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Opioid use for painmanagement has dramatically increased, with little
assessment of potential pathophysiological consequences for the
primary pain condition. Here, a short course of morphine, starting
10 d after injury in male rats, paradoxically and remarkably doubled
the duration of chronic constriction injury (CCI)-allodynia, months after
morphine ceased. No such effect of opioids on neuropathic pain has
previously been reported. Using pharmacologic and genetic ap-
proaches, we discovered that the initiation and maintenance of this
multimonth prolongation of neuropathic pain was mediated by a
previously unidentified mechanism for spinal cord and pain—namely,
morphine-induced spinal NOD-like receptor protein 3 (NLRP3) inflam-
masomes and associated release of interleukin-1β (IL-1β). As spinal
dorsal horn microglia expressed this signaling platform, these cells
were selectively inhibited in vivo after transfection with a novel De-
signer Receptor Exclusively Activated by Designer Drugs (DREADD).
Multiday treatment with the DREADD-specific ligand clozapine-N-
oxide prevented and enduringly reversed morphine-induced persis-
tent sensitization for weeks to months after cessation of clozapine-
N-oxide. These data demonstrate both the critical importance of
microglia and that maintenance of chronic pain created by early ex-
posure to opioids can be disrupted, resetting pain to normal. These
data also provide strong support for the recent “two-hit hypothesis”
of microglial priming, leading to exaggerated reactivity after the sec-
ond challenge, documented here in the context of nerve injury fol-
lowed by morphine. This study predicts that prolonged pain is an
unrealized and clinically concerning consequence of the abundant
use of opioids in chronic pain.
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Recent reports are critical of the lack of controlled, long-term
studies to support the dramatic escalation of opioid treat-

ment for chronic pain over the past decade (1–5). Although one
long-term concern is that there may be no benefit, another is
that opioid treatment could have negative consequences for
pain. For example, opioids are documented to paradoxically
induce nociceptive sensitization [opioid-induced hyperalgesia
(OIH)], both in the presence and absence of a pain condition
(6, 7). With only one exception (8), OIH has been observed in
chronic pain populations and is amplified by the preexisting
pain condition (9–16). However, the mechanistic interactions
between OIH and the pathophysiology of chronic pain are
enigmatic, in part due to the absence of preclinical studies.
Furthermore, the duration of OIH in either chronic pain pop-
ulations or laboratory animals has never been assessed after
discontinuation of opioid treatment; rather, pain was only as-
sessed concurrently with, or within a few hours after, opioid
administration. There would be major implications for how
pain transitions to a chronic state if opioid treatment were to
prolong the course of pain long after opioid cessation.

We predicted that opioid treatment would increase the magni-
tude and/or duration of long-term neuropathic pain, based on three
interrelated lines of evidence: (i) Spinal microglial reactivity is
triggered after peripheral nerve injury, in part via spinal release of
danger-associated molecular patterns (DAMPs) that initiate glial
Toll-like receptor 4 (TLR4) signaling (17). Chronic pain is gated by
TLR4 in preclinical models, as the ensuing production of neuro-
excitatory, immune mediators amplify nociceptive signaling in the
spinal dorsal horn (17, 18); (ii) spinal microglial reactivity is also
triggered by nonstereoselective opioid activation of TLR4 that
promotes spinal release of neuroexcitatory immune mediators (7,
19, 20); and (iii) an immunological phenomenon termed glial
“priming” has been described (21, 22), wherein a primary immune
challenge (hit 1) confers a heightened neuroinflammatory response
to secondary challenge (hit 2). It therefore follows that neuropathic
pain after peripheral nerve injury (hit 1) may be exacerbated and
prolonged by opioid treatment (hit 2). However, it has not been
previously anticipated that opioids could contribute to chronic pain.
In addition, the superimposition of peripheral nerve injury and

opioid treatment may activate a unique mechanism never pre-
viously implicated in spinal cord, in opioid treatment, or for path-
ological pain—namely, activation of the NOD-like receptor protein
3 (NLRP3) inflammasome, a protein complex that activates
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interleukin-1β (IL-1β), a “gatekeeper of inflammation” (summa-
rized in Fig. S1) (23, 24). TLR4 signaling primes the inflam-
masome by increasing the expression of NLRP3 and pro–IL-1β (25).
A second signal, such as the purinergic receptor P2X7R—engaged by
morphine and after peripheral nerve injury (7, 17, 26)—leads to the
association of NLRP3, the adaptor protein apoptosis-associated
speck-like protein containing a CARD (ASC), and caspase-1,
allowing proteolytic activation of IL-1β (25, 27). Therefore, the aim
of the present study was to test whether morphine treatment after
peripheral nerve injury prolonged neuropathic pain in rats and
whether the prolonged pain was mediated by spinal NLRP3
inflammasomes. Our data implicate the two superimposed challenges
as both immunological in nature and as contributors to persistent
neuropathic pain.

Results
Morphine Induces Persistent Nociceptive Sensitization After Peripheral
Nerve Injury. To assess whether morphine could induce persistent
sensitization under conditions of established neuropathic pain,
morphine or saline was administered for 5 d (5 mg/kg, twice daily),
beginning 10 d after sciatic chronic constriction injury (CCI) or sham
surgery.* Morphine treatment significantly prolonged CCI-allodynia
in the Fischer 344 (F344) strain (Fig. 1A) and increased themagnitude
of CCI-allodynia in the Sprague–Dawley (SD) rat strain (Fig. 1B). The
5-d morphine regimen induced only mild and transient mechanical
allodynia in sham-operated rats (Fig. 1 A and B), a recognized feature
of opioid abstinence (30). The empirical observation that morphine
increased the vigor and speed of hindpaw withdrawal to the von Frey
filaments in SD rats was supported by increased startle (converted to
force; N) to a 0.2-mA shock (Fig. 1C). These data implicate morphine
in the prolongation and amplification of neuropathic pain.

Morphine-Induced Persistent Nociceptive Sensitization Is Independent of
Opioid Receptors. To determine whether opioid receptors mediated
persistent sensitization, the μ-, κ-, and δ-opioid receptor-inactive
stereoisomer (+)-morphine (31) was administered in lieu of
(−)-morphine. (+)-morphine recapitulated persistent sensitization
(Fig. 2A), demonstrating that this effect can occur independently of
classical opioid receptors. In support, knockdown of spinal Oprm1
(encoding for the μ-opioid receptor) failed to prevent the devel-
opment of morphine-induced persistent sensitization (Fig. 2B),
despite knockdown of the target mRNA and protein sufficient to
impair (−)-morphine analgesia (Fig. S2 A and B). Because both
morphine isomers are TLR4 agonists (7, 19, 20), the role of this
innate immune receptor was assessed by substituting (−)-morphine
with the structurally distinct TLR4 agonist disulfide high mobility
group box-1 (ds-HMGB1) (32). Persistent sensitization was re-

capitulated with ds-HMGB1 (Fig. 2C). Therefore, mechanisms of
central immune signaling were investigated to explain morphine-
induced persistent sensitization.

Central Immune Signaling Mediates Morphine-Induced Persistent
Nociceptive Sensitization. Morphine nonstereoselectively activates
innate immunity, inducing production of the “gatekeeper of in-
flammation” and neuroexcitatory cytokine IL-1β (7, 20, 23, 33, 34).
Therefore, IL-1 receptor antagonist (IL-1ra) was intrathecally ad-
ministered to test whether spinal IL-1 mediated morphine-induced
persistent sensitization. Such a result would be congruent with the
results using (+)-morphine described above. Intrathecal IL-1ra in-
fusion during morphine administration prevented persistent sensi-
tization (Fig. 3A), whereas acute intrathecal IL-1ra during the
period of persistent sensitization significantly attenuated mechanical
allodynia, in F344 rats (Fig. 3B) (for parallel data in SD rats, see Fig.
S3). Inhibition of TNF and IL-6, cytokines that can be regulated by
IL-1β (23), also attenuated morphine-induced persistent sensitiza-
tion in F344 rats (Fig. 3H) (for parallel SD data, see Fig. S1). These
data indicate that the initiation and maintenance of morphine-
induced persistent sensitization are dependent on proinflammatory
cytokine signaling.
There are several known mechanisms by which IL-1β may in-

crease the excitability of second-order nociceptive projection neu-
rons, including phosphorylation of postsynaptic NR1 NMDA
receptor subunits (35), and down-regulation of both the astrocyte
glutamate transporter GLT-1 (36) and neuronal G protein-coupled
receptor kinase 2 (GRK2; an enzymatic regulator of the homolo-
gous desensitization of many G protein-coupled receptors that
protects against overstimulation) (37). The respective levels of these
proteins were assessed in the ipsilateral lumbar dorsal horn during
the period of persistent sensitization in F344 rats (5 wk after the
conclusion of morphine or saline administration). Phospho-NR1
was elevated, whereas GRK2 and GLT-1 were decreased by the
superimposition of CCI and morphine (Fig. 3 D–F). These data
provide biochemical validation of the prolonged allodynia pre-
sented in Fig. 1A and additional supportive evidence that morphine-
induced persistent sensitization was dependent on IL-1β signaling.

Morphine-Induced Persistent Sensitization Is Associated with Spinal
Cord Inflammasome Activation in Microglia. Inflammasomes regulate
IL-1β activation in peripheral immune cells (Fig. S1), yet it is not
known whether parallel mechanisms exist in the spinal cord (24).
Thus, expression of inflammasomes was quantified in the ipsilateral
lumbar dorsal horn during the period of persistent sensitization in
F344 rats (5 wk after the conclusion of morphine or saline ad-
ministration). TLR4 mRNA and P2X7R protein levels, which
represent the respective first (priming) and second (activation)
signals, were elevated by the combination of CCI and morphine,
relative to sham and saline control (Fig. 4 A and B). Phosphorylated
p38 and the p65 subunit of NF-κB [which are responsible for
NLRP3 and IL-1β transcription (25)], as well as NLRP3, were el-
evated by the combination of CCI and morphine, relative to sham
and saline control (Fig. 4 C–E). Expression of a negative regulator
of NLRP3, microRNA-223 (miR-223) (38), was decreased by the
combination of CCI and morphine, relative to sham and saline

Fig. 1. Repeated morphine increases the magnitude
and duration of CCI-allodynia. (A and B) Morphine/
saline (5 d; shaded area) was administered 10 d after
CCI/sham surgery, and absolute thresholds for me-
chanical allodynia were quantified in F344 (A) and SD
(B) rats. (C) Startle force to 0.2-mA foot shocks at
baseline (BL), after CCI but before morphine (predose),
and 5 wk after the conclusion of morphine dosing
(5 wk). *P < 0.05; **P < 0.01; ***P < 0.001 (relative to
CCI+saline); ###P < 0.001 (relative to sham+saline).
Data are presented as mean ± SEM; n = 6 or 7 per
group.

*The duration of mechanical allodynia after classic CCI (four sutures around the sciatic
nerve) (28) is shorter in the F344 rat strain, relative to the SD rat strain (29). Therefore,
the potential for morphine to increase the duration of CCI-allodynia was assessed by
using F344s. Conversely, both rat strains exhibit near maximal allodynia with classic CCI,
so an increase in the magnitude of allodynia was not testable under this condition.
Moving to a mild CCI (one suture around the sciatic nerve) (27) induced submaximal
allodynia in SD rats, whereas F344s were still maximal on this measure. Therefore, the
effect of morphine on the magnitude of CCI-allodynia was assessed using SDs.
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control (Fig. 4F). The precursor enzyme procaspase-1, its active
form caspase-1, and the product IL-1β mRNA were elevated by the
combination of CCI and morphine, relative to sham and saline
control (Fig. 4G–I). These biochemical data support the behavioral
attenuation of morphine-induced persistent sensitization by IL-1ra
and demonstrate that expression of the NLRP3 inflammasome by
microglia is associated with such persistent sensitization.
Lumbar dorsal spinal NLRP3 was colocalized with the microglia

marker Iba1 (Fig. 4J), but not GFAP (astrocytes) or NeuN (neurons)
(Fig. S4A). Furthermore, the combination of CCI and morphine
increased the number of reactive lumbar dorsal spinal microglia
(Iba1+ and phospho-p38+), relative to all other conditions, when
assessed 5 wk after the conclusion of morphine or saline adminis-
tration (Fig. 4K). Therefore, the role of microglia in mediating
morphine-induced persistent sensitization was functionally assessed.
Current pharmacological methods to attenuate microglial reactivity
lack selectivity, whereas the introduction of cellular debris to the
local environment by depletion methods may present an immune
stimulus in the central nervous system (CNS) (17). Therefore, we
developed an inhibitory (Gi) Designer Receptor Exclusively Acti-
vated by a Designer Drug (DREADD) (39) under a CD68 promoter
that was intrathecally transfected via an AAV9 vector. Transfection
of the Gi or control constructs occurred before experimental ma-
nipulation, to ensure that microglia would form the majority of
CD68+ cells in the spinal cord (40, 41). Gi-linked signaling was
predicted to attenuate microglial reactivity because activation of the
M4 muscarinic receptor [the Gi DREADD progenitor (39)] inhibits
Ca2+ influx in parasympathetic neurons (42), a process associated
with decreased proinflammatory cytokine production in microglia
(43, 44). DREADD expression was restricted to Iba1+ cells in the
lumbar dorsal spinal cord (Fig. 4L), and not those expressing GFAP
or NeuN (Fig. S4B). DREADDs were activated with the selective,
biologically inert ligand clozapine-N-oxide (CNO). Intrathecal CNO
infusion during morphine administration prevented morphine-
induced persistent sensitization in F344 rats expressing the Gi
DREADD (Fig. 4M). Intrathecal infusion of CNO at 5 wk after the
conclusion of morphine administration [which is within the period of
persistent sensitization induced by morphine, because mechanical
allodynia resolved in saline-treated CCI rats by this time (Fig. 1A)]
reversed morphine-induced persistent sensitization in F344 rats
expressing the Gi DREADD (Fig. 4N) (for parallel SD data, see Fig.
S4C). Inhibition of proinflammatory signaling by Gi DREADDs
was confirmed in vitro by using a Gi DREADD-transfected BV-2
microglia cell line. HMGB1—a DAMP released spinally in chronic
pain models (17, 45)—increased the expression of gene transcripts
encoding IκBα (a negative regulator induced by NF-κB), NLRP3,
and IL-1β in a concentration-dependent manner (Fig. 4 O–Q). Such
increases in gene expression were attenuated by coincubation with
50 μMCNO (Fig. 4 O–Q). Similar results were found for expression
of gene transcripts encoding TNF and IL-6 (Fig. S4D). These data
demonstrate that expression of the NLRP3 inflammasome by
microglia is associated with morphine-induced persistent sensitization

and that the initiation and maintenance of such persistent sensiti-
zation is dependent on microglial reactivity.

Spinal Cord Inflammasomes Mediate Initiation of Morphine-Induced
Persistent Sensitization. The following experiments were designed
to test whether spinal NLRP3 inflammasome activation was causal
to the induction of morphine-induced persistent sensitization.
Thus, the inflammasome platform was pharmacologically inhibited
at several levels during morphine administration and followed by
assessment of the behavioral and biochemical consequences for
opioid-induced persistent sensitization.
The role of spinal TLR4—activated by both morphine (20) and

DAMPs (17)—was explored as the first signal for inflammasome
activation. Intrathecal infusion of the TLR4 antagonist (+)-naloxone
(46) during morphine administration prevented the development of
morphine-induced persistent sensitization in F344 rats (Fig. 5A) (SD
data are in Fig. S5A). In support of the pharmacological data,
knockdown of spinal Tlr4 (Fig. S5B), as well as TLR2/4 inhibition by
oxidized 1-palmitoyl-2-arachidonyl-sn-3-glycero-phosphorylcholine
(OxPAPC) (Fig. S5C), also prevented the development of mor-
phine-induced persistent sensitization. Next, the role of spinal
P2X7R—also activated by DAMPs (17)—was explored as the sec-
ond signal for inflammasome activation. Intrathecal infusion of
A438079 (47), a selective P2X7R antagonist, during morphine ad-
ministration prevented the development of morphine-induced per-
sistent sensitization in F344 rats (Fig. 5B) (SD data are in Fig. S5D).
In support of the A438079 results, P2X7R inhibition by Brilliant
Blue G (48) likewise prevented the development of morphine-
induced persistent sensitization in F344 rats and SD rats under
identical experimental designs (Fig. S5E). The role of spinal caspase-
1 was then explored, because this is the enzyme responsible for the
proteolytic activation of IL-1β (25). Intrathecal infusion ofN-Ac-Tyr-
Val-Ala-Asp-chloromethyl ketone (ac-YVAD-cmk) (49) during
morphine administration prevented the development of morphine-
induced persistent sensitization in F344 rats (Fig. 5C) (SD data are
in Fig. S5F). These data provide evidence that initiation of mor-
phine-induced persistent sensitization is dependent on TLR4,
P2X7R, and caspase-1 signaling during morphine administration.
Markers of IL-1β–induced neuroexcitation were quantified in

the ipsilateral lumbar dorsal quadrant after coadministration of
(+)-naloxone, A438079, or ac-YVAD-cmk with morphine (within
the period of persistent sensitization in F344 rats; 5 wk after the
conclusion of morphine administration). Each inhibitor decreased
expression of phospho-NR1, and increased expression of GRK2
and GLT-1, relative to vehicle controls (Fig. 5 D–F). These data
provide biochemical support for the prevented allodynia presented
in Fig. 5 A–C and of attenuated IL-1β signaling.
Expression of inflammasomes was quantified in the ipsilateral

lumbar dorsal quadrant within the period of persistent sensitization
in F344 rats (5 wk after the conclusion of morphine administration).
(+)-naloxone, A438079 and ac-YVAD-cmk each decreased ex-
pression of receptors mediating inflammasome priming (TLR4)
and activation (P2X7R ) (Fig. 5 G–I). Furthermore, each inhibitor

Fig. 2. Opioid receptors do not mediate morphine-
induced persistent sensitization. (A) The opioid-
receptor inactive (+)-morphine or saline (5 d; shaded
area) was administered 10 d after CCI, and absolute
thresholds for mechanical allodynia were quantified
in F344 rats. (B) Oprm1 siRNA (7 d, beginning 8 d
after CCI; green hatched bar) and morphine (5 d,
beginning 10 d after CCI; shaded area) were ad-
ministered, and absolute thresholds for mechanical
allodynia were quantified in F344 rats. (C) The TLR4
agonist ds-HMGB1 or saline (5 d; shaded area) was
administered 10 d after CCI, and absolute thresholds
for mechanical allodynia were quantified in F344
rats. *P < 0.05; ***P < 0.001 (relative to CCI+saline).
Data are presented as mean ± SEM; n = 6 per group.
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decreased expression of phospho-p38 and p65 NF-κB, and, con-
sequently, NLRP3 (Fig. 5 J–L). Each inhibitor decreased expression
of procaspase-1, caspase-1, and IL-1βmRNA (with the exception of
procaspase-1 expression, which was not altered by (+)-naloxone at
this timepoint) (Fig. 5 M–O). In support of a role for microglia in
morphine-induced persistent sensitization, the number of reactive
lumbar dorsal spinal microglia (Iba1+ and phospho-p38+) was at-
tenuated by (+)-naloxone, A438079, and ac-YVAD-cmk, relative to
vehicle controls (Fig. 4 P-R). Together, these data demonstrate that
activation of microglia and spinal cord inflammasomes is de-
pendent on TLR4, P2X7R, and caspase-1 signaling during mor-
phine administration and reveal underlying biochemical and
molecular changes likely responsible for the behavioral effects.
Finally, the role of NLRP3 activation in the initiation of morphine-

induced persistent sensitization was confirmed by knockdown of
spinal Nlrp3, which prevented prolonged allodynia in F344 rats (Fig.
5S). Knockdown of the target mRNA and protein was verified (Fig.
S5G). By intrathecally inhibiting the first (TLR4) and second
(P2X7R) signals, as well as NLRP3 and caspase-1, during morphine
administration, these affirmative data demonstrate a causal role for
spinal NLRP3 inflammasomes in the initiation of morphine-induced
persistent sensitization.

Spinal Cord Inflammasomes Mediate the Maintenance of Persistent
Sensitization. Because NLRP3 inflammasome expression remained
elevated within the period of morphine-induced persistent sensiti-
zation (5 wk after the conclusion of morphine administration) (Fig.
4), we tested whether such expression was causal to the mainte-
nance of persistent sensitization. Thus, the inflammasome platform
was pharmacologically inhibited within the period of persistent
sensitization (5 wk after the conclusion of morphine administration
for F344 rats). Inhibition was accompanied by assessment of the
behavioral and biochemical consequences for opioid-induced
persistent sensitization.
The role of TLR4 was explored as the first signal for inflamma-

some activation. Intrathecal infusion of (+)-naloxone starting 5 wk
after morphine administration enduringly reversed established mor-
phine-induced persistent sensitization in F344 rats (Fig. 6A) (SD data
are in Fig. S6A). The role of P2X7R was explored as the second
signal for inflammasome activation. Intrathecal infusion of A438079
starting 5 wk after morphine administration enduringly reversed
established morphine-induced persistent sensitization in F344 rats
(Fig. 6B) (SD data are in Fig. S6B). In support, Brilliant Blue G also
reversed morphine-induced persistent sensitization in F344 rats and

SD rats under identical experimental designs (Fig. S6C). The role of
caspase-1 was then explored, because it is the enzyme that is re-
sponsible for the proteolytic activation of IL-1β. Intrathecal infusion
of ac-YVAD-cmk beginning 5 wk after morphine administration
reversed morphine-induced persistent sensitization in F344 rats (Fig.
6C) (SD data are in Fig. S6D). These data demonstrate that main-
tenance of morphine-induced persistent sensitization is dependent
on sustained TLR4, P2X7R, and caspase-1 signaling.
Markers of IL-1–induced neuroexcitation were quantified in the

ipsilateral lumbar dorsal quadrant after reversal of morphine-
induced persistent sensitization by (+)-naloxone, A438079, or ac-
YVAD-cmk. Each inhibitor decreased expression of phospho-NR1,
and increased expression of GRK2 and GLT-1, relative to vehicle
controls (Fig. 6 D–F). These data provide biochemical support for
the reversed allodynia presented in Fig. 6 A–C and of attenuated
IL-1β signaling.
Expression of inflammasomes was quantified in the ipsilateral

lumbar dorsal quadrant 1 d after the conclusion of inhibitor infusion
(43 d after the conclusion of morphine administration) in F344 rats.
(+)-naloxone, A438079, and ac-YVAD-cmk each decreased expres-
sion of receptors mediating inflammasome priming and activation
TLR4 and P2X7R (Fig. 6G–I). Furthermore, each inhibitor decreased
expression of phospho-p38 and p65 NF-κB, and, consequently, NLRP3
(Fig. 6 J–L). Each inhibitor decreased expression of procaspase-1,
caspase-1, and IL-1β mRNA (Fig. 6 M–O). There were three
exceptions, where (+)-naloxone did not decrease expression of
P2X7R or procaspase-1, and ac-YVAD-cmk did not decrease ex-
pression of P2X7R or procaspase-1 at this time point. These data
demonstrate that the sustained activation of inflammasomes is
dependent on TLR4, P2X7R, and caspase-1 signaling after mor-
phine administration. Furthermore, this affirmative dataset dem-
onstrates a causal role for spinal inflammasomes in the maintenance
of morphine-induced persistent sensitization.

Discussion
We discovered that a brief course of morphine treatment, adminis-
tered upon expression of neuropathic pain, drives persistent sensiti-
zation for months after cessation of morphine. This persistent
sensitization is (i) not dependent on opioid receptor signaling; (ii)
correlated with increased expression of the ipsilateral spinal lumbar
dorsal inflammasome and localized to microglia; (iii) initiated by
morphine-induced spinal NLRP3 inflammasome activation, a protein
structure that had not previously been identified in the spinal cord or
linked to pain; and (iv) maintained by spinal inflammasome activation.

Fig. 3. Morphine-induced persistent sensitization is
mediated by central immune signaling. (A) IL-1ra
(blue hatch; 5 d) was coadministered with morphine
(5 d; shaded area), 10 d after CCI surgery, and abso-
lute thresholds for mechanical allodynia were quan-
tified in F344 rats. Morphine (5 d; shaded area) was
administered 10 d after CCI surgery, (b) IL-1ra, (c)
etanercept or TB-2–081 were intrathecally adminis-
tered 5 wk after morphine conclusion, and absolute
thresholds for mechanical allodynia quantified in
F344 rats. Ipsilateral lumbar dorsal spinal cords were
collected from CCI/sham F344 rats, 5 wk after mor-
phine/saline administration and phospho-NR1 (D),
GRK2 (E), and GLT-1 (F) protein levels were quanti-
fied. *P < 0.05; **P < 0.01; ***P < 0.001 [relative to
vehicle (A–C) and relative to sham+saline (D–F)]; #P <
0.05; ###P < 0.001 [TB-2-081 vs. vehicle (C) and relative
to sham+morphine (D–F); ^̂ P < 0.01; ^̂ ^P < 0.001
[relative to CCI+saline[ (D–F)] . Data are presented as
mean ± SEM; n = 5–7 per group.
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Fig. 4. Repeated morphine after CCI amplifies inflammasome activation in microglia. (A–I) Ipsilateral lumbar dorsal spinal cords were collected from F344 rats
that had undergone sham or CCI surgery, 5 wk after morphine/saline administration, and respective levels of P2X7R (A), TLR4 (B), phospho-p38/total ERK ratio (C),
NF-κB (p65 subunit) (D), NLRP3 (E), miR-223 (F), procaspase-1 (G), caspase-1 (H), and IL-1β (I) quantified. (J) NLRP3 colocalization with Iba1 in the ipsilateral lumbar
dorsal horn. (K) Phospho-p38 colocalization with Iba1 in the ipsilateral lumbar dorsal horn. (L) DREADD colocalization with Iba1 in the lumbar dorsal horn.
(M and N) F344 rats were transfected with intrathecal inhibitory Gi or control DREADDs, and morphine (5 d; shaded area) was administered 10 d after CCI and
absolute thresholds for mechanical allodynia were quantified in F344 rats. CNO (blue hatched bar) was coadministered with morphine (5 d) (M) or 5 wk after
morphine dosing had concluded (CNO dosed for 7 d) (N), and absolute thresholds for mechanical allodynia were quantified. (O–Q) Gene expression in BV-2 cells
expressing the Gi DREADD after 4 h incubation with a concentration range of HMGB1, and 0 μM (control) or 50 μM CNO. *P < 0.05; **P < 0.01; ***P < 0.001
[relative to sham+saline (A–I and K), relative to vehicle (M and N), and relative to control (O–Q)]; #P < 0.05; ##P < 0.01; ###P < 0.001 [relative to sham+morphine
(A–I and K) and relative to 0 μg (O–Q)]; ^P < 0.05; ^̂ P < 0.01; ^̂ ^P < 0.001 (relative to CCI+saline). Data are presented as mean ± SEM; n = 6 or 7 per group.
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Fig. 5. Induction of persistent sensitization is dependent on spinal cord inflammasome signaling. (A–C) The TLR4 antagonist (+)-naloxone (blue hatch; 5 d) (A), the
P2X7R antagonist A438079 (purple hatch; 5 d) (B), or the caspase-1 inhibitor ac-YVAD-cmk (green hatch; 5 d) (C) was coadministered with morphine (5 d; shaded area)
10 d after CCI surgery, and absolute thresholds for mechanical allodynia were quantified in F344 rats. Ipsilateral lumbar dorsal spinal cords were collected from F344
rats that had undergone CCI surgery, 5 wk after morphine and inhibitor coadministration. (D–F) Respective levels of phospho-NR1, GRK2, and GLT-1 were quantified
after treatment with (+)-naloxone (D), A438079 (E), or ac-YVAD-cmk (F). (G–I) Respective levels of P2X7R and TLR4 were quantified after treatment with (g)
(+)-naloxone (G), A438079 (H), or ac-YVAD-cmk (I). (J–L) Respective levels of phospho-p38/total ERK ratio, NF-κB (p65 subunit), and NLRP3 were quantified after
treatment with (+)-naloxone (J), A438079 (K), or ac-YVAD-cmk (L). (M–O) Respective levels of procaspase-1, caspase-1, and IL-1β were quantified after treatment with
(+)-naloxone (M), A438079 (N), or ac-YVAD-cmk (O). (P–R) Reactive lumbar dorsal spinal microglia (Iba1+ and phospho-p38+) after treatment with (+)-naloxone (P),
A438079 (Q), ac-YVAD-cmk (R), and respective vehicle controls. (S) Nlrp3 siRNA (7 d, beginning 8 d after CCI; yellow hatched bar) and morphine (5 d, beginning 10 d
after CCI; shaded area) were administered, and absolute thresholds for mechanical allodynia were quantified in F344 rats. *P < 0.05; **P < 0.01; ***P < 0.001 (inhibitor
vs. control). Data are presented as mean ± SEM; n = 6 or 7 per group.
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Fig. 6. Maintenance of persistent sensitization is dependent on inflammasome signaling. (A–C) The TLR4 antagonist (+)-naloxone (blue hatch; 5 d) (A), the
P2X7R antagonist A438079 (purple hatch; 5 d) (B), or the caspase-1 inhibitor ac-YVAD-cmk (green hatch; 5 d) (C) was administered 5 wk after morphine (5 d,
administered 10 d after CCI; shaded area), and absolute thresholds for mechanical allodynia were quantified in F344 rats. Ipsilateral lumbar dorsal spinal cords
were collected from F344 rats, 1 d after the conclusion of inhibitor treatment. (D–F) Respective levels of phospho-NR1, GRK2, and GLT-1 were quantified after
treatment with (+)-naloxone (D), A438079 (E), or ac-YVAD-cmk (F). (G–I) Respective levels of P2X7R and TLR4 were quantified after treatment with
(+)-naloxone (G), A438079 (H), or ac-YVAD-cmk (I). (J–L) Respective levels of phospho-p38/total ERK ratio, NF-κB (p65 subunit), and NLRP3 were quantified
after treatment with (+)-naloxone (J), A438079 (K), or ac-YVAD-cmk (L). (M–O) Respective levels of procaspase-1, caspase-1, and IL-1β were quantified after
treatment with (+)-naloxone (M), A438079 (N), or (ac-YVAD-cmk (O). *P < 0.05; **P < 0.01; ***P < 0.001 (inhibitor vs. control). Data are presented as mean ±
SEM; n = 6 or 7 per group.
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Mild OIH was induced in pain-free, previously opioid-naïve
subjects, but resolved within days, as reported in clinical and lab-
oratory animal studies (6, 7). However, we discovered that mor-
phine interacts with neuropathic pain pathophysiology to potently
prolong this allodynia. We implicated the dorsal spinal NLRP3
inflammasome in morphine-induced persistent sensitization, dis-
covering that this signaling platform has a triumvirate of previously
undocumented roles in: the spinal cord, a neuropathic pain model,
and enhancement of its activity by morphine (24). Dorsal spinal
NLRP3 inflammasomes mediate the initiation of morphine-
induced persistent sensitization, because inhibition of TLR4, P2X7R,
caspase-1, or IL-1 during morphine administration prevents pro-
longed allodynia. Maintenance of morphine-induced persistent
sensitization is also dependent on this pathway, because inhibition
of TLR4, P2X7R, caspase-1, or IL-1 reversed prolonged allodynia,
an effect that was sustained after TLR4 or P2X7R antagonism. It
should be noted that the role of TLR4 in OIH has been challenged
(50, 51), although these data do not preclude a role for this receptor
in morphine-induced persistent sensitization. Furthermore, TLR4 is
posited to exclusively regulate male pain behaviors (26, 52). How-
ever, ongoing studies indicate that morphine-induced persistent
sensitization also occurs in female rodents.
Expression of NLRP3 induced by persistent sensitization was lo-

calized to microglia, cells that also express TLR4 and P2X7R (17).
The contribution of microglia to the induction and maintenance of
morphine-induced persistent sensitization was confirmed by selec-
tively inhibiting these cells with a Gi DREADD (Fig. 4). The novel
application of DREADD technology represents an important tech-
nical advance, because putative microglial inhibitors (e.g., minocycline,
ibudilast, or propentofylline) have activity at other CNS cells,
including neurons (17, 53). Expression of DREADDs before neu-
ropathic pain induction prevented injury-induced recruitment of
monocyte-derived cells from contributing to the observed effects.
Although we predict that Gi-linked signaling inhibits Ca2+ influx in
microglia to attenuate proinflammatory cytokine production (43,
44), the precise mechanisms are the subject of ongoing investigation.
Because microglial activity has not been selectively manipulated in
any prior study, these data, to our knowledge, are the first to un-
equivocally implicate microglia in a pathological pain state.
The mechanism(s) by which inflammasomes remained activated

after cessation of morphine is an avenue for further investigation.
Initial activation of inflammasomes may have induced several ad-
aptations that create a positive feedback loop at TLR4 and P2X7R.
One adaptation may be disrupted glutamate homeostasis, due to
IL-1β–mediated down-regulation of GLT-1 (Fig. 3F). Elevated
glutamate may trigger ATP release from glia (54, 55), as well as
excitotoxicity and subsequent DAMP release (17). ATP and re-
active oxygen species released after glial P2X7R activation (56,
57), as well as additional DAMPs released as a consequence of
HMGB1-induced excitotoxicity (58), may also maintain inflam-
masome signaling. However, whether spinal cord inflammasomes
remain activated in the absence of morphine by reactive oxygen
species and/or DAMP signaling at TLR4 and P2X7R, as part of a
positive feedback loop, requires future examination.
The implications of the present study are striking in light of the

“two-hit”model of glial priming and exaggerated neuroinflammation.
Firstly, this model may provide a basis for understanding how opioids

exaggerate pain in preclinical models of peripheral inflammation
and surgery (59, 60), as well as clinically after thoracotomy (61, 62).
Secondly, opioids superimposed on CNS neuroinflammation may
have far-ranging consequences beyond pain. For example, opioids
may also serve as a second hit for glia primed by aging or in-
flammation/trauma and may lead to cognitive decline in the elderly
(63), postoperative cognitive decline (64), and impaired recovery
of motor function after spinal cord injury (65, 66). Whether the
mechanistic underpinnings revealed in the current series of studies
will prove to generalize to such opioid-related phenomena remains
to be defined. Finally, the implications of the present studies may
extend beyond opioids as the second hit. A broad range of repeated
neuroinflammatory challenges not only induce a transition from
acute to persistent pain (60, 67, 68), but also induce behaviors that
are comorbid with pain, including cognitive impairment (69), de-
pression (70), and anxiety (71). Therefore, our data provide a
rationale to examine whether the ubiquitous management of
chronic pain with opioids contributes to the incidence of such pain,
and potentially pain comorbidities—a hypothesis not previously
considered or tested.
In summary, the mechanisms underlying the transition from acute

to chronic pain are poorly understood (17, 72, 73). We discovered
that a short course of morphine administered upon expression of
neuropathic pain remarkably doubled the duration of CCI-allodynia.
This process was dependent upon dorsal spinal microglial re-
activity and NLRP3 inflammasomes. These findings comport with
prior demonstrations that repeated immune challenges induce a
transition from acute to chronic pain (60, 67, 68), which may also
underpin pain comorbidities (69–71). An evaluation of the long-
term consequences of opioid treatment for chronic pain will
identify whether this phenomenon manifests clinically. Our data
suggest a unique strategy to prevent and reverse the deleterious
long-term effects of opioid treatment without compromising mor-
phine analgesia; μ-opioid receptor-mediated analgesia can be main-
tained, while simultaneously eliminating inflammasome-mediated
persistent sensitization.

Materials and Methods
SI Materials and Methods provides complete experimental methods. It includes
subjects, drugs, RNA interference, surgery, catheter implantation, mechanical
allodynia, shock sensitivity, and thermal analgesia testing, in vitro Gi DREADD
transfection and stimulation, RT-PCR, Western blotting, and immunohisto-
chemistry. Methods for statistical analysis are also included.

All animal procedures were approved by the Institutional Animal Care and
Use Committee of the University of Colorado Boulder.
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