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Principal component analysis (PCA), homozygosity rate estimations,
and linkage studies in humans are classically conducted through
genome-wide single-nucleotide variant arrays (GWSA). We compared
whole-exome sequencing (WES) and GWSA for this purpose. We
analyzed 110 subjects originating from different regions of the world,
including North Africa and the Middle East, which are poorly covered
by public databases and have high consanguinity rates. We tested and
applied a number of quality control (QC) filters. Comparedwith GWSA,
we found that WES provided an accurate prediction of population
substructure using variants with a minor allele frequency > 2%
(correlation = 0.89 with the PCA coordinates obtained by GWSA).
WES also yielded highly reliable estimates of homozygosity rates
using runs of homozygosity with a 1,000-kb window (correlation =
0.94 with the estimates provided by GWSA). Finally, homozygosity
mapping analyses in 15 families including a single offspring with
high homozygosity rates showed that WES provided 51% less ge-
nome-wide linkage information than GWSA overall but 97% more
information for the coding regions. At the genome-wide scale,
76.3% of linked regions were found by both GWSA and WES,
17.7% were found by GWSA only, and 6.0% were found by WES
only. For coding regions, the corresponding percentages were
83.5%, 7.4%, and 9.1%, respectively. With appropriate QC filters,
WES can be used for PCA and adjustment for population substruc-
ture, estimating homozygosity rates in individuals, and powerful
linkage analyses, particularly in coding regions.
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Whole-exome sequencing (WES) has become the leading
strategy for uncovering germ-line exome variants in hu-

mans. A number of gene- and variant-level methods have been
proposed for the analysis of WES data to select candidate variants in
rare Mendelian disorders and more common traits (1–13). These
analyses benefit from the use of additional information, such as fa-
milial linkage, homozygosity rate, and ethnic background, which are
commonly used in the study of inherited diseases (14–17). Genome-
wide single-nucleotide variant array (GWSAs) are the gold standard
method for linkage analysis, because they provide maximal linkage
information for the whole genome (18). GWSAs are also classically
used to estimate homozygosity rate in patients, confirming or some-
times, revealing parental consanguinity through the inbreeding
coefficient parameter F in particular (19, 20). Population stratification
can be an issue in the analysis of population-based genetic data, in-
cluding WES, particularly for association studies (21–24). Population
structures have been widely determined by GWSA (25, 26) in Eu-
ropean (27), African (28, 29), Asian (30), Jewish (31), Mexican (32),
and other populations (33). These analyses are mostly based on
principal component analysis (PCA) (34), which can also be used to
confirm or reveal the ethnicity of an individual patient (or his or
her parents).

Unlike WES, which provides thorough coverage for less than
2% of the human genome for both rare and common variants,
GWSAs cover the whole genome for common variants but only
patchily, with a mean interval between variants of about 2–4 kb.
Obtaining both WES and GWSA data in patients, kindreds, or
populations is DNA-, resource-, and time-consuming. Two
studies comparing WES and GWSA in linkage analyses based on
real data from three families (35) or both simulated and real data
from two families (36) showed that the two sets of genetic data
defined linkage peaks (35) and excluded genomic regions (36) in
a consistent manner. A recent study estimating homozygosity
rates with both GWSA and WES data in patients born to con-
sanguineous families provided recommendations for the de-
tection of homozygous regions by WES (37). Finally, a method
for estimating individual ancestry from a PCA map generated
from data for a reference set of individuals also showed added
value for a combination of single-nucleotide variant (SNV) data
from exome chips or targeted sequencing with genotyping and
imputed data for accurate ancestry estimation, particularly for
European populations (38). We performed both GWSA and
WES on 110 subjects originating from various regions of the
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world, including North Africa and the Middle East. Both of these
regions are poorly covered by the HapMap Project and the 1000
Genomes Project and have high consanguinity rates. We compared
the information provided by the two datasets for the estimation of
homozygosity rate and linkage analysis by homozygosity mapping.
We also defined the optimal criteria for selecting WES variants to
optimize PCA and ancestry prediction for individuals of various
ethnic origins.

Results
We performed genotyping with the Affymetrix GWSA 6.0 array
and WES with the Agilent Sureselect All Exons V4 Kit on 110
unrelated individuals (58 male and 52 female subjects) originating
from six regions of the world, including North Africa (27 subjects)
and the Middle East (16 subjects) (Table 1). After the application
of quality control (QC) filters (Methods), 810,914 high-quality
(HQ) GWSA SNVs and 249,310 HQWES SNVs were retained for
our analyses (Fig. S1). In total, 10,598 of these SNVs, with a call
rate (CR) of 100%, were common to both WES and GWSA. We
checked the genotype matching rate of these common variants
betweenWES and GWSA with the PLINK Identity by State matrix
(39). The mean Identity by State genotype matching rate between
WES and GWSA was 99.37% (SD = 1.02%), a value similar to
that reported in previous studies (40).
We first conducted PCA using 375 unrelated individuals from

five world regions as the reference (Table S1). Data for these
individuals were present in both the HapMap Project (HapMap
release 3) (41) and the most recent 1000 Genomes Project phase
3 (42) database available since May of 2013. We merged our
GWSA data with the HapMap data, such that all of the 810,914
HQ SNVs of our sample were present in the HapMap dataset.
The resulting merged database was then used for PCA. We
found that 183,065 (73.4%) of the 249,310 HQ SNVs detected in
our 110 WES samples were present in the SNVs included in the
1000 Genomes Project phase 3 (Fig. S1). The difference in the
number of variants in our WES data and the 1000 Genomes
Project reflects the enrichment of our WES data in rare variants.
We first conducted PCA on the HapMap/GWSA data (Fig. 1).
Consistent with their geographic origin, the North African indi-
viduals mapped between the European and African clusters,
whereas the Middle Eastern individuals mapped between the
European and Asian clusters (Fig. 1). Like subjects from the
Middle East, Central and South Americans were located be-
tween the European and Asian clusters for the first two principal
components (PCs). However, the South American and Middle
Eastern subjects were separated by the third PC.
We then performed a more formal comparison of PCA between

the GWSA/HapMap data used as a gold standard and the WES/
1000 Genomes Project data using the RW correlation coefficient
weighted by the eigenvalues of the significant PCs (Methods). We
considered different CRs (range = 95–100%) and different minor
allele frequency (MAF) thresholds (range = 0–5%) for the WES
SNVs, because higher CRs and MAFs would be expected to in-
crease variant quality while decreasing the number of variants
(range = 39,391–183,013) (Table S2). The RW correlation co-
efficient was calculated for the 14 PCs significant at P < 0.05 (Table
S3). Correlations were particularly strong (RW > 0.98) for the four
first PCs, which accounted for >85% of the scaled eigenvalues in
both GWSA and WES (Table S3). Overall, we found strong cor-
relations (range = 0.813–0.892) between the PCA coordinates
obtained by GWSA and WES for our 110 subjects for all combi-
nations of CR and MAF (Fig. 2). The exclusion of rare variants
(MAF < 2%) from the PCA clearly decreased the number of
variants but increased the strength of the correlation. The strongest
correlations were observed with WES variants with an MAF > 2%,
and for MAF values in this range, CR had very little influence. The
panel of WES variants with an MAF > 3% and a CR > 98%
provided the highest RW value at 0.892, corresponding to 85,112
variants in total, whereas the corresponding value was 183,013 in
the largest panel (Table S2). The results of PCA with this panel of
85,112 SNVs are shown in Fig. 1, in which the distribution of

population structures is very similar to that derived from the
GWSA/HapMap data.
Next, we considered the prediction of coordinates for a single

individual from WES data and a sample of publicly available data.
Based on our previous findings, we used variants with an MAF >
3% and a CR > 98% when WES data for this single individual were
merged with the 1000 Genomes Project data. Predictions were made
independently for each of our 110 individuals, and the RW correla-
tion coefficient for the whole sample was again very strong at 0.844
(0.841 when MAF was >2% and CR was >98%). Interestingly, this
correlation was also very strong when we considered only ethnic
groups not represented in the reference panels of the HapMap
Project and the 1000 Genomes Project, such as 16 individuals from
the Middle East (RW = 0.853), 27 individuals from North Africa
(RW = 0.829), and 3 subjects of mixed origin (RW = 0.949). All of
these results indicate that WES data based on common variants are
appropriate for use in population structure analyses and inferring
the ethnic ancestry of an individual. Finally, we compared the per-
formance of WES and GWSA in terms of local ancestry inference
using Hapmix (43), which can consider two ancestral populations
(Methods). The correlation between the proportions of ancestry
obtained by GWSA or WES data in our 110 individuals was high,
varying from 0.84 to 0.99 (Fig. S2) according to the two ancestral
populations considered among the four HapMap/1000 Genomes
populations European (CEU), Han Chinese (CHB), Yoruba
Nigerian (YRI), and Mexican (MEX). An example for the analysis
using CEU and YRI as ancestral populations is shown in Fig. S2.
These high correlations are consistent with our PCA results, further
indicating that WES data could be used to infer local ancestry.
We then estimated homozygosity rates by calculating the in-

breeding coefficient F by two approaches: one based on the search
for runs of homozygosity (ROHs) over a given length of the ge-
nome (20) and the other based on the use of Markov processes to
model homozygous states throughout the genome by the FEstim
method (19). We identified ROHs with PLINK (39), in which a
sliding window of 1,000 kb is passed across the genome, with
homozygosity determined at each window. We considered differ-
ent numbers of SNVs within the sliding window (Methods). With
GWSA data, the mean homozygosity of our sample, estimated
by FEstim (FESTIM-GWSA), was 1.64% (SD = 3.44%; range =
0–15.50%) (Table S4). As expected, with the ROH approach,
the mean homozygosity (FROH-GWSA) increased as the num-
ber of SNVs included in the window decreased from 1.34%
(300 SNVs) to 2.27% (100 SNVs). The FROH-GWSA values ob-
tained with 200 SNVs (FROH-GWSA200 = 1.67%) and 250 SNVs
(FROH-GWSA250 = 1.47%) were the closest to FESTIM-GWSA,
which could be considered the reference estimate (44). They
were also strongly correlated with the FESTIM-GWSA estimates
(r = 0.973 and r = 0.975, respectively). With WES data, the
estimated FESTIM value was higher than that obtained with
GWSA data at 2.53% (SD = 5.23%; range = 0–22.50%), and the
coefficient of correlation with the FESTIM-GWSA estimates was 0.889.

Table 1. Origin of 110 individuals included in the analysis

World region No. of individuals

Central and South America* 5
Middle East† 16
North Africa‡ 27
Sub-Saharan Africa§ 6
Western Europe{ 53
Mixed origin# 3

*Individuals from Colombia, Brazil, and Mexico.
†Individuals from Turkey, Pakistan, Kuwait, India, Iran, Qatar, and Afghanistan.
‡Individuals from Morocco, Algeria, Tunisia, and Egypt.
§Individuals from Mali, Senegal, Comoros Islands, and Madagascar.
{Individuals from France, Italy, Spain, Portugal, and the United Kingdom.
#Individuals with parents from sub-Saharan Africa and Europe and from the
Middle East and Europe.
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However, less than 20% of the submaps generated by the FESTIM-WES
approach could be used for analysis in 18 subjects who were from
various geographic regions (12 from Europe, 3 from sub-Saharan
Africa, 2 from North Africa, and 1 from the Middle East). We
noted that these 18 individuals had significantly higher missing
rates of WES variants than the 92 others (3% vs. 0.9%; P =
0.0003). In addition, we found that the mean chromosomal seg-
ment lengths homozygous by descent (HBD) were significantly
lower (P = 0.0004) when using WES data (mean = 1.91 Mb) than
when using GWSA data (mean = 2.64 Mb), indicating that WES
data may lead more often to exclusion of submaps compared with
GWSA because of smaller HBD segment lengths. Overall, these
findings suggest that the FESTIM-WES estimates may be less reli-
able, at least for these 18 individuals.
When the ROH approach was applied to WES data, the mean

FROH-WES estimates varied from 0.80% (100 SNVs) to 1.95% (20
SNVs) (Table S4). The FROH-WES values obtained with 50 SNVs
(FROH-WES50 = 1.73%) and 30 SNVs (FROH-WES30 = 1.87%)
were the closest to FESTIM-GWSA and also strongly correlated
with FESTIM-GWSA (r = 0.933 and r = 0.930, respectively) and
FROH-GWSA200 (r = 0.952 and r = 0.951, respectively) (Table S5)
data. With the optimal parameters proposed in a previous study
(37), the mean FROH-WES10 was higher at 2.97%, with correlation
coefficients of 0.931 with FESTIM-GWSA and 0.985 with FROH-WES30.
Thus, for both GWSA and WES data, the most appropriate num-
ber of SNVs within a 1,000-kb window for calling an ROH pro-
viding FROH estimates similar to FESTIM-GWSA was close to the
mean number of SNVs per 1,000 kb (corresponding to 0.37% of the
autosomal genome) from the GWSA (∼242 SNVs per 1,000 kb)
and WES (∼27 SNVs per 1,000 kb) data (Methods). These results
indicate that WES can be used to obtain reliable homozygosity
estimates by ROHmethods if the number of SNVs within a window
of 1,000 kb used corresponds to about 0.37% of the total number of
available autosomal HQ WES SNVs (∼30 SNVs in this analysis).
Based on the homozygosity results, we selected 15 individuals

with FROH-GWSA250 and FROH-WES30 above 3% for linkage analysis

by homozygosity mapping, because the offspring of first cousin
marriages may have as little as 3% of their genome identical by
descent (19); 11 of these 15 individuals were known to have been
born to consanguineous parents. Information about consanguinity
was not available for the other four subjects, although inbreeding was
considered likely given their high rates of homozygosity. We also
assumed that family structure was the same across families and that
the patient was the only person genotyped/sequenced in each family.
We performed homozygosity mapping with either GWSA or WES
data (including all HQ variants with CRs > 98%). We first com-
pared the linkage information content provided by the two methods,
because this content provides some indication as to how closely the
available markers approach the ideal situation of complete in-
heritance information concerning the segregation of the chromo-
somal region tested. Over the 22 autosomes, GWSA provided 51%
more information, on average, than WES data. The ratio of the
amount of information provided byWES to that provided by GWSA
ranged from 0.41 on chromosome 21 to 0.90 on chromosome 19
(Fig. 3). This ratio was strongly correlated (Pearson’s correlation
coefficient = 0.72) with the proportion of coverage by the exome kit
for each chromosome defined as the number of bases covered by the
probes over the total length of each chromosome (Fig. 3). For ex-
ample, chromosomes 19 and 22 contain a high proportion of coding
sequences. They are, therefore, more densely covered by WES data
than the other chromosomes, resulting in a higher information ratio.
We then restricted our linkage analysis to the regions covered by the
exome kit. These regions included a total of 10,674, and 73,565
autosomal SNVs in GWSA and WES data, respectively. In these
regions, the amount of information provided was 1.97 higher, on
average, with WES data than with GWSA data. Indeed, the WES/
GWSA information ratio ranged from 1.35 on chromosome 14 to
3.71 on chromosome 21 (Fig. 3). Thus, for the regions covered by the
exome kit, WES data clearly provided more information for linkage
analysis than GWSA data.
Finally, we compared the linked regions larger than 1 Mb with

a logarithm of the odds (LOD) score above 1 (the maximum
expected LOD score in the family structure that we analyzed was
1.2), which we identified by conducting the analysis with three
different sets of SNVs from (i) GWSA, (ii) WES, and (iii) the
combination of GWSA and WES data (GWSA+WES). The
third set of data with the largest number of SNVs was used as the
reference for the linkage results (this combined set would
be expected to provide the true linked regions). From these
GWSA+WES results, we were able to estimate the proportion of
linked regions identified by both GWSA and WES, those iden-
tified only by GWSA, and those identified only by WES. At the
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calculated as described in Methods.
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genome-wide scale, 76.3% of these regions were found by both
GWSA and WES in 15 families, 17.7% were found by GWSA
only, and 6.0% were found by WES only (Fig. S3). The WES/
GWSA information ratio was higher in the regions found by
WES only (mean WES/GWSA information ratio of 1.19) than in
those found exclusively by GWSA (mean information ratio of
0.48). We conducted a similar analysis restricted to coding re-
gions covered by the exome kit. We found that 83.5% of the
regions were found by both GWSA and WES in 15 families, and
slightly more regions were found by WES only (9.1%) than by
GWSA only (7.4%) (Fig. S3). The linked regions found by
GWSA only were regions in which WES supplied less in-
formation than GWSA (mean information ratio of 0.39) because
of the small number of variants in the targeted sequenced seg-
ments. Overall, WES seems to provide reasonable linkage results
at the genome-wide scale, with 82.3% of linked regions correctly
detected vs. 94% for GWSA. In coding regions, WES is more
informative overall and more powerful, detecting 92.6% of
linked regions correctly, whereas 90.9% of these regions were
correctly detected by GWSA.

Discussion
PCA is usually performed on common markers provided by
GWSA. We conducted the first comprehensive PCA comparison
of GWSA and WES, to our knowledge, by measuring a specific
correlation. We found that performing PCA on WES data with
HQ variants (with a CR > 95%) with an MAF > 2% provided a
distribution of population structures very similar to that obtained
from GWSA data for individuals of various ethnic origins. These
criteria substantially decreased (>50%) the total number of
WES variants used for the analyses, but they clearly provided an
optimal tradeoff for HQ PCA. WES studies can be carried out
on limited numbers of individuals, sometimes a single family or a
single patient (45). We also showed that WES can accurately pre-
dict the ethnic origin of a single individual when using a sample of
publicly available data including individuals belonging to ethnic
groups that are not directly represented in the reference panel or
who are born to parents of different origins. We also found reliable
estimates when using WES data to infer local ancestry by means of
the Hapmix approach (43). These results indicate that WES data
are appropriate for use in population structure analyses and in-
ferring the ethnic ancestry of an individual. The extent to which rare
WES variants (MAF < 1%) could be used to refine population
substructures remains to be investigated in depth, because it has
been shown that rare variants could show stratification patterns that
are different from those captured by common variants (24, 46). It
will be particularly important to assess the influence of these
stratification patterns on the association studies focusing on the role
of rare variants (23, 46).
Genetic data from GWSA are used to estimate the homozy-

gosity rate in patients to predict or confirm parental consanguinity
in particular. We used the two most widely used approaches to
estimate F from GWSA and WES data. We searched for ROHs
and used Markov processes to assess homozygous states through-
out the genome by the FESTIM approach. Using FESTIM on multiple
sparse maps, as recommended (47), we obtained reliable homo-
zygosity estimates with GWSA data. With WES data, we observed
that ∼16% of individuals had a high proportion (>80%) of sub-
maps that could not be used for the estimation of FESTIM. Al-
though this aspect requires additional investigation, a first analysis
indicated that WES data may be more sensitive to submap exclu-
sions with the FESTIM approach because of smaller HBD segments
than those obtained with GWSA data, in particular in subjects who
have more missing data. Using ROH methods, we found that op-
timal FROH estimates for both GWSA and WES data (compared
with FESTIM-GWSA) were obtained by considering a number of
SNVs for calling an ROH within a 1,000-kb window close to the
mean number of SNVs per 1,000 kb available in the GWSA (∼250
SNVs in our study) or the WES (∼30 SNVs in our study) data. In
this context, estimates of mean homozygosity from WES were very
similar to those obtained with GWSA, and there was a strong

correlation between the two estimates of FROH (r = 0.95 between
FROH-GWSA250SNVs and FROH-WES30SNVs). This result is consistent
with the findings of a previous study (37), although the optimal
configuration for detecting ROH from WES data in this previous
study included fewer SNVs (10) within the 1,000-kb window. The
detection of ROHs from WES data could also be improved by
adding genotyped SNVs from other family members (17). In any
case, reliable homozygosity estimates could be obtained fromWES
data only if ROHs were identified with PLINK, considering a
number of SNVs within a 1,000-kb window corresponding to
∼0.37% of the total number of available HQ SNVs.
Many linkage studies have been conducted with WES data in

the context of Mendelian disorders (1–3, 6, 15), but to our
knowledge, only two have formally compared their results with
those obtained with GWSA data. Using real genetic data from
three families as an example, Smith et al. (35) showed that ac-
curate genetic linkage mapping could be performed with WES
SNVs. Gazal et al. (36) performed a linkage study of two families
with both simulated and real data. They reported similar per-
formances for linkage analyses conducted with GWSA or WES
(36). As mentioned above, the recent study by Kancheva et al.
(37) was based on the detection of ROHs in patients born to
consanguineous families without a formal linkage analysis. Here,
we extended the analysis to 15 individuals with high homozy-
gosity rates (>3%) in the specific context of linkage analysis by
homozygosity mapping, a frequent situation in which WES data
may be available for the patient only.
We first analyzed the linkage information content provided by

GWSA and WES across the genome. The linkage information
obtained with WES was generally only about one-half that
obtained with GWSA at the genome-wide level and highest for
chromosomal regions with a high density of coding regions.
Consistent with this result, we found that, at the genome-wide
level, WES detected a smaller proportion of linked regions than
GWSA, although this proportion remained substantial at 82.3%
(vs. 94% with GWSA). GWSA, nevertheless, missed 6% of the
linked regions, corresponding to regions in which the information
content was higher for WES than for GWSA. In the regions
covered by the exome kit, the information content obtained with
WES was generally twice that obtained with GWSA, and WES
detected slightly more linked regions than GWSA (92.6% vs.
90.9%). However, in some coding regions, the segments se-
quenced by WES included only a small number of SNVs,
resulting in a low information content and accounting for the
small proportion of linked coding regions (7.4%) detected only by
GWSA. Clearly, with the decreasing cost of whole-genome se-
quencing (48), optimal approaches will, in the future, involve
linkage analysis together with other analyses of whole-genome
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Fig. 3. (Upper) Ratio of information content (IC) for linkage analysis performed
with GWSA and WES SNPs calculated with Merlin software. Each dot represents
the IC ratio (IC for WES/IC for GWSA). The IC is the mean amount of information
for all SNPs per chromosome computed over all of 15 families. Blue triangles
indicate the ratio at the whole-genome level; red circles indicate the ratio for the
analysis conducted with SNPs located in the regions covered by the SureSelect
Exome Kit. (Lower) Black squares indicate the proportion of the whole genome
covered by the probes of the SureSelect Exome Kit defined as the number of
bases covered by the probes divided by the total length of each chromosome.
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sequencing data (49). However, it is currently possible to use
WES data for PCA after the application of the appropriate QC
filters and adjustment for population substructure to estimate
homozygosity rates by ROH and perform reliable linkage analy-
ses, particularly for coding regions.

Methods
Study Subjects. The individuals used in the analysis were selected from
samples ascertained by our laboratory and recruitedwith the collaboration of
many clinicians. They presented a variety of severe infectious diseases and/or
primary immunodeficiencies. Although these individuals do not form a
random sample, they were ascertained through a number of distinct phe-
notypes and in different countries. Cohort-specific effects are, therefore, not
expected to bias patterns of variation. Among these patients, we studied only
110 individuals who had bothWES by Agilent Sureselect All Exons V4 (50 Mb)
Single-Sample Capture and genotyping by the Affymetrix Genome-Wide SNV
6.0 Array. The retained 110 subjects studied (58 male and 52 female patients)
originated from different regions of the world (Table 1). Written consent was
obtained from all subjects included in this study, which was overseen by the
Comité de Protection des Personnes (Institutional Review Board) Ile de
France 2 (Institutional Review Board no. 00001072).

WES.WES was performed on an Illumina HiSeq 2000 by Agilent Sureselect All
Exons V4 (50 Mb) Single-Sample Capture at the Rockefeller core facilities and
the New York Genome Center. Sequencing was performed with 2 × 100 bp
paired end reads, and we pooled five samples per lane. We used the Ge-
nome Analysis Software Kit (GATK) best practice pipeline to analyze our
WES data (50). Reads were aligned with the human reference genome
(hg19) with the Maximum Exact Matches algorithm in Burrows–Wheeler
Aligner (51). Local realignment around indels was performed with the GATK
(52). PCR duplicates were removed with Picard tools (broadinstitute.github.
io/picard/). The GATK base quality score recalibrator was applied to correct
sequencing artifacts. Individual genomic variant call files were generated
with the GATK HaplotypeCaller, and joint genotyping was performed
with the GATK Genotype genomic variant call files. The calling process tar-
geted regions covered by the WES 50-Mb Kit, including 200 bp flanking
each region.

All variants with a Phred-scaled SNV quality ≤ 30 were filtered out. We
then used the GATK Variant Quality Score Recalibrator (50) on the combined
variant call file for 110 samples. We retained 1,213,952 SNVs that passed the
Variant Quality Score (VQS) Recalibrator filter (VQS log-odds > −0.682). We
filtered out sample genotypes with a coverage < 8×, a genotype quality <
20, or a ratio of reads for the less covered allele (reference or variant allele)
over the total number of reads covering the position at which the variant
was called in the heterozygous genotypes of <20% using an in-house script.
Finally, we excluded from the analysis 704,954 variants, for which more than
10% of the genotypes were missing. A set of 249,310 HQ variants was
retained for the analysis (Fig. S1).

GWSA. In total, 110 individuals were genotypedwith the Affymetrix Genome-
Wide SNV 6.0 Array. Genotype calling was achieved with Affymetrix Power
Tools (www.affymetrix.com/estore) for all individuals. In total, 909,622 raw
SNVs were detected. We applied QC criteria similar to those used in Hapmap
release 3 (41) by removing SNVs with a CR < 95% and a P value in Fisher’s
exact test for Hardy–Weinberg equilibrium on 53 European individuals of
<10−6. In total, 810,914 HQ SNVs passed this Hapmap filter and were
retained for analysis.

PCA and Local Ancestry Inference. PCA was carried out with the smartPCA
program (53). We initially included 375 unrelated individuals from five re-
gions of the world (Table S1) present in both the 1000 Genomes Project and
the Hapmap (Hapmap release 3) Project. We used the data from the Affy-
metrix 6.0 array and the 1000 Genomes Project for these 375 individuals as a
reference for our PCA with GWSA and WES data, respectively. We further
considered four different CRs for WES SNVs (95%, 98%, 99%, and 100%)
and different MAF thresholds for WES variants (0.01, 0.02, 0.03, 0.04, and
0.05), because these parameters may affect the results of the PCA (54).

We compared PCAs on GWSA and WES data using our whole sample of 110
individuals by calculating the weighted correlation, RW, between the coordi-
nates of our individuals obtained with GWSA or WES data. These correlations
were summed over the M significant PCs and weighted by the mean eigen-
values of the corresponding GWSA and WES components as follows:

RW =
XM

j=0

�
PWESj + PGWSAj

�

2
  corPearson

�
WESj ,  GWSAj

�
,

where PWESj and PGWSAj are the normalized eigenvalues of the PC j in the
analysis of WES and GWSA data, respectively; WESj and GWSAj are the
vectors of the coordinates for PC j in our 110 individuals obtained in PCA on
WES and GWSA data, respectively; M is the number of significant PCs
(P value < 0.05) obtained with unsupervised Tracy–Widom statistics (Table
S3); and the RW correlation coefficient was calculated for each of 25 com-
binations of CRs and MAF shown in Table S2.

The local ancestry for 110 study individuals was inferred by Hapmix (43).
Because Hapmix assumes two ancestral populations, we ran the software
for six sets of two ancestral populations from four HapMap/1000 Genomes
Projects: CEU and YRI, CEU and CHB, CEU and MEX, YRI and CHB, YRI and
MEX, and CHB and MEX. Because the MEX population included only
44 independent individuals with both HapMap and 1000 Genomes data,
we also used a set of 44 independent individuals for three other ancestral
populations. The correlation between the proportions of ancestry
estimated in our 110 individuals using the GWSA or the WES data was
computed over the whole autosomal genome for each of six sets of
ancestral populations.

Estimation of Homozygosity. Several approaches have been proposed for
estimating the inbreeding coefficient F from genetic data (20). Chromosomal
regions that are HBD can be identified by searching for ROHs over a given
length, providing an estimate of F based on the proportion of the autosomal
genome in ROHs (20). For these analyses, we used the HQ autosomal SNVs
with an MAF > 0.05 (654,155) identified by GWSA and 73,565 SNVs with a
CR > 98% and an MAF > 0.05 identified by WES. We identified ROHs with
PLINK (39), which has several advantages over other methods (37). We used the
classical PLINK method with default parameters, in which a 1,000-kb window is
moved across the genome, with homozygosity determined for each window.We
varied the number of SNVs within the 1,000-kb window required to call an ROH
using a smaller number for WES (20, 30, 50, and 100) than for GWSA (100, 200,
250, and 300) to account for the lower total autosomal SNV counts in WES than
in GWSA data (37). The choice of these numbers was based on the fact that a
window of 1,000 kb corresponds to ∼0.37% of the autosomal genome, giving
mean numbers of available SNVs per 1,000 kb of ∼27 for WES data and ∼242 for
GWSA data. We also considered the PLINK parameters reported to be optimal in
a recent study (37) for the analysis of the WES data. These parameters included
10 SNVs within the 1,000-kb window. We obtained a genomic measurement of
individual homozygosity (FROH) by determining the proportion of the autosomal
genome present in ROHs (20).

Another approach for estimating F involves modeling the HBD states of the
different markers of one individual along the genome as a Markov process
using hiddenMarkov models as initially proposed in the FESTIM method (19). This
method assumes that marker alleles are independent conditionally on HBD
state, which is not true for dense SNVs (in array or exome data), for which
linkage disequilibrium (LD) may occur. We used the FEstim_SUBS method to
minimize LD between SNVs as recommended in a previous study (44) for the
random extraction of sparse markers every 0.5 cM to create 1,000 submaps. This
strategy does not require the estimation of LD scores for the data, and F is
estimated by calculating the median value of the estimates obtained from the
different maps. The FSuite program was used to calculate FESTIM for each in-
dividual from both GWSA and WES data (47).

Linkage Analysis. We performed linkage analysis assuming autosomal recessive
inheritance with complete penetrance (homozygosity mapping) on individuals
found to have a high rate of homozygosity. For each individual, we created the
same family structurebasedonauniqueconsanguinity loopat the first cousin level.
The main goal of our study was to compare the linkage information provided by
WES with that provided by GWSA using the same familial structure and the same
data for all families, consisting of nine individuals with a single genotyped subject
assumed to be affected (the offspring of the youngest generation).We carried out
parametric multipoint linkage analysis by homozygosity mapping (55) with Merlin
software (56). A population disease allele frequency of 0.0001 was specified to-
gether with a fully penetrant recessive genetic model. LOD scores were calculated
for every marker (from WES or GWSA data), and 1000 Genomes Project allele
frequencies were used (42). Information content was also estimated for bothWES
and GWSA data, because this parameter provides an indication of how closely
the available markers approach the ideal situation of complete inheritance in-
formation for the segregation of the chromosomal region considered.
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