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Abstract

 Introduction—Cardiac involvement is a common feature in muscular dystrophies. It presents 

as heart failure and/or arrhythmia. Traditionally, dystrophic cardiomyopathy is treated with 

symptom-relieving medications. Identification of disease-causing genes and investigation on 

pathogenic mechanisms have opened new opportunities to treat dystrophic cardiomyopathy with 

gene therapy. Replacing/repairing the mutated gene and/or targeting the pathogenic process/

mechanisms using alternative genes may attenuate heart disease in muscular dystrophies.

 Areas covered—Duchenne muscular dystrophy is the most common muscular dystrophy. 

Duchenne cardiomyopathy has been the primary focus of ongoing dystrophic cardiomyopathy 

gene therapy studies. Here, we use Duchenne cardiomyopathy gene therapy to showcase recent 

developments and to outline the path forward. We also discuss gene therapy status for 

cardiomyopathy associated with limb-girdle and congenital muscular dystrophies, and myotonic 

dystrophy.

 Expert opinion—Gene therapy for dystrophic cardiomyopathy has taken a slow but steady 

path forward. Preclinical studies over the last decades have addressed many fundamental 

questions. Adeno-associated virus-mediated gene therapy has significantly improved the outcomes 

in rodent models of Duchenne and limb girdle muscular dystrophies. Validation of these 

encouraging results in large animal models will pave the way to future human trials.
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 1. Clinical presentation, pathogenic mechanism and therapeutic 

challenge of dystrophic cardiomyopathy

Dystrophic cardiomyopathy refers to cardiac manifestations of muscular dystrophies. 

Muscular dystrophies are a clinically, genetically, and biochemically heterogeneous group of 

disorders. They are characterized by progressive muscle wasting, force loss and dystrophic 

muscle pathology1, 2. Muscular dystrophies can be classified in many different ways such as 

the age of onset (congenital/neonatal, adolescent, or adult), disease progression (rapid or 

slow), the muscle groups involved (such as limb girdle, facioscapulohumeral and 

oculopharyngeal etc.), the mode of inheritance (such as X-linked/autosomal, recessive/

dominant). Some muscular dystrophies are named after people who discovered the disease 

(such as Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD) and 

Emery-Dreifuss muscular dystrophy etc). Despite the unique clinical features of each type of 

muscular dystrophy, cardiac involvement has been a common finding in most muscular 

dystrophies and often represents a major cause of morbidity and mortality3–7. Interestingly, 

the cardiac phenotype varies in different types of muscular dystrophies and even in different 

patients or disease stages of the same type muscular dystrophy. Some present with dilated/

hypertrophic/restrictive cardiomyopathy with eventually heart failure while others exhibit 

conduction defects leading to arrhythmia and sudden cardiac death. In the case of DMD and 

BMD, MRI studies have revealed a unique pattern of subepicardial fibrosis predominantly in 

the left ventricular lateral wall8–10.

The pathogenic mechanisms of dystrophic cardiomyopathy are not completely 

understood11, 12. However, it may at least involve destabilization of the cardiomyocyte 

membrane, or sarcolemma. Unlike other cells in the body, muscle cells undergo continuous 

calcium-regulated contraction/relaxation cycles. A consequence of this unique physiology is 

the repeated cycles of shrinking and expansion of the cell. This dynamic deformation 

process places enormous stress on the sarcolemma. Such stress is especially problematic for 

cardiomyocytes because of the repetitive pumping activity of the heart. To relieve 

contraction-induced stress, muscle cells have evolved specialized trans-membrane protein 

complexes such as the dystrophin-associated glycoprotein complex (DGC) and the integrin 

complex. These protein complexes constitute physical connections between the cytoskeleton 

and the extracellular matrix. Mutations in the genes encoding the components of these 

complexes result in various forms of muscular dystrophies. Failure to maintain sarcolemmal 

integrity leads to membrane leakage, myocyte degeneration, necrosis and eventual 

replacement by fibrofatty tissue. Clearly, strengthening the destabilized sarcolemma holds 

the key for treating dystrophic cardiomyopathy. Unfortunately, this cannot be achieved with 

conventional medical/surgical treatments13. Gene therapy, however, provides a great 

opportunity to address this therapeutic challenge.
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 2. Strategies to deliver a therapeutic gene to a dystrophic heart

Disease-causing genes for many muscular dystrophies have been discovered. The 

identification of the genetic underpinning makes it possible to treat dystrophic 

cardiomyopathy with gene therapy. The first step of gene therapy is delivery of a therapeutic 

gene to the heart. A number of viral and nonviral vectors have been tested14. So far the most 

effective and least immunogenic vector is adeno-associated virus (AAV). AAV is a 20-nm 

single stranded DNA virus15. Recombinant AAV vector contains no wild type viral genes. 

The vector genome can be readily packaged into naturally existing or synthetic capsids to 

meet specific therapeutic needs. The nano-size AAV particle creates a packaging dilemma. 

The maximal carrying capacity of a single AAV particle is 5-kb16. This is too small for 

many genes required for muscular dystrophy gene therapy (such as the dystrophin gene and 

the dysferlin gene). To overcome this limitation, we and others have invented a series of dual 

and tri-AAV vectors17. The basic idea is to fragment a large therapeutic gene and package 

each segment into an AAV particle. The full-length gene is reconstituted by cellular 

recombination machinery after co-infection. These multi-vector strategies have made it 

possible to deliver the 6 to 8-kb mini-dystrophin gene and even the 12-kb full-length 

dystrophin coding sequence to dystrophin-deficient mdx mice, the most commonly used 

animal models for DMD18–22.

Over the years, a number of different strategies have been developed to achieve effective 

AAV gene transfer in dystrophic hearts. Early studies were mainly based on AAV-2 using 

invasive and complicated methods such as direct myocardial injection23, intracavity 

injection24, transcoronary perfusion25, and ex vivo coronary perfusion26. The identification 

and development of novel AAV capsids has opened the door to transduce dystrophic hearts 

with peripheral vein injections27–32. This simple method not only greatly reduces the risks 

associated invasive heart gene transfer but also allows simultaneous treatment of both 

cardiac and skeletal muscle disease in muscular dystrophy.

The tissue tropism of the AAV vector is largely determined by the viral capsids. 

Experimenting with natural and engineered AAV capsids has proven to be a fruitful 

approach in identifying cardiotropic AAV vectors. For example, a comparison of AAV-1 to 9 

revealed AAV-9 as the most potent vector for the mouse heart33. Indeed, AAV-9 results in 

robust widespread myocardial transduction in mdx mice irrespective of the age and the route 

of delivery (intravenous or intra-arterial)34–36. Directed evolution and cardiotropic peptide 

insertion have also yielded novel AAV variants with enhanced cardiac transduction in rodent 

models of limb girdle muscular dystrophy (LGMD) 2F, an extremely rare type of muscular 

dystrophy caused by δ-sarcoglycan deficiency32, 37, 38.

 3. Disease gene-specific gene therapy

 3.1. Dystrophin-based Duchenne cardiomyopathy gene therapy

The dystrophin gene was the first muscular dystrophy-associated gene cloned39. Its mutation 

leads to DMD. The 2.4-mb full-length dystrophin gene contains 79 exons and it transcribes 

into a ~ 12-kb cDNA. The full-length dystrophin protein has four major functional domains 

including the N-terminal, rod, cysteine-rich and C-terminal domain. The N-terminal domain 
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binds to cytosolic γ-actin. The rod domain consists of 24 spectrin-like repeats. Within the 

rod domain, there are several important subdomains including one for γ-actin-binding, one 

for neuronal nitric oxide synthase (nNOS)-binding and one for microtubule-binding40–43. 

The cysteine-rich domain links dystrophin to the extracellular matrix through dystroglycan, 

a transmembrane glycoprotein. The C-terminal domain binds to syntrophin and 

dystrobrevin.

The enormous size of the dystrophin gene presents a delivery challenge because it is beyond 

the packaging capacity of most viral vectors. Interestingly, some naturally-existing, 

internally-deleted dystrophins (e.g. Δ17–48) are quite functional44. These mini-dystrophin 

genes are about 6 to 8-kb in length and their expression in humans and animals has greatly 

mitigated skeletal muscle disease19–21, 44–47. The therapeutic implication of mini-dystrophin 

in the heart has only been investigated in transgenic mice48. We expressed mini-dystrophin 

specifically in the heart of mdx mice. This cardiac-restricted expression completely 

corrected cardiac histopathology, improved exercise performance and enhanced myocardial 

contractility48. Whether mini-dystrophin gene therapy can achieve similar effectiveness 

remains to be seen. In this regard, dual AAV vectors have been developed to express the 

mini-dystrophin gene18–21, 49–51. Further, systemic injection of dual AAV vectors has been 

shown to transduce the myocardium at high efficiency in mdx mice52, 53.

A single vector therapy would be more advantageous. To package dystrophin into AAV, 

highly abbreviated micro-dystrophin genes have been developed. The microgene is about 3.5 

to 4-kb in length and contains ~30% of the dystrophin coding sequence. In contrast to mini-

dystrophin, micro-dystrophin does not carry the C-terminal domain. Additionally, it has a 

shorter rod domain with only 4 to 5 spectrin-like repeats. AAV-mediated micro-dystrophin 

gene therapy has been extensively studied in various mouse models and more recently in the 

canine model47, 54–59. Direct or systemic AAV microgene therapy significantly ameliorated 

skeletal muscle disease in dystrophic mice and dogs. The first study to evaluate therapeutic 

effect of micro-dystrophin in the heart was performed by Yue et al24. In this study, an AAV-5 

microgene vector was directly injected into the cardiac cavity of neonatal mdx mice. Micro-

dystrophin restored the DGC complex in the heart and enhanced the membrane stability of 

cardiomyocytes24. In subsequent studies, newly developed AAV capsids (such as AAV-6 and 

AAV-9) were utilized to delivery micro-dystrophin to the heart through peripheral vein 

injection34–36, 54, 60–62. Of particular interest are studies by Bostick et al in which an AAV-9 

microgene vector was delivered to the heart of aged female mdx mice. This study is 

noteworthy because aged female mdx mice develop a cardiac phenotype nearly identical to 

that observed in dilated cardiomyopathy of human patients34, 35, 63, 64. Despite the advanced 

heart disease in very old mice, surprisingly, cardiomyocytes were efficiently 

transduced34, 35. The average lifespan of mdx mice is ~ 22 months65, 66. In pre-terminal mdx 

mice (16 to 20-m-old), microgene therapy reduced myocardial fibrosis, improved the 

electrocardiographic profile and hemodynamic function34. In terminal age mdx mice (> 21-

m-old), neither fibrosis nor hemodynamic function was improved35. However, some ECG 

parameters were partially corrected and dobutamine stress-induced acute cardiac death was 

reduced35.
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Expression of a full-length or near-full-length dystrophin protein may lead to a better 

recovery. This is feasible with tri-AAV vectors but the efficiency is too low to be of practical 

use22. Editing the mutated RNA transcript or genome offers alternative approaches to reach 

this goal. Exon skipping is a potent method to achieve RNA-level editing. Briefly, antisense 

oligonucleotides (AONs) are delivered to modulate RNA splicing so that the mutated (and 

some times adjacent) exons are removed. The resulting mRNA, though abbreviated, is in-

frame and can yield a near-full-length protein67. Several chemically distinctive classes of 

AONs have been developed including 2-O-methylated phosphorothioated (2-OMePS), 

phosphorodiamidate morpholino oligomers (PMOs), peptide/polymer/nanoparticle–

conjugated PMOs, and most recently tricycle-DNA (tcDNA). 2-OMePS and PMOs are 

currently in clinical trials68–73. However, these AONs cannot reach the heart74–76. Peptide/

polymer/nanoparticle–conjugated PMOs can induce exon-skipping in the heart of mdx mice 

and improve heart function77–87. However, there are issues related to potential toxicity and 

immunogenicity88. The newly developed tcDNA represents the most advanced AON 

formulation89. Because of its unique pharmacological property, systemic delivery of tcDNA-

AONs resulted in phenomenal uptake in many tissues including the heart and brain. 

Treatment in mdx mice and more severe utrophin/dystrophin double knockout (u-dko) mice 

improved cardiac, respiratory and behavioral function89. Importantly, no overt toxicity was 

detected with tcDNA89. An alternative strategy to deliver AONs is to use the AAV vector. 

AAV-9 mediated systemic AON delivery resulted in high efficient dystrophin expression in 

the heart of u-dko mice90. More recently, two independent groups achieved long-term 

dystrophin restoration in the heart of the canine DMD model with AAV-6 mediated local 

exon-skipping91, 92.

Compared to RNA editing with exon-skipping, targeted editing of the mutated dystrophin 

gene has just entered an exciting time due to recent development of highly versatile genome 

engineering tools such as zinc-finger nucleases (ZFNs), transcription activator-like effector 

nucleases (TALENs), and most importantly, the clustered regularly interspaced palindromic 

repeat (CRISPR)-associated endonuclease 9 (Cas9)93. A series of elegant studies from the 

Gersbach laboratory has provided compelling proof-of-concept evidence in correcting cells 

from DMD patients using these new technologies94–96. It is highly anticipated that genome 

editing will soon be used to treat skeletal muscle disease and cardiomyopathy in animal 

models of DMD97.

 3.2. Disease gene-based therapy for cardiomyopathy in other muscular dystrophies

 3.2.1. Targeting disease gene to treat LGMD cardiomyopathy—LGMD refers to 

a group of muscle disorders with a wide range of clinical and genetic heterogeneity98, 99. 

Based on the inheritance pattern, they are classified as autosomal dominant type 1 (LGMD1) 

and autosomal recessive type 2 (LGMD2). Each type of LGMD is further classified 

according to the time the disease gene was discovered. For LGMD1, the goal of the gene 

therapy is to decrease the expression of the mutated gene. This can be achieved with RNA 

interference (RNAi) to silence the mutated gene100, 101. So far, only one study has tested 

gene therapy for dominant LGMD. LGMD1A is caused by myotilin gene mutation. Liu et al 

targeted mutant myotilin with an AAV-6 microRNA vector102. Treatment significantly 

reduced expression of the mutated myotilin protein and ameliorated skeletal muscle 
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myopathy. Although LGMD1A patients do not exhibit cardiac abnormalities4, the RNAi 

approach described by Liu et al may treat cardiac manifestations in other dominant 

myopathies such as lamin A/C gene mutation-induced LGMD1B and Emery-Dreifuss 

muscular dystrophy.

There has been significant progress in LGMD2 gene therapy. AAV-mediated gene therapy 

has been tested in animal models of at least seven different subtypes of LGMD2 (2A to 2F, 

and 2I). LGMD2A and 2B are caused by mutations in the calpain-3 gene and the dysferlin 

gene, respectively. According to Hermans, LGMD2A and 2B do not show cardiac 

manifestations4. However, cardiomyopathy has been seen in dysferlin-deficient mice and 

there are also a few reports of cardiac involvement in some LGMD2B patients103–106. Three 

different approaches have been explored to express a function dysferlin gene. These include 

delivering a minimized dysferlin gene with a single AAV vector, delivering a full-length 

dysferlin cDNA with dual AAV vectors and exon-skipping or pre-mRNA trans-splicing to 

repair defective dysferlin RNA transcript107–113. Defective membrane repair has been 

considered as the major pathogenic mechanism for LGMD2B. The in vitro membrane repair 

assay has been used as a surrogate endpoint to evaluate the therapeutic efficacy. Surprisingly, 

a recent study by Lostal et al found that a correction of membrane repair by the in vitro 

assay did not correlate with the correction of muscle pathology. The authors overexpressed 

myoferlin, a homolog of dysferlin, in dysferlin-null mice by the transgenic approach and 

they also expressed the mini-dysferlin gene in 4-week-old dysferlin-null mice. Neither 

transgenic overexpression of myoferlin nor AAV-mediated expression of mini-dysferlin 

improved muscle histology although both corrected membrane repair deficit in vitro114.

LGMD2C to 2F are often referred to as sarcoglycanopathies because they are caused by 

mutations in the sarcoglycan genes. The most common sarcoglycanopathy is α-sarcoglycan-

deficient LGMD2D. Cardiac involvement is rare in LGMD2D6. LGMD2C, which is caused 

by mutations in the γ-sarcoglycan gene, usually exhibits mild cardiomyopathy. Deficiency of 

β-sarcoglycan and δ-sarcoglycan results in LGMD2E and LGMD2F, respectively. These two 

diseases are associated with dilated cardiomyopathy3, 6. The molecular weights of 

sarcoglycans are 35 to 50 kD. The small size makes sarcoglycan genes perfect candidates for 

AAV delivery. Sarcoglycanopathies were among the first few inherited diseases proposed for 

AAV gene therapy115. Recently, AAV gene therapy for LGMD2C and 2D has entered into 

clinical trials116–118. Very few studies have explored AAV β-sarcoglycan gene transfer for 

treating LGMD2E119, 120. However, therapeutic delivery of the δ-sarcoglycan gene by AAV 

has been tested extensively in the mouse and hamster models of LGMD2F. Systemic or 

direct myocardial delivery of the δ-sarcoglycan gene not only reduced histological lesions in 

the heart (such as myocardial necrosis, inflammation, calcification and fibrosis) but also 

improved heart function and extended lifespan38, 121–125. Collectively, these preclinical 

studies suggest that AAV δ-sarcoglycan gene transfer is an effective treatment for dilated 

cardiomyopathy in LGMD2F.

LGMD2I is caused by mutations in the fukutin-related protein (FKRP) gene. FKRP is 

located in the Golgi apparatus and it is essential for post-translational glycosylation of α-

dystroglycan, the protein that directly interacts with the extracellular matrix in the DGC 

complex. More than half of LGMD2I patients have cardiac abnormalities and a quarter of 
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them develop heart failure126. Gene therapy for LGMD2I has been hindered by the lack of a 

good animal model. Nonsense mutations and whole gene deletions are embryonically 

lethal127. To overcome this hurdle, Lu and colleagues recently generated a FKRP L276I 

knock-in mouse128. This nonsense mutation model mimics the clinical phenotype of 

LGMD2I. To determine whether systemic delivery of the FKRP gene with AAV can protect 

the heart, Qiao et al performed intraperitoneal injection in newborn FKRP L276I knock-in 

mice using an AAV-8 vector. Dobutamine-stressed echocardiography in 7-m-old treated 

mice showed significantly higher ejection fraction and fractional shortening than those of 

untreated mice128.

 3.2.2. Targeting disease gene to treat heart disease in other muscular 
dystrophies—Dystroglycanopathies are a group of congenital muscular dystrophies 

(MDC). They are caused by mutations in the genes involved in the glycosylation pathway of 

α-dystroglycan129, 130. Fukuyama muscular dystrophy, a dystroglycanopathy caused by 

retrotransposon insertion in the 3′-untranslated region of the fukutin gene, is associated with 

severe cardiomyopathy and congestive heart failure131, 132. Blockade of pathogenic exon-

trapping by a cocktail of AONs restored fukutin expression and α-dystroglycan 

glycosylation in the mouse model and human cells132. Whether this therapy can rescue heart 

function remains to be determined by future studies.

FRKP gene mutation not only causes LGMD2I but also causes congenital muscular 

dystrophy type 1C (MDC1C). Similar to LGMD2I, cardiac involvement is also a frequent 

finding in MDC1C patients133. A mouse model for MDC1C has been generated with FKRP 

P448L knock-in134. AAV-9 mediated FKRP expression normalized α-dystroglycan 

glycosylation in the heart of MDC1C mice. Unfortunately, cardiac function was not assessed 

due to mild heart disease at the age of euthanization (5 months)134.

Myotonic dystrophy (DM), the second most common muscular dystrophy, is an autosomal 

dominant disease. It is caused by pathogenic RNA gain-of-function toxicity due to CTG (for 

DM1) or CCTG (for DM2) expansion. Cardiac conduction deficits (conduction block and 

arrhythmia) contribute significantly to the morbidity and mortality135. About 20 different 

mouse models have been developed to reveal various aspects of the disease136. Among 

these, tamoxifen-inducible EpA960 mice and tetracycline-inducible GFP-DMPK-(CTG)5 

mice are considered as good models to test cardiac interventions for DM137, 138. The field of 

DM gene therapy has been particularly active in recent years. RNAi, ribozyme, AONs and 

more recently site-specific RNA endonuclease have all been explored for DM gene 

therapy139–144. However, most of these studies have not examined therapeutic efficacy in the 

heart. The in vivo proof of principle for reversing cardiac conduction defects has only been 

shown in GFP-DMPK-(CTG)5 mice. In this model, administration of doxycycline induced 

myotonia and cardiac conduction abnormalities. Discontinuation of doxycycline 

dramatically reduced myotonic symptoms and conduction block in the heart137.
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 4. Expanding the armory of dystrophic cardiomyopathy gene therapy by 

targeting pathogenic mechanisms

 4.1. Dystrophin-independent Duchenne cardiomyopathy gene therapy

 4.1.1. Stabilization of cardiomyocyte membrane with endogenous cellular 
genes—Given membrane weakening is a primary pathogenic mechanism, strategies that 

enhance sarcolemmal stability should theoretically ameliorate Duchenne cardiomyopathy. 

Utrophin is a dystrophin homolog145. Despite some differences43, 146, 147, utrophin shares 

significant structural and functional similarity to dystrophin and assembles the utrophin-

associated glycoprotein complex (UGC). As is the case for dystrophin, micro-utrophin has 

been generated for AAV delivery40, 148. More recently, AAV-mediated expression of jazz, an 

artificial zinc finger transcription factor, was found to activate the utrophin promoter and 

enhance utrophin expression149. So far these utrophin-based strategies have only been 

shown to protect skeletal muscle. Their therapeutic efficacy in the heart remains to be tested 

experimentally. Several components of the DGC and UGC, including sarcoglycans, 

sarcospan and nNOS, were recently shown to reduce the skeletal muscle phenotype in mdx 

mice66, 150, 151. Of these, only nNOS has been shown to treat Duchenne cardiomyopathy152. 

Specifically, Lai et al delivered a PDZ domain truncated version of the nNOS gene to the 

heart of 14-m-old mdx mice and examined the cardiac phenotype when mice reached 21 

months of age. Supra-physiological ΔPDZ-nNOS expression significantly reduced 

myocardial fibrosis, inflammation and apoptosis. Importantly, treatment partially 

ameliorated ECG abnormalities and improved hemodynamic performance152.

Besides the DGC and UGC, the integrin complex (especially α7β1) is another membrane-

crossing complex that stabilizes the sarcolemma153. Expression of the α7-integrin gene by 

AAV was recently shown to reduce limb muscle disease in mdx mice and extend the life 

span of u-dko mice154, 155. The cardiac benefit of AAV-mediated α7-integrin expression 

remains to be demonstrated.

 4.1.2. Treating Duchenne cardiomyopathy with calcium regulating genes—
Cytosolic calcium overload is a pivotal pathogenic event leading to muscle damage and 

force reduction in DMD156. Restoring calcium homeostasis holds great promise for treating 

Duchenne cardiomyopathy. The sarco/endoplasmic reticulum calcium ATPase (SERCA) is a 

calcium pump that removes calcium from the cytosol and transports it into the lumen of the 

sarcoplasmic reticulum (SR). SERCA accounts for ≥ 70% of calcium removal from the 

cytosol in muscle cells. SERCA2a is expressed in the heart and slow twitch skeletal muscle. 

We found SERCA2a expression is reduced in the heart of mdx mice by immunostaining157. 

When the AAV-9 SERCA2a vector was delivered to the heart of 12-m-old mdx mice, it 

increased myocardial SERCA2a expression and significantly improved cardiac 

electrophysiology157. Encouragingly, similar protection was observed when the AAV-9 

SERCA2a vector was administrated to terminal aged (22-m-old) mdx mice158.

 4.1.3. Additional dystrophin-independent gene therapy strategies—Besides 

strengthening the sarcolemma and restoring calcium homeostasis, investigators have 

explored many other creative gene therapy strategies that are not dependent on dystrophin. 
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These include AAV-mediated inhibition of the myostatin pathway, AAV-mediated 

overexpression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

(PGC-1α), the cytotoxic T cell GalNAc transferase (Galgt2) and miR486, and AAV-

mediated blocking of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

κB) signaling pathway159–165. However, most of these studies only demonstrated disease 

amelioration in skeletal muscle. Whether cardiac muscle can be protected is yet to be seen. 

Among these strategies, the myostatin inhibition approach is especially intriguing because 

this approach aims at increasing muscle mass. This raises two concerns: (a) muscle 

hypertrophy may increase stress on the sarcolemma and hence worsen muscle disease, and 

(b) myostatin inhibition may lead to hypertrophic cardiomyopathy. Indeed, different results 

have been achieved depending on the models used. In animal models for DMD (mice and 

dogs), myostatin inhibition has consistently improved skeletal muscle pathology and 

function163, 164, 166–168. In a phase I trial, AAV-mediated regional expression of the 

myostatin antagonist follistatin improved walking distance in 5 out of 6 BMD patients169. 

However, the results of myostatin inhibition appears less promising in preclinical studies of 

some other muscular dystrophies such as LGMD2B, LGMD2C, LGMD2F and congenital 

muscular dystrophy type 1A170–173. Cohn et al examined whether myostatin deficiency can 

cause myocardial hypertrophy in normal C57BL/6 mice and mdx mice174. Surprisingly, 

myostatin elimination did not affect heart weight and heart weight/body weight ratio in 

either strain174. A major protective mechanism of myostatin inhibition is to reverse muscle 

fibrosis by inducing fibroblast apoptosis175. For reasons yet unknown, this mechanism 

appears to be deficient in the heart174. Collectively, there is a lack of clear evidence 

suggesting that myostatin blockade benefits a dystrophic heart. Myostatin inhibition-based 

gene therapy strategies have to be carefully weighted against potential undesirable side 

effects170–173, 176.

 4.2. Disease gene-independent gene therapy for cardiomyopathy in other muscular 
dystrophies

 4.2.1. Disease gene independent gene therapy for dilated cardiomyopathy in 
LGMD2E and 2F—MicroRNAs (miRs) are regulatory non-coding RNAs. Recent studies 

suggest that miRs play crucial roles in myocardial remodeling177. Sampaolesi and 

colleagues found that miR669 is down regulated in the heart of β-sarcoglycan null LGMD2E 

mice178. In a subsequent study, they evaluated preventive miR gene therapy in β-sarcoglycan 

knockout mice179. After intra-ventricular delivery of an AAV-2 miR669a vector to neonates, 

they quantified survival, cardiac fibrosis and function at the age of 18 months. AAV injected 

mice showed significantly better survival, less myocardial fibrosis and better heart 

function179.

Several disease gene-independent approaches have been tested to treat dilated 

cardiomyopathy in rodent models of LGMD2F25. Mitsugumin 53 (MG53) is a 53 kD 

membrane repair protein and also a ubiquitin E3 ligase180. Mice lacking MG53 show 

increased susceptibility to sarcolemmal injury and develop a slow but progressive 

myopathy181. He et al introduced MG53 to neonatal and young adult LGMD2F hamster 

model with AAV-8. Supra-physiological MG53 expression in the heart and limb muscle 

partially reduced the serum creatine kinase level, stabilized the sarcolemma, and slowed 
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muscle degeneration and fibrosis. It also improved treadmill performance and heart 

function182. Since sarcolemmal disruption is a common pathogenic process, it is suggested 

that MG53 therapy may server as a broadband therapeutics for a wide range of muscular 

dystrophies180. Unfortunately, there are some important safety concerns for long-term use. 

In one study, authors noticed elevation of hepatic enzymes due to leaky MG53 expression in 

the liver182. Most alarmingly, two recent studies found that the E3 ligase function of MG53 

targets the muscle insulin receptor and insulin-receptor substrate 1 for degradation183, 184. 

Transgenic over-expression of MG53 in striated muscle and heart resulted in metabolic 

syndrome and diabetic cardiomyopathy, respectively183, 185.

Defects in sarcoplasmic reticulum calcium cycling plays a pivotal role in the pathogenesis of 

inherited and acquired cardiomyopathy186. As eluded before, SERCA2a is the primary 

calcium pump in the heart. AAV-mediated SERCA2a over-expression ameliorates some 

cardiac manifestations in the mdx model of Duchenne cardiomyopathy157, 158. The activity 

of SERCA2a is regulated by phospholamban. Unphosphorylated phospholamban inhibits 

SERCA2a activity but phosphorylated phospholamban does not. A single amino acid change 

(Ser16 Glu) locks phospholamban in a conformation that resembles the phosphorylated 

form. Hoshijima et al delivered this pseudo-phosphorylated phospholamban to the heart of 

δ-sarcoglycan deficient hamsters using AAV-225. Chronic expression of pseudo-

phosphorylated phospholamban markedly improved heart function in this LGMD2F dilated 

cardiomyopathy model25.

Apoptosis has been implicated in the progression of heart failure. In particular, activation of 

apoptosis signal-regulating kinase 1 (ASK1) induces cardiomyocytes apoptosis. Hikoso et al 

tested whether delivery of the dominant mutant form of ASK1 can reduce cardiomyopathy 

in the LGMD2F hamster model187. They delivered dominant mutant ASK1 by AAV-2 via 

transcoronary perfusion to 10-week-old affected hamsters. Evaluation at the age of 24 weeks 

revealed remarkable improvements of systolic and diastolic function as well as a reduction 

of chamber dilation and myocardial fibrosis.

 4.2.2. Disease gene independent gene therapy for cardiomyopathy in other 
muscular dystrophies—Merosin (laminin α2) is an extracellular matrix protein. 

Deficiency in merosin leads to congenital muscular dystrophy MDC1A. Although MDC1A 

patients usually do not have clinically significant cardiomyopathy4, cardiac involvement has 

been documented in atypical patients and laminin α2-null dy/dy mice188–191. Agrin is also 

an extracellular matrix protein but it has no structural similarity to laminin α2. Interestingly, 

AAV-1 mediated systemic expression of a miniature version of agrin greatly reduced 

myocardial fibrosis in dy/dy mice192.

LGMD2I and MDC1C are caused by mutations in the FKRP gene and both diseases display 

prominent cardiac manifestations. FKRP knock-in mice L276I and P448L have been 

developed to model LGMD2I and MDC1C, respectively128, 134. The pathway of α-

dystroglycan glycosylation involves a series of glycosyltransferases. Like-

acetylglucosaminyltransferase (LARGE) acts downstream of FKRP. Activation of a 

downstream enzyme presumably should correct the disease phenotype caused by upstream 

enzyme deficiency. Vannoy indeed found that AAV-mediated LARGE over-expression not 
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only reduced myopathy in LARGE-deficient congenital muscular dystrophy mice but also 

improved α-dystroglycan glycosylation in the heart and skeletal muscle of FKRB P448L 

knock-in mice193.

 5. Expert opinion

The cloning of the dystrophin gene in 1986 started a flood of discoveries on genes whose 

mutations cause various forms of muscular dystrophies39. All of a sudden, it appears we 

may cure many muscular dystrophies and their associated cardiomyopathy by either fixing 

the mutated gene or introducing a functional copy of the normal gene. While conceptually 

straightforward, the journey thus far has turned out to be long and winding. Research in 

dystrophic cardiomyopathy and its gene therapy has made significant progress in the last 

decade194–196. Several fundamental issues have been addressed. These include the 

establishment of a large collection of animal models to test experimental gene therapy in 

various forms of dystrophic cardiomyopathy, the development of noninvasive AAV delivery 

methods to efficiently transduce the heart, and the expansion of therapeutic schemes from 

simply delivering a functional cDNA to dystrophic muscle to the modulation of the 

RNA/DNA structure and expression using a variety of coding and noncoding sequences, 

even oligonucleotides. Some critical parameters for dystrophic cardiomyopathy gene therapy 

have also been clarified. For example, studies in the mdx model of Duchenne 

cardiomyopathy have provided compelling evidence that we may achieve a near wild-type 

protection by treating half of the cardiomyocytes instead of every single cell63, 197. On the 

other hand, debates on whether treating skeletal muscle disease will alleviate or aggravate 

cardiomyopathy have settled down on the conclusion that both should be treated either 

together or separately76, 198, 199.

There is no doubt that Duchenne cardiomyopathy gene therapy has led the way for the entire 

field. First, a number of models have been generated for Duchenne cardiomyopathy gene 

therapy studies such as aged mdx mice, Cmah/mdx mice, u-dko mice, myoD/dystrophin 

double knockout mice and telomerase RNA/dystrophin double-null mdx/mTR 

mice63, 64, 200–204. Importantly most of these rodent models are commercially available205. 

In terms of large animal models, besides the commonly used golden retriever muscular 

dystrophy dogs (GRMDs), additional dog models have been identified and colonies 

established206–209. Second, we have successfully treated the cardiac phenotype in 

symptomatic u-dko mice and aged mdx mice using micro-dystrophin and exon-

skipping34, 89. We even achieved widespread myocardial AAV gene transfer and some ECG 

improvements in terminal stage mdx mice35. For scaling up, efficient myocardial 

transduction has been achieved in newborn dogs and adult affected dogs with systemic and 

percutaneous transendocardial AAV delivery57, 91, 92, 210, 211. Third, many previously under-

appreciated disease targets (such as nNOS and SERCA2a) and revolutionary technologies 

(such as tcDNA, ZENs, TALENs and CRISPR/Cas9) are now on the horizon for Duchenne 

cardiomyopathy gene therapy. Despite this substantial progress, we still do not have answers 

to a lot of important questions. For example, it is not clear whether supra-physiological 

dystrophin expression in the heart is toxic, whether there exists heart-specific domain(s) in 

the dystrophin gene that should be included in micro-dystrophin, and whether cardiotropic 

features of some existing AAV serotypes can cross the species boundary and result in 
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efficient heart transduction in humans. For this last point, some recent developments in the 

generation of the xenograft model using dystrophic human muscle and forced evolution of 

human tissue tropic AAV capsids may provide some hints32, 212, 213. It should be noted that 

emerging new technologies such as genome editing with CRISPR/Cas9 not only brings in 

new hopes, they are also accompanied with new questions such as potential toxicity from 

off-target editing.

There is a long to-do list for the field of dystrophic cardiomyopathy gene therapy. Some of 

these may include (1) continued development and characterization of large animal models 

for dystrophic cardiomyopathy. In light of recent success in creating rat, pig and monkey 

models using the CRISPR/Cas9 technology, model generation may no longer represent a 

formidable barrier as it was before214; (2) thorough evaluation of the most promising gene 

therapy strategies in large animal models215. Lack of solid large animal data has been an 

important factor limiting the translation of rodent study results to human patients. In this 

regard, there is an urgent need to thoroughly evaluate therapeutic efficacy in large mammals. 

For example, treating heart disease with tcDNA exon skipping and AAV micro-dystrophin 

gene therapy in dystrophin-deficient dogs216; (3) establishment of cardiac specific 

biomarkers that can be used to monitor disease progression and responses to gene therapy in 

animal models of dystrophic cardiomyopathy; (4) investigations of gene therapy for cardiac 

manifestations in muscular dystrophies other than DMD and LGMD2F. For many of these 

muscular dystrophies, gene therapy strategies have been developed for treating skeletal 

muscle myopathy. We need to test if similar approaches can attenuate cardiac disease.

In summary, gene therapy for dystrophic cardiomyopathy has taken a slow but steady path 

towards preclinical and eventually clinical studies. These efforts will undoubtedly be 

complicated by issues related to vector manufacturing, host immune responses, and the lack 

of enough patients for large-scale clinical trials due to the relatively low incidence of the 

disease. Nevertheless, we already have a solid foundation. The future of dystrophic 

cardiomyopathy gene therapy is very bright.
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Highlights box

• Cardiomyopathy is a common complication in inherited muscular 

dystrophies.

• Gene therapy holds great promise to reduce heart-related morbidity and 

mortality in muscular dystrophies.

• Adeno-associated virus (AAV) is the most effective cardiac gene delivery 

vector.

• Micro-dystrophin and sarcoglycan gene therapies have significantly 

improved the cardiac outcome in animal models of Duchenne muscular 

dystrophy and limb girdle muscular dystrophy, respectively.

• Targeting pathogenic mechanisms with disease gene independent gene 

therapy opens exciting new opportunities.

• Preclinical test in large animal models will pave the way to human trials.
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