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I have reanalyzed the data presented by Hallem and Carlson
[Hallem EA, Carlson JR (2006) Cell 125(1):143–160] and shown that
the combinatorial odor code supplied by the fruit fly antenna is a
very simple one in which nearly all odors produce, statistically, the
same neuronal response; i.e., the probability distribution of sen-
sory neuron firing rates across the population of odorant sensory
neurons is an exponential for nearly all odors and odor mixtures,
with the mean rate dependent on the odor concentration. Between
odors, then, the response differs according to which sensory neu-
rons are firing at what individual rates and with what mean pop-
ulation rate, but not in the probability distribution of firing rates.
This conclusion is independent of adjustable parameters, and holds
both for monomolecular odors and complex mixtures. Because the
circuitry in the antennal lobe constrains the mean firing rate to be
the same for all odors and concentrations, the odor code is what is
known as maximum entropy.
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The projection neurons of the fly antennal lobe present odor
information to the Kenyon cells of the mushroom body in the

form of a combinatorial code—each odor is specified by a par-
ticular pattern of firing rates across the population of projection
neurons—and a recent paper (1), using data published in ref. 2,
provided preliminary evidence that this odor code is what in-
formation theorists call maximum entropy (3). To understand
what a maximum entropy code is, suppose that we record the
firing rates from, say, 10 different projection neurons, each
presented with, say, 10 different odors to give a total of 100 firing
rates. Now make a histogram of these firing rates. If the odor
code is maximum entropy, this histogram would have nearly the
same shape no matter which projection neurons and which odors
were chosen. Also, the larger the sample of projection neurons
and/or odors, the closer the shapes of histograms would be.
Remarkably, if only a single odor and many projection neurons,
or a single projection neuron and many odors, are used to gen-
erate the rates, the histogram shape is always nearly the same.
Many different maximum entropy codes have been studied,

and the type of code is defined by the shape of the histogram that
results from a sample of rates. The histogram in each case is an
approximation of a probability distribution of rates. For example,
if the mean rate is always the same, the maximum entropy code is
known to be associated with an exponential distribution of rates,
and if both the mean and variance are always the same, a
Gaussian distribution of rates is associated (3). For the fly pro-
jection neurons, the associated probability distribution of rates is
proposed to be an exponential (1) (with always the same mean).
As pointed out earlier (1), a maximum entropy code would be

advantageous to the fly because it would permit the most odors to
be discriminated with the available number of odorant receptors.
This characterization of the odor code used by antennal lobe

projection neurons makes a strong prediction about the odor
responses of olfactory receptor neurons (ORNs) in the antennae
that supply olfactory information to the antennal lobe. Among the
computations carried out by the antennal lobe, we know an im-
portant job of this structure is to remove the odorant concentration

dependence from the ORN responses (4–6)—i.e., to make the
mean projection neuron rate the same for any odor at almost any
concentration. The ORNs must differ from antennal lobe pro-
jection neurons insofar as the ORN mean rates depend on odor
concentration, whereas projection neuron mean rates do not;
otherwise, the population of ORNs is predicted to respond the
same way to any odor. This difference means that the probability
distribution for ORN firing rates in response to any odor should
have an exponential shape, even though the mean rate varies
with odor concentration, because the shape of the firing rate
distribution should be maintained by the gain control between
the ORNs and antennal lobe projection neurons (6).
Testing these predictions is important, because the conclusion

that the fly’s antennal lobe uses a maximum entropy code was
based on a histogram of firing rates constructed from a sample of
only 126 projection neuron rates (2), and thus this conclusion
remains unproven for at least three reasons. First, a sample of
only 126 rates may be too small to detect significant departures
from an exponential distribution. Second, because only a small
fraction of the projection neurons types and 18 odors (of the
many hundreds experienced by the fly) were used to generate the
126 rates, the small sample size raises questions about the gen-
erality of the conclusion. Finally, only monomolecular odors
were used, whereas most natural odors are mixtures (often
hundreds of monomolecular odors at different concentrations),
and the idea that the same probability distribution describes both
monomolecular odors and odor mixtures—as would be necessary
if the odor code is maximum entropy—is untested.
Fortunately, two classic papers by Hallem and Carlson (7, 8)

provide the data necessary to test the idea that the fly odor code
is, in fact, maximum entropy. These papers reported measured
firing rates of 24 ORN types (a different odorant receptor gene
for each neuron type) in response to a panel of 110 mono-
molecular odors and extracts from nine types of fruit. The fruit
fly olfactory system naturally specializes in odors from bi-
ologically relevant fruits and other odor sources. Of the 110
odors studied by Hallem and Carlson (7, 8), many were associ-
ated with fruits, but the entire panel of odors included a wide
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range of functional groups: amines, lactones, acids, sulfur com-
pounds, terpenes, aldehydes, ketones, aromatics, alcohols, and
esters. Despite the acknowledged importance of fruit odors to
the fly, the panel of 110 odors used and the 24 ORNs sampled
should provide a mostly accurate picture of the response to the
odors experienced by the fly.
The goal of this paper, then, is to test, through reanalysis of the

data presented in two classic papers on ORN properties (7, 8), two
predictions: (i) if the measured firing rates across 24 ORNs for
each odor are normalized to the same mean rate, a single distri-
bution function should describe the response to all odors in the
panel, and to all odor mixtures; and (ii) that probability distribution
of firing rates should be an exponential. Below I show that the
published data support these predictions.

Results
The first of the pair of papers that I consider here (7, 8) de-
scribed the basic properties of the fly’s ORNs and the odorant
receptor (OR) proteins expressed by these neurons. In the sec-
ond paper (8), an extensive survey and analysis, the authors ex-
amined 24 of 32 ORN types (known in 2006) that project from
the antenna; additional ORN types present in the adult project
from the maxillary palp (9, 10). The responses of this population
of 24 ORNs to a total of 119 odor types were examined by re-
cording the firing rates electrophysiologically. Of these re-
sponses, 110 [presented in table S1 of Hallem and Carlson (8)]
were produced to pure (monomolecular) odors that fall into 10
different chemical types; each of the 110 pure odors was applied
at a single standard concentration, although the maximal affinity
for these odors presumably varied over the population of ORNs
studied. In addition to the 110 pure odors, nine fruit extract odors
were studied over a six-order-of-magnitude concentration range
[nine odors, each at four different concentrations presented in
table S2 of Hallem and Carlson (8)]. A total of 3,504 data points
are reanalyzed here (together with the results from an additional
960 data points—10 monomolecular odors at four concentrations
each—presented in Fig. S2), mainly by constructing cumulative
probability distributions of firing rates across the population of 24
ORNs for each odor and odor concentration.

The 110 Pure Odors at a Single Concentration Each. The mean firing
rate for the population of 24 ORNs varies significantly over the
110 pure odors, with a range from 11 to 95 Hz, and with half of
the odors giving mean rates below 24 Hz. Some of this variability
arises because about half of the ORN types were not sampled
[30 of the 54 ORN types present (11)], but much of the range
reflects differences in the effective odorant concentrations used.
I constructed 110 cumulative probability distributions of ORN

firing rates, with each distribution being based on the population
of 24 ORNs and a single odor (24 measured rates). These distri-
butions (Fig. 1A) are, as would be expected for the wide range of
mean firing rates, quite different. Fig. 1A, like most of the ones
that follow, plots the cumulative probability [P(rate)] as a function
of ORN rate (Hz) where P(rate) gives the probability of finding an
ORN rate less than or equal to the value chosen on the rate axis.
Because the large number of curves plotted obscure one an-

other, the shapes of the individual distributions cannot be appre-
ciated, but the purpose of this figure is to illustrate how different
the 110 histograms are from one another.
I normalized these histograms to have the same mean (100 Hz)

by multiplying the 24 ORN rates produced in response to each odor
by 100/(mean rate for that odor) and replotted them superimposed.
The result is shown in Fig. 1B.
The individual histograms still obscure one another, but they

appear to describe what could be a single distribution, perhaps
one where noise gives the broad band around a single underlying
distribution (Model of ORN Properties). To gain some insight
into the source of this variability, I superimposed six individual

normalized histograms (mean 100 Hz for all) by arbitrarily
plotting every 18th histogram from Fig. 1B—of the population
of 110 total cumulative histograms—in Fig. 1C.
Two factors clearly contribute to the variability in the shapes

of these normalized distributions: the first relates to the back-
ground firing of ORNs, and the second reflects random vari-
ability arising in a small sample.
First, all 24 ORNs are found to fire at an average “back-

ground” rate of 13.75 Hz (range 1–47 Hz) in the absence of
any odor (see the last row in table S1 of ref. 8). Presentation of
an odor usually causes ORNs to increase their firing, but this
same odor inhibits some other ORNS to a rate below the
background seen in the absent of odor. Thus, background firing
is decreased, but not entirely eliminated, for some of the ORNs
in the sample by any odor presented. This effect is variable,
however, as can be seen by the behavior of the cumulative histo-
grams in Fig. 1C where some histograms increase rapidly directly
from the origin (leftmost curves in Fig. 1C) and other histograms
increase very slowly from 0 Hz to a frequency between 20 and
40 Hz (right-shifted histograms). The behavior near the origin
reflects differences in the background firing rates seen with dif-
ferent odors. For some ORNs and odors, the fast initial rise
represents ORNs for which inhibition has eliminated the back-
ground firing. The right-shifted curves represent one or a few
ORNs that are firing at a high background rate (little inhibition of
the background) that is unchanged by the particular odor used.
Second, the population of ORNs that contributed to the cumu-

lative histograms is a relatively small one (only 24 of a total of 54),
and so random variability of the sort seen in individual histograms is
what would be expected from noise in a sample of only two dozen
ORNs (Model of ORN Properties).
To estimate the probability distribution underlying the histograms

that appear Fig. 1B, I averaged across the 110 cumulative histo-
grams from Fig. 1B (I simply added together all of the histograms in
Fig. 1B and divided by 110, the number of histograms) and pre-
sented the average in Fig. 1D (line with an S shape at the origin).
This estimate of the underlying distribution is quite smooth and
seems to capture well the population of normalized histograms in
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Fig. 1. Analysis of data from 110 odors and 24 ORNs. (A) Cumulative
probability distributions as a function of ORN firing rate for each odor. All
110 histograms are superimposed. (B) Normalized cumulative probability
distributions for 110 odors. All probability distributions in B have been scaled
to have the same mean firing rate of 100 Hz. (C) Six of the 110 cumulative
probability distributions (every 18th distribution) plotted so that the indi-
vidual traces can be inspected. (D) The average of the 110 scaled cumulative
probability distributions exhibited in B plotted with an exponential distri-
bution superimposed.
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Fig. 1B. The S curve at the origin is an artifact of averaging
across individual histograms with different background firing
and depends on the way that different odors decrease or in-
crease the background rate.
I have also superimposed the predicted exponential distribu-

tion on the average curve in Fig. 1D. Clearly, the exponential
distribution is a good description of the estimated underlying
distribution function (the average across all normalized cumu-
lative probability distributions) except for a few ORNs with
lowest firing rates. Thus, the predicted behavior of the ORNs is
confirmed, although the exact way the background rate is han-
dled by the antennal lobe, where the projection neurons also
have variable background firing rates (2), is not known. All (or at
least most) of the 110 odors seem to give the same response as
determined by the probability distribution of rates across the
population of 24 ORNs.
For Fig. 1, I compiled 110 cumulative probability distributions

over the 24 ORN types, one distribution for each odor. The
result should be the same if I had compiled 24 distributions over
the 110 odors, one distribution for each ORN type. The confir-
mation of this expectation is presented in Fig. S1.

Nine Fruit Odors at Four Concentrations. The preceding section
examined ORN firing rates in response to 110 pure (mono-
molecular) odors and showed that, when the 110 probability
distributions for the firing of the 24 ORNs are normalized to the
same mean firing rate, the distributions can plausibly be said to
have the same shape except for random fluctuations and a var-
iable S shape rise at the origin. Furthermore, when the empirical
probability distributions are averaged together, the overall esti-
mate for the probability as a function of normalized ORN firing
rate is well-fitted by an exponential probability distribution.
Because the previous section was based on only pure odors,

not odor mixtures, and on only a single concentration for each
odor, my analysis there leaves two main questions unanswered.
First, how does the average firing rate (across the 24 ORN types
studied) depend on the odorant concentration? Second, do
natural odors—ones of biological significance to the fly that are
combinations of many monomolecular odor components—
produce probability distributions that are the same shape for all
odors, and is this the shape of an exponential distribution like it
is for pure odors? This section addresses these questions. The
answers are that the dose–response curve is a power law with the
odor concentration raised to a power well less than 1, and that
the odor mixtures give the same probability distribution (an ex-
ponential) seen for the pure odors, as would be expected if the
odor code is maximum entropy.
Table S2 of the Hallem and Carlson (8) paper reports the

responses of the 24 ORN types to odors from nine fruit extracts
(apple, apricot, banana, cherry, mango, peach, pineapple, rasp-
berry, and strawberry). For each of these fruit extracts, three
dilutions were made (at 10−2, 10−4, and 10−6) of the undiluted
extract, so that the fruit odors were presented over a six-order-of-
magnitude concentration range (undiluted and three dilutions). I
constructed 36 cumulative probability distributions for the firing
rates of the 24 ORNs sampled (one distribution function for
each fruit odor and concentration), and these distributions are
displayed in Fig. 2A.
The distributions for natural odors look roughly similar to

those for the pure odors considered in the previous section,
even though each distribution here represents the response to a
complicated mixture of pure odors.
To examine how the firing rates are distributed over a million-

fold odorant concentration range, I have calculated the mean
ORN rate for each odor and concentration, and averaged these
rates across the nine odors, with one average for each odor
concentration. The logarithms of the average rates are plotted
in Fig. 2B as a function of the logarithm of the relative odor

concentrations to show the odorant dose–response curve over a
million-fold concentration range.
What is the equation that describes this dose–response curve

over a million-fold range? The straight line in the figure was
fitted to the 36 data points [log(mean rate) for nine odors and
four concentrations vs. log(relative concentration)] using least
squares. The fit of the linear relation for the data are adequate,
and is described, in linear rather than logarithmic coordinates, by
the equation

r= 80
�
c0.166r

�
,

where r is the mean ORN firing rate (Hz) (mean calculated
across the nine fruit odors at each dilution) and cr is the relative
odorant concentration expressed as dilution (e.g., 10−4); 80 is a
fitted constant with the units of hertz. Thus, the dose–response
curve is a power function over this concentration range. I return
to this relation in Discussion to describe some of its implications.
It has been suggested (12) that the response to a complex odor

mixture (like fruit extracts where many components are present
in different concentrations) might be something like the sum of
the responses to the individual components. This expectation
would predict that the probability distribution function (formed
across 24 ORN types) to a complex odor would not be a single
exponential but rather something more complicated. My pre-
diction here, however, based on the idea that the odor code is
maximum entropy, is that distribution functions for the fruit odors,
where different concentrations for each fruit odor (a complex
mixture) have been normalized a mean ORN firing rate of 100 Hz,
would have the same shape for all complex odors and concen-
trations; i.e., it would be a single exponential. In Fig. 2C, I present
the 36 distribution functions (for nine fruit odors with four con-
centrations each) that have been normalized to the same mean
firing rate (100 Hz). Again, the shapes of these distributions are
plausibly the same, with the scatter produced by the difference in
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Fig. 2. Analysis of nine complex fruit odors at four odor concentrations each.
(A) Thirty-six superimposed cumulative probability distributions of ORN firing
rates for nine fruit extracts, each at four concentrations. Twenty-four ORNs
were used to compile each distribution for one odor and one concentration.
(B) Double-logarithmic plot of mean ORN firing rate (across nine odors at a
single concentration each) as a function of relative concentration (dilution of
fruit extract). The least-squares fitted line has a slope of 0.166. The vertical bars
on the data points are the SDs for the nine odors at each odor concentration.
(C) The superimposed cumulative distributions as a function of ORN rate that
appear in A, replotted after scaling each distribution to the same mean
(100 Hz). (D) The average of the 36 distribution functions from C with an ex-
ponential distribution function with a mean of 100 superimposed.
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the way the background firing rate is modified by odor inhibition,
and by random fluctuations in the empirical histograms.
To estimate the underlying probability distribution function

that produces the histograms in Fig. 2C, I have averaged the 36
normalized distributions that appear in this figure. The estimated
underlying probability of finding an ORN that fires at a partic-
ular rate for a given odor appears in Fig. 2D.
As before, I have fitted an exponential distribution function

to the estimated probability distribution. Clearly, the fit is mostly
a good one, so the exponential distribution describes the nor-
malized empirical distribution function arising from complex
odor mixtures presented at different concentrations; this is the
predicted result.
In addition to the data on the nine fruit extracts, table S2 in

ref. 8 also has data on 10 of the monomolecular odors from table
S1 presented at four concentrations each that range over six
orders of magnitude. Fig. S2 presents these data to show that the
conclusions for the monomolecular odors at different concen-
trations are basically the same as those for the complex mixtures.

Model of ORN Properties. In previous sections, the figures have
shown either 36 (Fig. 2C) or 110 (Fig. 1B) superimposed histo-
grams—ones that have been normalized to a mean rate of 100 Hz—
that represent cumulative probability as a function of ORN rate. In
both cases, a broad band of histograms appears, and I have claimed
that this broad band arises from statistical fluctuations due to the
small sample size (24) and the variable way in which various odors
correct for this background firing through how much they inhibit it.
To substantiate this claim, I need to show that these two effects
(small sample size and variable correction of background firing)
can produce superimposed histograms like those seen in Figs. 1
and 2. That is the goal of this section.
Examining the effects of the sample size (24) on variability in

the shape of the histograms is easy: generating a collection of 24
random numbers according to an exponential distribution with a
mean of 100 is a standard operation (see Experimental Procedures
for more details). I produced 110 such collections and con-
structed cumulative histograms from them in the same way as I
did for the actual Hallem and Carlson (8) data. The result ap-
pears in Fig. 3A, and a sample of six of the 110 histograms (every
18th) is displayed in Fig. 3B so the traces do not obscure one
another. It is apparent from Fig. 3 A and B that the individual
traces are about as variable as the single histograms derived as
the actual data.
In Fig. 3C, the effect of a variable correction of the back-

ground firing has been included by adding a randomly selected
background rate (distributed according to exponential distribu-
tions with a means of 9 and 5 Hz for the two lowest-firing
ORNs). Notice that including these background rates broadens
the lower part of the band of 110 distributions and gives the
characteristic slow linear rise to the point at which the histo-
grams start to increase rapidly. Thus, the main part of the vari-
ability between individual histograms can arise from the small
sample size (24), but the effect of the incomplete correction of
the background rate has an important effect near the origin of
the histograms.
As before, I have also averaged the histograms in Fig. 3C and

presented the average in Fig. 3D, where it appears as a smooth
curve. Exponential distribution has been superimposed on the
simulated distribution function, and the exponential distribution
is a mostly accurate description.
I conclude, then, that the random suppression of the back-

ground firing, together with the sampling fluctuations from an
exponential distribution, are adequate to explain the behavior of
the actual data presented in Figs. 1 and 2.

Discussion
My result here is a simple one: every odor, pure or complex,
produces statistically the same output (one arising from the same
probability distribution) from the fly’s population of ORNs, ex-
cept that the mean rate of the population differs according to
odor concentration. In detail, however, which ORN types are
firing at which rates varies considerably for different odors (tables
S1 and S2 in ref. 8).
No obvious exceptions to my simple conclusion are apparent

in the data presented in the figures above, but I know this con-
clusion cannot be completely correct: at least two receptors
(Gr21a and Or56a) are known to respond selectively to only CO2
(13) and geosmin (14), respectively. How well my conclusion for
the fruit fly applies across different insect species compared with
the alternative “labeled-line” approximation will require further
evaluation (15).
Furthermore, an entirely genetically different class of 15 odorant

receptor types, the ionotropic receptors (IRs) discovered after the
Hallem and Carlson work (16), are present in the fly antennae.
These receptors are present in a distinct class of sensilla (coelo-
conic), tend to respond to acids and amines, and are related to the
family of ionotropic glutamate receptors present at synapses. The
IRs project to distinct glomeruli in the antennal lobe, and from
there to Kenyon cells, but the responses of individual IR types to a
panel of odors is, as yet, unknown (17), so the IRs responses cannot
be related to the OR responses described here.
Hallem and Carlson (8) characterized odorant receptors types

according to their “tuning curves,” which were constructed to ap-
pear similar to tuning curves for other sensory modalities. To
construct a tuning curve, Hallem and Carlson (8) rank ordered the
responses of the 24 ORNs to a specific odor (from largest to
smallest firing rates), plotted the largest rate on the y axis at x = 0,
and then the even-numbered rates in the positive x direction and
the odd rates in the negative x direction. The result is a graph of 24
rates on the y axis, one for each ORN, with the largest in the center
(x= 0) and the other 23 rates decreasing in both directions away
from the origin of the x axis. If the odor studied activated only a few
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Fig. 3. (A) The 110 histograms, each based on 24 rates distributed according
to an exponential distribution with a mean rate of 100 Hz. (B) Six individual
histograms from A (every 18th). (C) The 110 histograms generated according
to an exponential distribution with the two ORNs with the slowest firing
ORNs given a randomly selected background firing rate. (D) The average of
the 110 histograms in C with an exponential distribution superimposed as in
Figs. 1D and 2D.
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ORNs strongly, the tuning is very narrow, and if many ORNs are
activated more strongly, the tuning curve is very broad. A wide
range of tuning widths was found, and the tuning for various odors
ranged from narrow to broad for the odors studied.
How does this description of tuning curves relate the de-

scription here in terms of cumulative probability distributions of
firing rates for 24 ORNs measured for each odor (Fig. 1A; Cu-
mulative Histograms)? I have also rank ordered the 24 firing rates
(but from small to large rather than large to small), and have
plotted these rank-ordered rates on the x axis and the fraction of
rates less than or equal to a given rate on the y axis (the cu-
mulative probability). The rates for all odors were found to be
exponentially distributed, but with different mean rates for each
odor (Fig. 1A). Thus, the Hallem–Carlson tuning width is related
to the mean firing rate of the present analysis, and Fig. 1A would
exhibit the distribution of Hallem–Carlson tuning widths (8).
According to my analysis of the nine fruit extracts, each at

four concentrations, the relation between mean ORN rate and
odor concentration follows the equation r= aðλc0Þk, where r is
the mean ORN firing rate (calculated across the 24 ORNs
studied), λ is the relative concentration (measured by the di-
lution from a specific odor concentration), c0 is the odorant
concentration in the dilution of the undiluted extract, a is the
constant 80 (Hz), and k = 0.166, a unitless constant derived
from the slope of the straight line fitted to the observed relation
between odor relative concentration and measured mean ORN
firing rate on a double-logarithmic plot.
Recall that normalizing the cumulative probability histograms

to have the same mean rate [by multiplying all observed rates for
one odor by 100/(mean rate for that odor)] gave histograms that
were described by an exponential distribution (except for the
lowest rates). Probability distributions that superimpose when
normalized in this way are called “self-similar distributions,” and
they have a remarkable property: to be self-similar, their mean
(and possibly other statistics for certain distributions) must be
described by a power law like the one for the mean rate r dis-
cussed in the previous paragraph [see Stevens (18) for a simple
description of self-similar functions in a biological context and an
explanation for why the mean rate must follow a power law].
I confirmed this prediction about the mean rate following a power
law in Fig. 2B. Many functions are self-similar, but the exponential
probability distribution is known to depend, according to a power
law, on only its mean. Another well-known self-similar probability
distribution is the Gaussian, and it depends according to power
laws on both its mean and variance. Of course, the power law for r
cannot be correct for all odor concentrations because saturation
must occur when the concentration is sufficiently high and, as
saturation occurs, the self-similarity of the probability distributions
will also fail (and the shape of the distributions will change).
These observations are important for two reasons. First, my

conclusions here can hold only over the low end of the odor
concentration range where the odorant receptors are far from
saturated. Specifically, the responses to the 110 monomolecular
odors are, statistically, only the same in this low-concentration
regime. Second, the self-similar behavior in this low-concentration
range also explains why all odors, both monomolecular and
mixtures, must be, statistically, the same. In this odor concen-
tration range, the mean firing rate across the population of
ORNs depends only on concentration and not on the type of
odor (see the power law equation above for mean rate vs. odor
concentration). Whenever the mean rate as a function of con-
centration is independent of odor type and the distribution
functions are self-similar, the distribution must be an exponential
as was found here.
Although the Hallem and Carlson (8) study was extensive—24

ORN types, 110 monomolecular odors, and 9 fruit odor mixtures
were studied—the question remains whether my conclusions
would apply if more ORN types and more odors were included.

The 24 ORN types represented in the analysis here is a little
under half of the 52 odorant receptors expressed by ORNs (11).
Although the fly repertoire of receptors is weighted toward fruit
odors, the odor panel used for the experiments reanalyzed here
was chosen to include 10 functional categories of chemicals
(amines, lactones, acids, sulfur compounds, terpenes, aldehydes,
ketones, aromatics, esters, and alcohols). Furthermore, the
sensilla represented are approximately in proportion – twice as
many basiconic as trichoid – to the number present in the an-
tenna (19). Together, short of a complete survey, the Hallem and
Carlson (8) work made a significant effort to provide a repre-
sentative sample of the fly’s encoding of odors. The normalized
cumulative probability distributions for the 10 chemical classes of
odors appear in Fig. S3, so the reader can judge if the conclu-
sions I draw represent the 10 odor classes.
Although it has been proposed that combinatorial codes may

be common in the brain (for two seminal papers, see refs. 20 and
21), to my knowledge, no combinatorial code has been mathe-
matically characterized. Similarities between olfaction in insects
and vertebrates (22) raise the possibility that vertebrates might
also use a maximum entropy code like the fly, and it would be
interesting, then, to see if other combinatorial codes share the
maximum entropy property.

Materials and Methods
Experimental Procedures. The work described here depended almost exclu-
sively on forming cumulative probability histograms of ORN firing rates,
normalizing these histograms to an arbitrary mean firing rate (selected to be
100 Hz), and estimating the underlying probability distribution function by
averaging the normalized histograms. I cover these procedures in turn. All
three procedures are simple and straightforward.

The cumulative histogram of ORN firing rates estimates the probability
distribution of finding a rate that is less than or equal to some given rate. The
probability density function (the probability of finding a rate within a narrow
range around a given rate) is more intuitive but requires selecting a bin size
for the rates. The cumulative histograms are chosen here because they
contain the same information and do not require selecting a bin size.

Cumulative Histograms. The procedure for forming a cumulative histogram is
as follows: select an odor (one of the rows of the tables S1 or S2 of ref. 8). Each
row in the table gives a list of 24 firing rates, and this list is sorted to place the
rates in increasing order. Call the sorted list f . Now plot f on the x axis of a
graph against a list y that runs from (1–24)/24 (i.e., in even steps of 1/24th from
0 to 1). For each entry in the list f , the y axis is increased by 1/24. The result is a
cumulative histogram across all of the ORNs for the odor (the row) chosen.

The original tables S1 and S2 in ref. 8 presented values of the observed
firing rate for each ORN with the background firing rate for that ORN
subtracted, and this produced negative firing rates when the odor hap-
pened to decrease (inhibit) the rate for the ORN below its background. Al-
though the average background firing rates are given in the last row of
table S1 in ref. 8, the background firing rates varied around this average for
particular experiments, so the information is unavailable to restore the table
entries to their (nonnegative) observed values. To avoid having negative
rates, I added the absolute value for the most negative firing rate in each list
f to all of the entries in f. This choice was arbitrary, and does not materially
alter the shape of the histograms.

Rather than selecting a row in the table to use for forming the cumulative
histogram as just described, an alternative would have been to pick a column
(a particular ORN) and construct the cumulative histogram based on the firing
rates in that column, which would produce a cumulative histogram for one
ORN across all odors. What we care about is the estimate of the probability
distribution function of ORN rates, and this is found by averaging across all
histograms (as described below). This estimate cannot depend on the order
(average cumulative histograms found for eachodor vs. averaging the cumulative
histograms found for each ORN), and in Fig. S1, I show that the two ways of
estimating the probability distribution function produce the same result.

Normalized Cumulative Histograms. To form the cumulative histograms,
I started by finding the sorted list f of ORN firing rates for a particular odor
arranged in increasing order. To find the normalized cumulative histograms, it
is necessary to adjust the mean firing rate r for each odor to some arbitrary
value that is the same across all odors. I selected the adjusted mean firing rate
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to be 100 Hz. To assign this mean to each odor, I multiplied all of the entries in
the list f by 100/r, where r is the mean of f . The normalized f is called
fn = ð100=rÞf . Then, I follow the procedure described in the previous section,
except that I substitute fn for f.

Estimate of the Underlying Probability Distribution Function for ORN Rates. The
estimated probability distribution function is just the average across nor-
malized cumulative histograms for all odors. To calculate this average, I find,
for each entry j, fnðjÞ= 1

N

Pi=N
i=1 fnði, jÞ, where fnði, jÞ is the jth entry in the ith

histogram (one histogram for each monomolecular odor, and one histogram
for each fruit odor and each concentration), and N is the number of his-
tograms (N= 110 for data in table S1, and N= 36 for fruit extract data in
table S2 in ref. 8). The graph plotted then is fn on the x axis and
1=24, 2=24, 3=24⋯24=24 on the y axis. Note that I adjusted the first entry of
fn to zero in the histograms superimposed in Figs. 1 and 2 A–C to eliminate
negative firing rates, but I permitted negative firing rates for the estimates of
the probability distribution functions in Figs. 1D and 2D. The cumulative expo-
nential distribution I fitted to the estimates was pðrÞ= 1− expðr=100Þ, which has
a value of zero when r = 0, and the estimates of the underlying distributions are
translated along the rate axis until the rising phase of the exponentials matched.

Simulated Histograms. The simulations were carried out with the R program
(https://www.r-project.org/) running under RStudio (https://www.rstudio.com/).
A 110 × 24 matrix, analogous to Hallem and Carlson’s table 1 in ref. 8, was
generated by the R command rexp(24, 0.01); here, 24 (first variable) specifies
the number of exponentially distributed random numbers generated each time
the command is executed, and the exponential distribution has a mean of 100 =
1/0.01 (second variable). This command was executed 110 times and results
collected into the 110 × 24 matrix. The first step in the analysis was to convert
this 110 × 24 matrix to a new matrix, called F, by rank-ordering the entries in
each row. From there on, this matrix was treated like the one from table S1 in
Hallem and Carlson (8).

To produce the variable correction of the background firing, exponentially
distributed random numbers were added to the second and third entries in
each row.
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