some epigenetic marks. Despite the significant improvement
in performance, there is still much room for improvement
because most of the PR AUC scores are below 70% for ei-
ther model. Furthermore, the significant improvement in
chromatin effect prediction does not immediately translate
to an equally large improvement in functional variant pre-
diction. One factor that may limit performance in this re-
gard is that while the GRASP eQTL and GWAS catalog
SNPs we label as positive variants are associated with phe-

notypes, these SNPs may not be the causal variants. Instead,
the causal variants are likely in linkage disequilibrium with
these SNPs. Thus, we hypothesize that extending our frame-
work to study the link between phenotypes and haplotypes
instead of phenotypes and individual SNPs may improve
prediction performance. Nevertheless, the improved capa-
bility of DanQ to predict chromatin effects means it can
better predict the epigenetic changes caused by genetic vari-
ants, which is useful information for prioritizing the causal
variant among a group of tightly-linked variants and pre-
dicting the phenotypic outcomes of genome editing, the lat-
ter of which is beneficial for several fields including synthetic
biology and transgenic animal studies.

There are several avenues of future interest to explore.
First, the model can be made fully recurrent so it can pro-
cess sequences of arbitrary length, such as whole chromo-
some sequences, to generate sequential outputs. In contrast,
our current setup can only processes sequences of constant
length with static output. A fully recurrent architecture may
also benefit our effort to study variants since it would al-
low us to explore the long-range consequences of genetic
variants, as well as the cumulative effects of SNPs that are
in linkage disequilibrium with each other. Second, we are
interested in incorporating new ChIP-seq and DNase-seq
datasets from more cell types as they become available. In-
corporating other types of data, such as methylation, nucle-
osome positioning and transcription may also yield novel
results and improve functional variant prioritization. Fi-
nally, we are committed to updating and improving the
DanQ model. As our results have shown, the model archi-
tecture and weight initialization can influence performance.
Previously, we manually selected model parameters. For ex-
ample, the DanQ model contains 320 kernels because the
DeepSEA model also contains 320 kernels in its first convo-
lutional layer, making the two models somewhat more com-
parable at the architectural level. Interestingly, although our
first model contains fewer free weights than DeepSEA, our
first model still significantly outperforms DeepSEA. In ad-
dition, the choice of 1024 kernels in the JASPAR-based
model was made to accommodate 519 motifs in the JAS-
PAR database in addition to an approximately equal num-
ber of randomly initialized kernels. One interesting prospect
is to utilize distributed computing-based hyperparameter
tuning algorithms to automatically find the optimal com-
bination of model architecture, initial weights and hyper-
parameters. We will commit to providing regular updates
as the model improves. Also, our motif analysis has shown
that neural network training is an effective motif discoverer.
Hence our updates will include motifs from the model in
MEME minimal format, a flexible format compatible with
most motif-related programs, as a resource to the commu-
nity. To the best of our knowledge, this is the first applica-
tion of a hybrid convolution and recurrent network archi-
tecture for the purpose of predicting function de novo from
DNA sequences. We expect this hybrid architecture will be
continually explored for the purpose of studying biological
sequences.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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