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Cyclic-AMP is one of the most important second messengers,
regulating many crucial cellular events in both prokaryotes and
eukaryotes, and precise spatial and temporal control of cAMP levels
by light shows great promise as a simple means of manipulating and
studying numerous cell pathways and processes. The photoactivated
adenylate cyclase (PAC) from the photosynthetic cyanobacterium
Oscillatoria acuminata (OaPAC) is a small homodimer eminently suit-
able for this task, requiring only a simple flavin chromophore within a
blue light using flavin (BLUF) domain. These domains, one of the most
studied types of biological photoreceptor, respond to blue light and
either regulate the activity of an attached enzyme domain or change
its affinity for a repressor protein. BLUF domains were discovered
through studies of photo-induced movements of Euglena gracilis, a
unicellular flagellate, and gene expression in the purple bacterium
Rhodobacter sphaeroides, but the precise details of light activation
remain unknown. Here, we describe crystal structures and the light
regulation mechanism of the previously undescribed OaPAC, showing
a central coiled coil transmits changes from the light-sensing domains
to the active sites withminimal structural rearrangement. Site-directed
mutants show residues essential for signal transduction over 45 Å
across the protein. The use of the protein in living human cells is
demonstrated with cAMP-dependent luciferase, showing a rapid
and stable response to light over many hours and activation cycles.
The structures determined in this study will assist future efforts to
create artificial light-regulated control modules as part of a general
optogenetic toolkit.

optogenetics | X-ray crystallography | blue light | allostery

Naturally occurring light sensor domains are able to control
many biological processes such as plant development and

the behavior of microbes by using the photochemical response of
prosthetic flavins, and in recent years, there has been growing
interest in understanding and exploiting these proteins for synthetic
biology (1). One of the most studied photoreceptor families contains
the blue light using flavin (BLUF) domain (2), which responds to
blue light and either regulates the activity of an attached enzyme
domain or changes its affinity for a repressor protein. BLUF
domains were discovered through studies of photo-induced
movements of Euglena gracilis (3), a unicellular flagellate, and
gene expression in the purple bacterium Rhodobacter sphaeroides
(4). OaPAC, a previously undescribed photoactivated adenylate
cyclase (PAC) from Oscillatoria acuminata, is a homodimer of a
366-aa residue protein carrying an N-terminal BLUF domain
and a C-terminal class III adenylate cyclase (AC) domain. Its
small size and substantial activation by light (up to 20-fold more
than basal levels in the dark) make it of particular interest for
biotechnology. OaPAC shows 57% sequence identity with a PAC
from the soil bacterium Beggiatoa, bPAC, but neither structure
has so far been solved by crystallography. The OaPAC structures

determined in this study will assist future efforts to create
artificial light-regulated control modules as part of a general
optogenetic toolkit.
BLUF domains have been identified in a number of proteins

including YcgF in Escherichia coli (5) and blue-light–regulated
phosphodiesterase (BlrP1) in Klebsiella pneumonia (6). Both of
these proteins are homodimers with a single EAL domain (7) at-
tached to an N-terminal BLUF domain. BlrP1 is a light-regulated
cyclic nucleotide phosphodiesterase; the crystal structure of BlrP1
was the first experimental model showing how the flavin controls
enzyme activity (8). The two copies of the protein associate in an
antiparallel fashion through conserved residues of the EAL do-
mains, so that the BLUF domains are held apart and act in-
dependently, each interacting with the EAL domain of the partner
chain. Changes in the hydrogen bonding pattern around the flavin
on exposure to light change the coordination of essential metal ions
at the active site, thus triggering a fourfold rise in activity under
suitable conditions. We show here that OaPAC cyclase activity is
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more strongly stimulated by light than BlrP1 and its dimer structure
is completely different.
We have crystallized OaPAC in two different space groups (SI

Appendix, Table S1), showing the two BLUF domains sandwiching a
pair of helices (α3 and its symmetry mate) that hold the AC domains
distant from the flavins. The two flavin mononucleotide (FMN)
binding sites are on opposite sides of the dimer, more than 45 Å
apart, yet they apparently act in concert on the active sites, which
are themselves a similar distance from the light-sensing prosthetic
groups (Fig. 1A). The homologous protein bPAC responds differ-
ently to mutations of conserved residues around the FMN binding
site compared with other BLUF domains and maintains an activated
state for time-scales on the order of 1–10 s (9, 10). We have carried
out functional studies of a number of OaPAC mutants, designed on
the basis of our model, to determine how the different spatial ar-
rangement and connector helices trigger enzyme activity in the light-
activated state.

Results and Discussion
Structural Analysis of OaPAC. Two crystal forms (orthorhombic and
hexagonal) were grown in the dark, and have an almost identical
monomer structure (backbone rmsd 0.89 Å over 345 residues), al-
though the hexagonal form has much better resolution, 1.8 Å
versus 2.9 Å (SI Appendix, Table S1). A ribbon model is shown in
Fig. 1A. A nonhydrolyzable ATP analog (ApCpp) was included in the

mother liquor of the hexagonal crystal described here but was not
found in the final electron density map. The response of OaPAC
to light is shown in Fig. 1B. Both crystal forms show similar visible
spectra to OaPAC in solution and an equivalent jump in absorp-
tion at 492 nm on light exposure that decays with a half-life of a
few seconds (SI Appendix, Figs. S1 and S2). The crystal packing
does not therefore prevent stimulation by light, or reversion to the
dark state, although the hexagonal form shows a more open active
site (discussed below) and a slightly longer half-life of the excited
state (SI Appendix, Fig. S2 B and D). Attempts to grow crystals of
OaPAC under light were unsuccessful, possibly due to a mixture of
ground and excited states being present.
BLUF domains consist of a five-stranded β-sheet flanked by he-

lices (11, 12) and use conserved tyrosine and glutamine residues
adjacent to the bound FMN to sense light. The simplest proposed
sensing mechanism is a rotamer shift of the glutamine, so that after
stimulation, this side chain donates a hydrogen bond to the C4=O
carbonyl and accepts one from the tyrosine, whereas in the dark
state, the glutamine donates to the tyrosine (11, 13, 14). In BlrP1,
these changes are accompanied by movement of a nearby methio-
nine on the β5-strand of the BLUF domain, and both “Metin” and
“Metout” arrangements have been described (15). The arrangement
of Tyr-6, Gln-48, and Met-92 in the two forms of OaPAC is similar
to that of the equivalent residues in BlrP1 (Fig. 1 C and D), but the
dimer arrangement is different. Light exposure shifts the principal
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Fig. 1. Overall structural properties and solution absorption spectra of OaPAC. (A) The chains are shown as ribbons, with the dyad axis vertical and the BLUF
domains at the bottom. One monomer is shown in pink, and the other in blue and yellow, with yellow indicating conserved residues among OaPAC, bPAC
(Beggiatoa sp.; ref. 32), and PACαC, the C-terminal region of the α chain of PAC from E. gracilis (3). The β5 strand of the β-sheet is connected to the N terminus
of the central α3 helix by a short loop region. The FMN chromophores are shown as stick models. Both domains contribute to the dimer interface; the BLUF
domains do not directly contact the AC domain, but the C-terminal end of each α3 helix makes contact with the AC domain of the partner subunit.
(B) Absorption spectra of OaPAC in solution. (Upper) Rapid scan spectrophotometry of the switch from light-adapted to dark-adapted conditions, with time
shown on a logarithmic scale. (Lower) The visible spectrum of the dark-adapted state (red) is shifted roughly 10 nm to longer wavelength in the light-adapted
state (blue). The difference is indicated as a dotted black line. (C) The FMN binding site (hexagonal, open form). The 1.8-Å 2mFo-DFc electron density map,
contoured in blue at 1 σ level, of the hexagonal form covering the flavin of one subunit. Nitrogen atoms are colored blue and oxygen red. Carbon atoms of
the proteins are colored green, and of the FMN brown. Hydrogen bonds are shown as black dotted lines. Gln-48 adopts a common rotamer, placing both the
side-chain nitrogen and oxygen atoms within hydrogen bonding distance of the FMN N5 atom; the nitrogen atom is 3.1 Å from the FMN C4=O carbonyl
oxygen, and 2.6 Å from the sulfur atom of Met-92. (D) The FMN binding site (overlay of both forms). Superposition of the different structures shows the
similarity of the two models, carbon atoms being colored green and yellow for the open and closed forms of OaPAC, respectively. The differences are close to
the experimental error, and the largest change (the side chain of Trp-90) is not well represented in the electron density of the orthorhombic form.
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visible FMN absorption bands to longer wavelength, and the car-
bonyl oxygen at C4 becomes a stronger hydrogen bond acceptor
(16). The maximum absorption difference (light state minus dark
state) in OaPAC is seen at a wavelength of 492 nm (Fig. 1B).
The main monomer differences between the OaPAC crystal

structures are the His-70 side chain moving slightly away from Tyr-6
in the hexagonal form, and Asn-30 breaking a hydrogen bond with
N3 of the FMN, leading to a small shift in Trp-90 (Fig. 1D). Su-
perposition of the dimer in the two-crystal forms fails to reveal
dramatic conformational changes between domains, but the buried
surface area of the orthorhombic form is larger (SI Appendix, Fig. S3
A and B). The hexagonal form shows a movement apart of the AC
domains, opening up the active sites formed between the two dimers
(SI Appendix, Fig. S3C).

Comparison with Other Proteins. In BlrP1, the two FMN chromo-
phores of the dimer lie more than 54 Å apart, and the two BLUF
domains make no contact (8). In OaPAC, the BLUF domains form
a large mutual interface by providing one helix each to a central
coiled coil so that the two FMN moieties come within 34 Å of each
other (Fig. 1A). Overlay of the OaPAC dimer with the BLUF domain

of Tll0078 protein from Thermosynechecoccus elongates (12)
shows how the C-terminal helices of Tll0078 mimic the central
helix pair of OaPAC, but are relatively short, because this pro-
tein has no C-terminal domain (Fig. 2A). OaPAC is the first
known example to our knowledge of a BLUF protein with this
architecture that also possesses a functional output domain.
Superposition of OaPAC and CyaC, a soluble AC from Spirulina

platensis (17), shows the active site residues are conserved (SI Ap-
pendix, Fig. S4). Activity of CyaC is promoted by bicarbonate, which
triggers relative motion between the active sites on a comparable
scale (up to approximately 2 Å) to that suggested by the two crystal
forms of OaPAC; bicarbonate ions could not be located directly by
X-ray crystallography, but sequence comparisons indicate a binding
site close to the substrate ATP (17). OaPAC remains a dimer under
all conditions tested (SI Appendix, Fig. S5 A and B). A fundamental
issue with OaPAC and the related bPAC is therefore how the signal
is transmitted a substantial distance without major conformational
switching or change in oligomeric state.

Mutational Analysis. To detail the path that information travels from
the FMN to the active site, a number of mutants were constructed
and tested for light-stimulated cyclase activity (Figs. 2B and 3). Both
in vitro and in vivo assays show that the wild-type protein shows low
activity in the dark state and significant activity under light (Fig. 3).
The in vivo assay tested restoration of lactose metabolism in an AC-
deficient strain of E. coli that also expressed OaPAC. The BLUF
domain alone shows no activity in either assay under any conditions
(Fig. 3). OaPAC activity (∼9 pmol·min−1·μg−1 protein) was as high as
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that of PAC from Euglenameasured under the same conditions (18).
Adenylate cyclases require a catalytic metal ion coordinated by an
aspartate residue (19, 20), and sequence comparisons show the
equivalent residue in OaPAC is Asp-200. Replacing this residue with
asparagine abolishes any activity under all conditions (Fig. 3). Other
mutations between the FMN and active sites were also found to block
activation, and are difficult to reconcile with a simple, mechanical
conformational control mechanism. The α3 helices are tightly asso-
ciated by hydrophobic faces (SI Appendix, Fig. S6 A and B), with Leu-
111 and Leu-115 facing their symmetry partners across the dimer
twofold symmetry axis (Fig. 2B). Replacing either of these leucines
with alanine destabilized the protein too strongly to allow significant
expression of the mutant, but the double mutant L111A/L115A could

be purified. Although these two residues appear to be simply part of a
relatively immobile dimer interface, the double mutant showed no
activation on light exposure (Fig. 3). This loss of function indicates
the important role of hydrophobic interactions between the α3 heli-
ces, which has not been noted for other BLUF proteins including
BlrP1. At the junction between the α3 helices and the AC domains,
the conserved Tyr-125 (at the C-terminal end of the α3 helix) and
Asn-256 share an intersubunit hydrogen bond through their side
chains (Fig. 2B); both are required for normal protein function al-
though these surface residues play no apparent part in determining
protein fold. Phe-197 lies at the dimer interface where one AC do-
main packs against the other, forming π–π interactions with Phe-180,
and close to the hairpin loop carrying Asp-200 (Fig. 2B). Replacing
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Phe-197 with serine also blocked activity stimulation (Fig. 3). Both
polar and apolar contacts across the dimer interface are therefore
necessary for signal transmission to the active site.

Allosteric Mechanism of OaPAC. Overall, the combined structural
and functional studies presented here show that light exposure of
OaPAC leads directly to minor structural rearrangements around
the chromophore, inducing a relatively small relative motion of the
cyclase domains (SI Appendix, Table S2 and Movie S1). A recent
mutational study of bPAC highlighted the importance of the flavin
pocket in the allosteric mechanism (9), but, without an atomic model
of the protein to guide the analysis, changes were confined to this
region, and did not explore residues that are shown here to connect
the BLUF and AC domains. The β5-strand methionine and tryp-
tophan residues (Trp-90 and Met-92 in OaPAC) were, however,
shown to have strong effects on dark state recovery and enzyme
activity; replacing the methionine with alanine, or the tryptophan
with phenylalanine, gave pseudolit proteins with much increased

dark-state activity and weak amplification under illumination (9).
These two residues are much discussed in regard to signaling
mechanism of BLUF domains (8, 13), but are not conserved in PAC
from Euglena (SI Appendix, Fig. S7), although this protein shares in
common with OaPAC and bPAC a number of resides in the α3
helix, including Pro107, which lies close to Trp-90 of OaPAC and
causes a kink after the first turn of the helix. Sequence comparisons
therefore suggest that OaPAC, bPAC, and PAC share the same
allosteric mechanism, but PAC differs in detail. Mutant forms of
bPAC created by Stierl et al. (9) highlight the role of certain con-
served residues in communication between chromophore and active
site. The mutant bPAC-Ser27Ala (based on a BLUF protein from
Naegleria gruberi) showed a 15-nm red shift, which was hypothesized
to arise from loss of a hydrogen bond to the flavin. The crystal
structures of OaPAC show this serine side chain to sit directly over
the isoalloxazine ring, making no hydrogen bond to the flavin
or protein.
An important feature of OaPAC is the fact that it shows lower

dark-state activity and slower stimulation by blue light than BlrP1.
This tighter control possibly arises from the fact the two partner
subunits are closely associated and act through the same coiled coil.
The process of OaPAC activation is notably different from classical,
domain-level conformational changes (such as those observed in
hemoglobin) because it occurs rapidly and without substantial do-
main motions (SI Appendix, Table S2 and Movie S1). A simple
mechanical model of coiled-coil proteins has shown that sliding,
bending, and twisting modes can yield an allosteric free energy of
roughly 2kBT; changes in the Young’s modulus of the α-helices also
give significant allosteric effects (21). These vibrational responses to
stimulation allow rapid signal transduction through a protein struc-
ture with minimal structural change. In fact, BLUF domains are
known to photoactivate on a subnanosecond time-scale, faster than
protein structural reorganization (16). Comparison of the open and
closed structures described here suggests that these are both dark-
adjusted forms, although the longer relaxation time of the open
(hexagonal) form indicates it may be closer to the fully activated
protein (SI Appendix, Fig. S2 B and D).
Examples are already known of proteins switching between states

by helix rotation. The complex formed by sensory rhodopsin II and
its cognate transducer is a light-activated protein operating by rota-
tion of α-helices about an axis nearly parallel the helical axis. The
crystal structure of the transmembrane protein complex has been
solved in both the ground state and an intermediate “M” state (22,
23), but molecular dynamics simulations suggest that these atomic
models do not demonstrate the full range of conformation change
due to restraints of crystal packing (24). The helix movement occurs
on a timescale of tens to hundreds of nanoseconds, weakening the
binding between the rhodopsin and transducer by 25- to 50-fold (25).
In the case of OaPAC, the activity stimulation by light is almost as
large, but the fact the protein behavior is almost unaltered in a
crystal environment is strong evidence that the allosteric mechanism
involves only subtle structural changes, which is consistent with the
rapid photoresponse. Adopting the language of the Monod–Wyman–
Changeux model (26), the dark state of OaPAC is “tense” and
the illuminated state “relaxed,” but there is no thermodynamic
reason for supposing these states must have dramatically different
atomic coordinates (27).

Application in Optogenetics of OaPAC. To be of use as an opto-
genetic tool, a light-stimulated enzyme must show consistent
responses over time. This consistency requires stability of the pro-
tein itself as well as commensurate activation responses to equal
stimuli at different times. HEK293 cells, a cultured cell line derived
from human embryonic kidney cells, were used to demonstrate
OaPAC function in living tissue. OaPAC was expressed with
GloSensor-22F cAMP, a luciferase-based cAMP reporter, allowing
OaPAC stimulation to be measured directly by luminescence (SI
Appendix, Fig. S8 and Movie S2). In one experiment, emitted light
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Fig. 5. The effect of OaPAC activation on axonal growth in neurons. Pri-
mary cultures of hippocampal neurons were prepared from postnatal day
3-4 rat pups. Membrane-GFP (mGFP), mGFP/OaPAC were transfected on 1 d
in vitro (DIV). Blue light stimulation (BL) was applied for 30 min on 4 DIV, and
cells were then fixed on 7 DIV and immunostained for GFP, mCherry, and the
neurite marker tau-1. (A and B) Representative images of OaPAC-transfected
neurons (7 DIV) cultured without (A) or with (B) blue light stimulation.
OaPAC expression was confirmed by mCherry (magenta), and the axonal
morphology was visualized by tau-1 (green). (Scale bar: 50 μm.) (C) Bar graph
indicating the number of axon branches for cells transfected with GFP alone
(gray), OaPAC/GFP (dark state, red), or OaPAC/GFP with blue light stimula-
tion (blue). **P < 0.01 vs. OaPAC without light; Steel–Dwass test after
Kruskal–Wallis test, n = 30 cells for each group. (D) Bar graph indicating the
length of primary axons. Colors represent the same cell groups as (C). **P <
0.01 vs. OaPAC without light, Tukey’s test after one-way ANOVA, n = 30 cells
for each group. (E) Bar graph indicating the total axonal length. **P < 0.01
vs. OaPAC without light; Tukey’s test after one-way ANOVA, n = 30 cells for
each group.
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was constantly monitored while stimulating blue light was applied in
30-s pulses every 4 min. Intracellular cAMP concentration showed a
highly reproducible response, rising immediately on blue-light ex-
posure and continuing to rise for a further minute afterward, before
peaking and returning to basal level over the course of several
minutes (SI Appendix, Fig. S8B). In a separate experiment, blue
light was applied in 1-min pulses, and the luminescence was mea-
sured 2 min after each pulse (SI Appendix, Fig. S8C). Luminescence
decayed to background levels within 10 min, allowing the experi-
ment to be repeated over a period of hours, six times per hour. The
same luminescence response was observed over a period of 8 h,
indicating the system is stable (SI Appendix, Fig. S8 C and D). A
comparison of photostimulation of OaPAC and bPAC in HEK293
cells is shown in Fig. 4. Luminescence jumped approximately two
orders of magnitude on light exposure of both proteins, but OaPAC
shows lower minimum photoactivity (in the dark) and lower maxi-
mum photoactivity (when illuminated). OaPAC also requires longer
illumination times to give the same rise in cAMP level, allowing
finer control of the degree of stimulation. The lower light sensitivity
allows much more precise control of cAMP level in human cells
than achievable with Euglena PAC proteins (28). The ability of
OaPAC to work in different cells types in demonstrated in Fig. 5,
which shows rat hippocampal neurons expressing OaPAC together
with the fluorescent protein mCherry. After blue light stimulation,
the neurons show significant increases in axonal growth (both length
and branching) due to the raised cAMP level. A comparison

between the effects of OaPAC and PACα on neurons is given in SI
Appendix, Fig. S9.
Recently bPAC has been used to control the motility of transgenic

mouse sperm through light-stimulated production of cAMP (29).
Here, we have not only shown that OaPAC offers stable control
of cAMP levels in mammalian cells over extended periods, but
also the structural basis for light stimulation. As a small, blue-light
sensitive system of known structure, OaPAC offers the chance to
create new photoactivated proteins that can operate alongside
near-infrared wavelength sensitive biliverdin IXα-containing bac-
teriophytochromes (30, 31) with minimal interference, allowing
independent control of different artificial light-stimulated systems.

Methods
Recombinant OaPAC protein was expressed in E. coli and purified by using
standard protocols. Details of the materials and methods used in this study,
including cloning and protein purification, crystallography, in vivo and
in vitro activity assays, spectroscopic and optogenetic analysis of OaPAC are
described in SI Appendix, SI Materials and Methods.
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