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This study asks two related questions about the shifting landscape
of marriage and reproduction in US society over the course of the
last century with respect to a range of health and behavioral
phenotypes and their associated genetic architecture: (i) Has as-
sortment on measured genetic factors influencing reproductive
and social fitness traits changed over the course of the 20th cen-
tury? (ii) Has the genetic covariance between fitness (as measured
by total fertility) and other traits changed over time? The answers
to these questions inform our understanding of how the genetic
landscape of American society has changed over the past century
and have implications for population trends. We show that hus-
bands and wives carry similar loadings for genetic factors related
to education and height. However, the magnitude of this similarity
is modest and has been fairly consistent over the course of the
20th century. This consistency is particularly notable in the case of
education, for which phenotypic similarity among spouses has in-
creased in recent years. Likewise, changing patterns of the number
of children ever born by phenotype are not matched by shifts in
genotype–fertility relationships over time. Taken together, these
trends provide no evidence that social sorting is becoming increas-
ingly genetic in nature or that dysgenic dynamics have accelerated.
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The traditional view of evolutionary dynamics in humans was
that the history of modern humans was too short for the

species to have experienced substantive change in its genetic
makeup (1, 2). However, findings from recent population genetics
studies suggest the possibility that selective fertility, nonrandom
mating, drift, and other violations of the Hardy–Weinberg equilib-
rium accelerated genetic divergence between modern human pop-
ulations, particularly since humans began farming and civilization
developed (3–6). Extending this logic, rapid economic development
and the corresponding demographic transition over the past two
centuries may have led to a further shift in the dynamics of re-
production and selection. The present paper uses genetic and
phenotypic data from a nationally representative sample of US
older adults to test whether the societal changes in the United
States during the 20th century were reflected in (i) changes in
patterns of genetic assortment in marriage, and (ii) changes in
genetic influences on fertility.
Understanding trends with respect to specific deviations from

random mating and differential fertility is critical to both social
and evolutionary scientists. For example, recent research in so-
ciology has suggested that taking a prospective view on social
stratification that incorporates differential fertility yields dispa-
rate results for estimands such as levels of intergenerational edu-
cational mobility (7). Likewise, genetic research on human
populations often assumes that mating in a population is random
with respect to genotypes (8, 9). Recent empirical evidence suggests
otherwise; married couples tend to be more genotypically similar
than would be expected by chance (10–12), although questions re-
main as to how much of this similarity arises from intraethnic

marriage (13, 14). The presence of such “assortative mating” on
genotypes has implications for the statistical models used in genetic
research because genotype distributions will change across genera-
tions (15), causing, by extension, changes in phenotypic trait
distributions. Here, we evaluate the implications of genotypic
assortative mating for traits of interest in population and health
sciences.
To investigate trait-related genotypic assortative mating, we

studied polygenic scores (PGSs) derived from genome-wide as-
sociation studies (GWAS) of educational attainment, height,
body mass index (BMI), and major depressive disorder (16–19).
PGSs are genome-wide summaries of genetic variation associ-
ated with a phenotype (20). They are continuous and typically
normally distributed, consistent with biometrical estimates of the
genetic architecture of complex traits (21). They are also robust
predictors of small amounts of phenotypic variance (22).
Assortative genetic mating tells only part of the story with

respect to changes in the genetic variance of a population. Dif-
ferential fertility by genotype also influences the mean levels of a
genotype and, consequently, the phenotype. Just as observations
have been made regarding the changing patterns of spousal as-
sortment, demographers have documented declines in fertility
rates during the 20th century (23). Economic models suggest that
the most powerful social (distal) correlates of fertility are child
survival and female education, both of which are negatively re-
lated to fertility in developed countries (24–28). Meanwhile, twin
and molecular genetics studies find that fertility is also influ-
enced by genetic factors (29), although somewhat less so than
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Fig. 1. Spousal associations for both standardized phenotypes and standardized polygenic risk scores among spousal pairs in the HRS, 2012 (n = 4,686; restricted to
respondents in their first marriage who have genotypic data and valid phenotypic responses). (A) All birth cohorts pooled. (B and C) Trends in spousal correspondence
across birth cohorts. The horizontal axis depicts birth cohort, whereas the vertical axis is the predicted value for the spouse of a focal individual conditional on the focal
individual’s birth year and either phenotype or PGS (Eq. 1). The lines show fitted values for those at 1 SD above (gray) and below (black) the mean. Points are based on
binnedmeans for two groups of respondents (standardized value below−1, black; standardized value above 1, dark gray). For each group, the distribution of birth years is
divided into 20 subgroups with approximately equal numbers. Plotted points are the mean birth year and response for these subgroups. B considers standardized
phenotypes. Education demonstrates a change in spousal correlation across birth cohorts. Consider education in B: an individual with relatively low education is predicted
to have a spouse of consistently low education across all birth cohorts. In contrast, a high-education individual will have, on average, a spouse with higher education in
later birth cohorts comparedwith earlier birth cohorts. For height, the fact that relatively short individuals are predicted tomarry relatively tall individuals is a consequence
of the fact that we are looking at opposite sex pairs. C considers standardized PGSs. In contrast to results for phenotypes, spousal correlations in education PGS display
reductions across 20th century birth cohorts as do those for height, although these results do not appear significant at conventional α levels.
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most complex traits (30, 31). The combination of changes in
phenotypic associations with number of children (specifically
with respect to years of schooling) along with the documented
heritability of fertility suggests that examining the dynamics of
the association between specific genetic measures (i.e., PGSs)
and number of offspring may be a fruitful avenue of inquiry. One
disconcerting possibility is that recent trends in health and illness
may be partially driven by negative selection on the genotypic
level. This “dysgenic” theory has been framed primarily with
respect to cognitive ability (32). To address this question, we test
for associations between the same PGSs and number of children
ever born and whether such associations are changing over the
same time period as our marriage analysis.

Results
We studied pairs of married non-Hispanic white adults partici-
pating in the US Health and Retirement Survey (HRS) with
DNA samples (n = 4,686 for spousal analysis and n = 8,855 for
fertility analysis). We computed PGSs for educational attain-
ment, height, and BMI, and major depressive disorder from
genome-wide SNP data using the PLINK software (Materials and
Methods). Scores were standardized to have a mean of 0 and a
SD of 1 for analysis. Analyses were adjusted for the first 10
principal components estimated from the genome-wide SNP data to
account for any residual population structure in the sample.

Deviation from Random Mating. As observed by others, geo-
graphic, ethnic, and cultural determinants of spousal assortment
declined over the course of the 20th century while assortment on
individual attributes increased. In line with these observations,
we hypothesized that genetic assortment on the social, mental,
and physical characteristics we studied would have increased in
tandem with the rising phenotypic assortative mating observed by
others (33, 34). We found that husbands and wives in the HRS
were similar to each other, both phenotypically and genetically.
Fig. 1A shows correlations between husbands and wives across all
HRS birth cohorts. These generally correspond to prior estimates
(35–37). Fig. 1A also shows a parallel set of results for the PGSs.
Although results were directionally similar, only spousal correlations
on PGSs for height and educational attainment were statistically
different from 0 (for height PGS, r = 0.302 [0.265, 0.339]; for ed-
ucational attainment PGS, r = 0.132 [0.0917, 0.171]).
Fig. 1 B and C represents the test of our main research

question: whether phenotypic (B) and genetic (C) correlations
among spouses changed from birth cohorts born earlier in the
20th century to those born toward the middle of the 20th century
(Eq. 1). We examine the birth cohort of the nonfocal spouse—
i.e., the spouse on the right-hand side of Eq. 1 (38). Using this
assignment, the similarity of spouse’s education to one’s own
education was higher in the later-born compared with the
earlier-born cohorts. No similar change was observed for PGS
correlations. For education and height, there is some sign of
decrease in spousal correlation, although these results are not
statistically significant. We suspect that this failure to obtain
statistically significant results is largely due to a lack of power
related to the measurement error in the PGSs as adjustments to
correct for this problem suggest even more pronounced de-
clines (SI Appendix, Text S5).
We also conducted additional sensitivity analyses. First, we

tested whether mortality selection might bias the distribution
of PGSs in our sample of married couples from the earliest-born
cohorts. We compared PGS distributions between the married
couples in our analysis sample and birth cohort-matched HRS
respondents whose partners had died. Distributions were similar
between the married couples we studied and birth cohort-matched
HRS respondents whose spouses had died (SI Appendix, Text
S2). Next, we tested for changes over the 20th century in ge-
nome-wide SNP-level assortative mating—i.e., using a method

parallel to previous genotypic assortative mating analyses (12).
We found no evidence for such a change. Thus, our results from
the PGS analysis are not likely to be confounded by changes in
broader patterns of genotypic assortment unrelated to the traits
we studied (SI Appendix, Text S3). Additionally, we tested for
population stratification bias resulting from changes in coethnic
marriage. The original spousal relatedness analysis attempted to
account for ancestry differences among the non-Hispanic white
husbands and wives in the sample by adjusting for the first 10
principal components estimated from the genome-wide SNP
data. These principal components are thought to approximate
ancestry differences that have genome-wide effects on allele
frequencies. Such differences would bias PGSs and might inflate
spousal correlations in the case of coethnic marriage. We tested
for such a possibility by repeating our analysis without adjust-
ment for the principal components. Results were unchanged
(SI Appendix, Text S4). Finally, analyses based on standardizing
height within gender produce the same pattern.

Differential Fertility. Fig. 2A shows that, of the four studied phe-
notypes, education, height, and BMI show an association with
number of children that is significant at the P < 0.05 level (all of
which are also significant at a Bonferroni-corrected α level of P <
0.0125). When we examine the genotypic associations, we find
that education and height show statistically significant associa-
tions that are below Bonferroni-corrected P value thresholds: the
education PGS shows a very small but statistically significant
association with fewer children, whereas a PGS predicting higher
stature is positively associated with number of children. (The
depression PGS is positively associated with fertility at a P value
that is conventionally significant but does not survive Bonferroni
adjustment.) With respect to trends in the genetics–fertility re-
lationship, we hypothesized that physical phenotypes—such as
height and BMI—and their associated PGSs would display a
declining association with number of children ever born, whereas
behavioral traits would evince stronger associations in younger
birth cohorts at both the phenotypic and genotypic levels. We
make this prediction based on the shifting nature of the economy
from an industrial, manual one to a knowledge-based, postin-
dustrial one over the course of the mid- to late-20th century (39).
That is, what traits confer advantage in the reproductive market
may have changed to match what characteristics are increas-
ingly rewarded by the labor market (i.e., cognitive ability over
physical attributes).
The most marked feature of the fertility data are a secular

decline in the number of offspring over the observed period such
that those born in 1919 are predicted to have 3.6 children,
whereas those born in 1955 are predicted to have 1.7 children
(the overall mean is 2.6 children; SI Appendix, Table S1). This
decline matches patterns documented by prior researchers (40).
These trends are reflected in Fig. 2B by the generally negative
widening gaps in the number of predicted offspring for those
with high and low values on the associated phenotypes in more
recent cohorts (with the exception of BMI, which appears to have a
lessening effect on number of children in more recent cohorts).
For example, although the less educated respondents in the

population have a fairly stable number of offspring over the birth
cohorts, those with greater observed (i.e., phenotypic) education
levels have fewer children over time. A similar pattern can be
observed for height where only in more recent birth cohorts do
we see those with higher stature having fewer children. Both of
these phenotypic trends would seem to imply dynamics of emergent
or strengthening dysgenic reproductive patterns. However, when we
look at the relevant genetic scores in Fig. 2C, we find that the
dysgenic trends inferred from phenotypic associations between ed-
ucation and height on the one hand, and fertility on the other, are
not present with respect to the genotypic data. [We show in SI
Appendix, Text S5, that this pattern of results is not likely due to the
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Fig. 2. Association of selected phenotypes and corresponding PGSs with fertility. (A) Overall association with number of children ever born for all birth
cohorts. (B and C) Birth cohort differences in associations between number of children ever born between both standardized phenotypes and standardized
polygenic risk scores among non-Hispanic whites in the HRS, 2012 (n = 8,855; restricted to respondents who have genotypic data and valid phenotypic re-
sponses). The horizontal axis depicts birth cohort, whereas the vertical axis is the predicted number of offspring conditional on an individual’s birth year and
either phenotype or PGS (Eq. 2). The lines show fitted values for those at 1 SD above (gray) and below (black) the mean. The horizontal line shows the mean
number of offspring in the sample. Points are based on binned means for two groups of respondents (standardized value below −1, black; standardized value
above 1, dark gray). For each group, the distribution of birth years is divided into 20 subgroups with approximately equal numbers. Plotted points are the
mean birth year and response for these subgroups. B considers standardized phenotypes. The number of predicted offspring is lower for later birth cohorts.
One important observation is that this decrease in the number of offspring is driven by the more educated. C considers standardized PGSs. The number of
offspring does not appear to be changing as a function of PGSs over the birth cohorts.
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following: measurement error of the PGS on the right-hand side,
misspecification of number of children as a normal rather than
count (i.e., Poisson-distributed) variable, or the missing data
present in this sample (SI Appendix, Table S14).] Although we
may recall from Fig. 2A that the PGSs for height and education
predict number of children ever born in the overall sample, these
associations are consistent across all birth cohorts in this study.
Thus, although there may be positive selection on height and
slight negative selection on additive measures of the genetic
architecture of education, these are not accelerating (32).

Discussion
The change from an agrarian society to an industrial and post-
industrial one has been well-noted (41). This change, along with
others, resulted in dramatic shifts in the environments encoun-
tered by humans during the course of the 20th century. Expan-
sion of schooling (42), medical improvements (43), increased
longevity (44), and caloric abundance are just some of the
changes that may influence not only relationships between im-
portant phenotypes but the underlying salience of their associ-
ated genotypes as well. In the present paper, we demonstrate
that observed changes in mating preferences or fertility associ-
ations do not always correspond to shifts in the underlying genetic
architecture. For example, whereas higher educational attainment
has come to predict having fewer children in more recent birth
cohorts, the same is not true of genetics correlated with educa-
tional attainment—i.e., the association between a person’s PGS
for educational attainment and their fertility has remained con-
stant across birth cohorts. Likewise, the spousal correlation in
educational phenotype has been increasing even as the sorting
on measured polygenic predictors of education has been flat (if
not decreasing).
Contrary to worries about negative selection and/or increased

polarization on education-related genetic measures, we predict—
based on the results here—that any dysgenic dynamics with respect
to education are not, in fact, increasing even as phenotypic asso-
ciations strengthen. Although the environmental landscape of US
society is certainly changing, the genetic makeup of the population
may also be shifting along with it—although possibly in conflicting
directions. Future researchers examining cohort trends in genetic
influences—under the assumption that these are entirely driven by
changing environmental conditions while genetic variance is con-
stant—would be wise to reexamine that assumption (45–48).
In addition to informing our knowledge about the changing

genetic and phenotypic landscape of marriage and reproduction,
knowing the degree to which spouses are correlated on pheno-
typically predictive genetic measures as opposed to merely
observed phenotype has important implications for models of
additive heritability that rely on an assumption of random mating
(49). Namely, most heritability models—notably the classic twin
or extended twin design—assume that siblings (i.e., fraternal
twins) share, on average, 50% of the relevant genetic markers
that are associated with the phenotype of interest. If there is
significant positive assortative mating on the relevant, underlying
genetic measures, then heritability is underestimated (even if
overall genome-wide assortative mating is nil). Prior attempts to
relax that assumption have operationalized assortative mating
through the phenotypic correlation among parents, but this as-
sumes that phenotypic correlations can act as accurate proxies
for genotypic correlations, the true parameter of interest. Our
results suggest the opposite: stable or potentially decreased
genetic assortment on genetic measures linked to education in
the face of increased phenotypic assortment. Likewise, differ-
ential fertility by genotype affects the likelihood of parents being
included in any studies of intergenerational transmission—
genetic or social—due to the practice of sampling on offspring in
most retrospective studies or the exclusion of childless individ-
uals from prospective studies of parent–child pairs. That is, if a

given genetic measure is pleiotropic for affecting an outcome of
interest—say education—as well as fertility, then estimating its
effects based on a sample of living offspring (as is typically done)
will yield substantially different results than sampling on the
parental generation and allowing for nonfertile members of that
generation to remain in the analysis and modeling offspring
education conditional on being born at all.

Materials and Methods
We tested changes during the 20th century in genetic influences on assortative
mating and fertility. We used data from spousal pairs in the HRS, a nationally
representative survey of adults born during the first half of the 20th century,
1919–1955, and their partners. We analyzed data from non-Hispanic whites (due
to concerns regarding population stratification) with available genome-wide SNP
genotype and phenotype data. We included only spousal pairs in their first
marriage. Our sample consisted of n = 2,343 pairs. (Details on sample charac-
teristics and selection analysis are reported in SI Appendix, Text S1.) Phenotype
measurements consisted of self-assessments of height and weight, the CES-D
scale score, and self-reports of the number of years of education completed
(2012 or otherwise most recent wave with available data):

• Number of children ever born (NEB): Maximum number of children
reported ever born to or fathered by an individual (waves 3–11). This
information was missing for 871 respondents. Despite being a count vari-
able, it displays a normal distribution as shown in SI Appendix, Fig. S1.

• Education: Total years of educational attainment.
• BMI: Mean BMI over all available waves.
• Height: Maximum height over all available waves.
• Depression: Mean CES-D score over all available waves. This variable had a
skewed distribution, so it was transformed via the logarithm (after adding
1 to everyone’s score).

Sample descriptives are shown in SI Appendix, Table S1.We calculated PGSs for
each participant for height, BMI, major depression, and educational attainment
based on published results from GWAS consortia (16–19) using the methods de-
scribed below. The HRS collected genotype information from consenting subjects
in 2006 and 2008 and assayed with the Illumina 2.5 Human Omni Quad Array.

PGSs. PGSswere calculated using the PLINK software and published GWAS results
(16–19). Briefly, polygenic scoring was done with the PLINK software (50). SNPs in
the HRS genetic database were matched to SNPs with reported results in a
GWAS. For each SNP, a loading was calculated as the number of phenotype-
associated alleles multiplied by the effect-size estimated in the original GWAS.
Loadings were summed across SNPs to calculate the PGS. Finally, scores were
residualized for the first 10 principal components estimated from the genome-
wide SNP data using PLINK (51). Residuals were calculated to eliminate variance
attributable to ancestry (although analysis of raw scores does not change the
pattern of results; SI Appendix, Text S4). Scores were standardized to have a
mean of 0 and SD of 1 for analysis for ease of interpretation. We studied PGSs
because they are the best available method to summarize molecular genetic
predisposition to a complex trait; however, PGSs have limitations. For example,
they do not capture nonadditive combinations of genetic influences. As a result,
PGSs capture only a fraction of genetic influences on complex traits. Our analysis
is therefore a preliminary observation of population dynamics in distributions of
genetic influences on complex traits, not a comprehensive summary of them. As
large-scale and more sophisticated GWAS uncover additional components of
genetic influence on complex traits, this science will evolve.

Phenotypes. Phenotypes were computed based on RAND Fat Files, version N
(up to wave 11 in 2012).

Statistical Models. We used two statistical models. The first model tested
whether genetic assortative mating has changed over time. We estimated
equations of the following form:

spouse1i =b0 +b1spouse2i +b2birthyear2i +b3spouse2i ·birthyear2i + e2i , [1]

where each spouse in pair i is double-entered on both sides of the equation.
Three separate versions of this equation were used focusing on spousal
phenotype, PGS, and principal component (spouse1i and spouse2i repre-
sented standardized phenotypes, PGSs, or principal components in the three
respective versions of this equation). We used Huber–White SEs to correct
for the nonindependence of spousal pairs.

The second model investigated changes in fertility. We estimated equa-
tions of the following form:

Conley et al. PNAS | June 14, 2016 | vol. 113 | no. 24 | 6651

SO
CI
A
L
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1523592113/-/DCSupplemental/pnas.1523592113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1523592113/-/DCSupplemental/pnas.1523592113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1523592113/-/DCSupplemental/pnas.1523592113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1523592113/-/DCSupplemental/pnas.1523592113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1523592113/-/DCSupplemental/pnas.1523592113.sapp.pdf


NEBi =b0 +b1personi +b2birthyeari +b3personi ·birthyeari +ei , [2]

where i now indexes individuals, NEBi is the number of ever-born children
reported by individual i, and the personi now represents either an indi-
vidual’s phenotype or PGS. In reporting results, we show conventional α
levels; however, we also indicate whether our results achieve statistical
significance using Bonferroni-corrected α levels for four independent tests
(because we have four phenotypes and associated PGSs). That said, our
argument largely rests on the nonsignificance of genetic patterns of
change over time in light of evident phenotypic trends during the same
time period.

Human Subjects. The analysis plan was reviewed by the Institutional Review
Board of New York University and deemed exempt human subjects research.

Genetic data were accessed via the National Center for Biotechnology In-
formation Genotypes and Phenotypes Database Data Access Request system
at the National Institutes of Health (Project 2260).
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