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Abstract

Quantification of tongue shape is potentially useful for indexing articulatory strategies arising 

from intervention, therapy and development. Tongue shape complexity is a parameter that can be 

used to reflect regional functional independence of the tongue musculature. This paper considers 

three different shape quantification methods – based on Procrustes analysis, curvature inflections, 

and Fourier coefficients – and uses a linear discriminant analysis to test how well each method is 

able to classify tongue shapes from different phonemes. Test data are taken from six native 

speakers of American English producing 15 phoneme types. Results classify tongue shapes 

accurately when combined across quantification methods. These methods hold promise for 

extending the use of ultrasound in clinical assessments of speech deficits.
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 Introduction

The shaping of the tongue during speech is a finely controlled motor activity involving the 

coordination of a complex array of intrinsic and extrinsic agonist-antagonist muscles 

(Takemoto, 2001). However, measuring and quantifying tongue shape has proved 

challenging, as the tongue, a muscular hydrostat, is a difficult structure to image. 

Nonetheless, such information is of potential use not just in fundamental research, but also 

for increasing understanding of motor control in normal and disordered speech.

A number of studies have suggested that speech acquisition disorders may be characterized 

by reduced regional functional independence of the tongue (Gibbon, 1999; Hardcastle, 

Barry, & Clark, 1987; Kent, Netsell, & Bauer, 1975), but quantitative measures of such 
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impairments are lacking. One possibility for characterizing functional independence is 

tongue shape complexity. Complexity is a multi-faceted concept, but the operational 

definition within this work is the number (and extent) of inflections of the mid-sagittal 

tongue shape. The tongue shapes involved in the production of the phonemes /ɹ/ and /l/ (for 

example) are more complex than those involved in the production of vowels due to their 

multiple points of vocal tract constriction (Gick et al., 2008; Lawson, Stuart-Smith, Scobbie, 

Yaeger-Dror, & Maclagan, 2011; Zhou et al., 2008). Motor control of complex tongue 

shapes likely employs more degrees of freedom than are involved in producing simpler 

shapes (see figure 1 for ultrasound images of the vowel /ɑ/ and the rhotic consonant /ɹ/).

The aim of this study is to compare analysis methods for quantifying the complexity of mid-

sagittal tongue shapes obtained from ultrasound data. Objective measures of complexity for 

providing the “ground truth” of our measures are difficult to find: although complexity can 

potentially be indexed motorically (cortical activation, number of muscle activations; 

Stavness, Gick, Derrick, & Fels, 2012), mathematically (Grassberger, 1986a, 1986b, 2012) 

and linguistically (Chitoran & Cohn, 2009), no definitions or scales exist for this particular 

purpose. Explicit discussions of articulatory complexity can be found in Kent (1992) and 

Stokes and Surendran (2005). The method we explore is to define, a priori, tongue shapes 

that represent high, medium and low complexity classes in American English, to see how 

well our chosen quantification methods (outlined in the data analysis section) perform in 

classifying across these broad groups. Based on our experience with mid-sagittal tongue 

shapes as seen in X-ray, MRI and ultrasound images, we divided the tongue shapes obtained 

in this study into three roughly equal groups. The low complexity group consists of /ɑ/, /æ/, /

ɪ/, /ʌ/ and /ɛ/; the medium complexity group consists of /u/, /ɡ/, /w/, /j/; the high complexity 

group consists of /d/, /z/, /l/, /ɹ/, /θ/, /ʒ/. The rationale for these groupings is that unrounded 

vowels tend to have a single lingual constriction, requiring little in the way of secondary 

shaping. Sounds requiring additional tongue shaping, either driven by bracing as with /j/ or 

dorsal constriction as with /g/, are included in the medium group. The high complexity 

group includes tongue shapes requiring more than one constriction (/l/ and /ɹ/) as well as 

tongue shapes made with a tongue tip constriction. The rationale for this is that phonemes 

produced with tongue tip involvement are assumed to require a more fine-grained level of 

motor control than those only using the tongue body, and additionally require more in the 

way of shaping of the posterior tongue to support the tongue tip constriction (Bresch et al., 

2008; Narayanan & Alwan, 1996). Fricatives are included in this group due to the precise 

nature of the constriction involved in producing frication.

Ultrasound data is suited to the goal of shape analysis, as it provides an image of most of the 

tongue surface, rather than a few locations as in point parameterization techniques such as 

electromagnetic articulography (EMA) or X-ray microbeam methods. It is also a safe, 

noninvasive and relatively easy technique to perform, and is hence suitable for use with 

clinical populations and children, who are often of interest in studying speech motor control. 

Ultrasound is increasingly being used for clinical remediation purposes, specifically to 

provide biofeedback for speech disorders (Bernhardt, Gick, Bacsfalvi, & Adler-bock, 2005; 

Bernhardt, Bacsfalvi, Gick, Radanov, & Williams, 2005; Hitchcock & McAllister Byun, 

2015; McAllister Byun & Hitchcock, 2012). Clinical use of ultrasound often does not 

require any quantification measures, as the intent is to provide real-time information on 
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tongue movement and shape. However, for research purposes and to help us understand the 

nature of tongue function, it is useful to apply measures that tell us something about the 

mathematical attributes of the tongue shape, either intrinsically or with regard to a reference 

shape. Existing research has attempted to index the tongue shape and/or contact pattern 

differences exhibited by certain clinical populations. For example, Zharkova (2013) 

developed methods to quantify abnormal articulatory patterns in cleft palate speakers and 

Klein, McAllister Byun, Davidson, & Grigos (2013) applied quantitative measures to 

analyse ultrasound images of children undergoing therapy for /ɹ/ misarticulations. The aim 

of the current study is to adapt existing methods for the purpose of quantifying tongue shape 

complexity, without reference to a single clinical population.

In this study, ultrasound images of the tongue were analysed using three distinct methods, 

and the output (metrics) associated with each method were compared using linear 

discriminant analysis to classify shape type and complexity. In this we employ a 

methodology similar to that of Wang, Green, Samal and Yunusova (2013) who used 

Procrustes analysis and support vector machine classification to quantify articulatory 

distinctiveness among vowels and consonants using EMA data collected from ten typical 

speakers. However, the current study does not use any temporal or kinematic information 

and relies solely on the midpoint or maximal constriction image of each target sound.

The quantification of ultrasound data of the tongue presents a number of challenges. First, 

images obtained from ultrasound are of varying quality, which can make the tongue surface 

difficult to identify reliably. Optimizing tongue contour extraction is beyond the scope of 

this paper, but it is important to take this issue into account during data analysis, in that poor 

image quality may result in inaccurate contour identification. Also, unless the locations of 

the head and jaw are stabilized or tracked relative to probe position, the position of the 

tongue relative to palatal hard structures is impossible to determine accurately. However, 

measurements of shape are well-suited to ultrasound data, as shape-related variables can still 

be measured reliably in the absence of objective spatial information (Ménard, Aubin, 

Thibeault, & Richard, 2012; Stone, 2005).

 Previous Approaches to Quantification

A number of methods of quantifying tongue image data exist in the linguistic and clinical 

speech science literature, some based on shape and some on tongue position. One of these is 

the smoothing spline (SS) ANOVA (Davidson, 2006). The SS ANOVA evaluates the 

variance in the data (in the form of sets of tongue surface contours) that is accounted for by 

membership in a particular group (e.g. onset /z/ versus coda /z/). Confidence intervals 

around group splines demonstrate locations at which the tongue contours can be considered 

statistically different or the same at the chosen confidence level. This method requires that 

head and jaw movement relative to the probe is constrained or corrected over comparable 

groups. If this is not the case, the SS ANOVA is inappropriate.

Another method, one used to describe tongue shape directly, focuses on fitting a triangle to 

the tongue contour and derives the extent and location of maximal inflection using the 

properties of the triangle (Aubin & Ménard, 2006). This method is simple to apply and is 

useful for describing vowel shapes. However, for tongue shapes with multiple inflections it 
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is problematic, as multiple triangles are necessary and the demarcation of where they are 

applied may not be clear.

A number of investigators have used methods based on factor analysis or principle 

component analysis (PCA) to quantify tongue position (Harshman, Ladefoged, & Goldstein, 

1977; Hoole et al., 2000; Slud, Stone, Smith, & Goldstein Jr, 2002). PCA and factor analysis 

provide dimensional reduction of shapes to a sparse set of salient features, typically related 

to properties of the tongue such as vertical and horizontal position in the mouth (tongue 

height and backness). Harshman et al. (1977) found that two factors accounted well for the 

variation in their tongue shape data taken from X-ray images of vowel productions. A 

potential problem with a PCA analysis is that the results are not always readily interpretable. 

When considering tongue shapes from the perspective of clinical disorders of motor control, 

it is preferable to have interpretable factors so that a remediation strategy can be suggested. 

However, PCA does provide a useful index of data complexity, by indicating what subset of 

the total number of potential components are sufficient to account for some threshold 

percentage of the data variability. To this end, we have applied a PCA to a subset of our data 

in the current study, in order to compare the efficiency of our proposed analysis methods to 

this well-known approach.

Another set of methods that have been used previously in ultrasound studies of tongue shape 

are based on polynomial fitting (Morrish, Stone, Sonies, Kurtz, & Shawker, 1984; Morrish, 

Stone, Shawker, & Sonies, 1985). A polynomial fit can potentially be used to index 

complexity, as a more complicated shape requires a higher order polynomial (as in Morrish 

et al.,1985). The derivatives of fitted polynomials can also be used to index the curvature of 

the shape, with higher curvature values indicating higher complexity. A recently published 

method for evaluating curvature based on polynomial fitting is the Curvature Index (CI) 

metric developed by Stolar and Gick (2013). This method fits a 7th order polynomial to the 

entire tongue surface (represented by the discrete contour points extracted from the 

ultrasound image). The integral of the absolute curvature (the reciprocal of the radius of 

curvature) is then taken with respect to the horizontal offset along the curve. Stolar and Gick 

(2013) found higher CI values for ‘complex’ tongue shapes (particularly liquids) compared 

to other tongue shapes.

A modified version of this method is included in the current analysis, together with a method 

based on the Procrustes fit between each tongue shape and a resting tongue shape, and also a 

method based on transforming tongue shapes into the spatial frequency domain using a 

discrete Fourier transform. These analysis methods will be described in more detail in the 

data analysis section below, but were all chosen for their potential to give information not 

just in terms of distinguishing shapes of different types (although this is an important 

consideration), but also to provide a quantifiable index as to how complex a given tongue 

shape may be to produce. In addition, these analysis methods share the useful property of 

being relatively insensitive to probe rotation and its effects on tongue surface orientation.

We expect that each of the three methods used for shape analysis in this study will yield 

information on different characteristics of the shapes (e.g. presence of single vs. multiple 

inflections, extent of curvature of inflections, etc.) and that their predictive power in terms of 
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classification can be assessed by including the resulting metrics in a linear discriminant 

analysis. We also hypothesize that the qualitative patterns seen among participants will be 

similar, although quantitatively the metric values are likely to differ considerably, due to 

inter-individual variations in physiology and articulatory strategy.

 Method

 Participants

The participants in this study were six native speakers of American English (three female 

and three male). They were between 24 and 45 years of age, with no reported history of 

neurological disorders or disease, or any speech, language or hearing difficulties. The study 

was approved by the institutional review board (IRB) of the City University of New York 

Graduate Center. Participants provided informed consent, and were compensated for their 

time.

 Stimuli

Stimuli consisted of symmetrical CVC / VCV utterances. The stimuli used in this study 

were: /ɑ/, /ɪ/, /ɛ/, /æ/, /ʌ/, /u/ in a /bVb/ context, and /ɡ/, /d/, /z/, /ʒ/, /l/, /ɹ/, /j/, /w/, /θ/ in 

a /ɑCɑ/ context. Representative images of the resting (pre-phonatory) tongue shape were 

also collected for each participant. These images were taken when the tongue lay flat in the 

mouth, with no palate contact, and were used as a ‘baseline’ shape for comparison with 

tongue shapes produced during speech in the Procrustes analysis method.

 Procedure

Ultrasound images of the tongue were obtained with an Ultrasonix SonixTouch system 

(Richmond, BC, Canada) using a C9-5/10 microconvex transducer. Ultrasound data were 

collected at a frame rate of 60Hz. During the experimental session the participant was seated 

with their head unrestrained. The reason no head restraint or correction was used is that the 

analysis methods under development are intended to be suitable for use on data taken from 

clinical populations and children, for whom restraint and head correction procedures are not 

always possible or desirable. However, the consideration remains that if the participant is not 

reasonably still, the areas of the tongue imaged (including the endpoints) will vary, which 

may affect the analyses. For a comparison of head-stabilized versus non-stabilized data see 

Zharkova, Gibbon, & Hardcastle (2015).

The ultrasound probe was held using an adjustable, heavy-duty metal stand. The probe arm 

of the stand was spring-loaded, so that it moved in the vertical plane with the motion of the 

jaw. The probe was positioned in a mid-sagittal alignment under the participant's chin. The 

experimental task was to produce the stimuli displayed on a large computer monitor 

positioned approximately 1m in front of the participant. The stimuli were presented using 

Presentation software (“Presentation,” 2013). This programmable software was used to send 

a triggering signal to the ultrasound system to initiate video capture synchronously with 

presentation of each stimulus, while simultaneously recording audio data from a microphone 

connected to the computer. The ultrasound machine produced an audible sound at the end of 

trials, which was recorded as part of the acoustic data. To verify synchronization, the 
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experimenter reviewed the ultrasound data by hand to ensure that the areas of maximal 

excursion of the tongue in producing constrictions were aligned with acoustic landmarks.

Participants were asked to rehearse the list of stimuli prior to the ultrasound session, in order 

to correct any errors in pronunciation and stress pattern (stress was elicited on the second 

vowel of the VCV utterances). A short familiarization period then preceded the main task, 

predominantly to acquaint the participant with speaking whilst in the experimental setup. If 

the participant expressed discomfort during the familiarization period, adjustments were 

made to the probe and / or seating position prior to initiation of the main task.

The stimuli were presented in a randomised order, which was the same for each participant. 

The participant was asked to repeat the word displayed on the screen, at a normal rate, until 

the end of the trial (indicated by a beep sound produced by the ultrasound). Each trial lasted 

8 seconds, during which most participants produced at least six tokens of the same stimulus 

item. The stimulus list was repeated twice (with a different order the second time, again 

consistent across participants), yielding two trials (an average of 12 repetitions) per stimulus 

item. Participants were instructed to maintain contact with the ultrasound probe under their 

chin and to move as little as possible aside from speaking.

 Data Analysis

Analysis was performed on frames from the midpoint or maximal constriction of the target 

sounds. For the vowels, the selection was based on the acoustic midpoint of the vowel. For 

the consonants, the acoustic data was used to identify the constriction, and the ultrasound 

frame containing the largest displacement from the probe was selected.

Six tokens of each stimulus, for each participant, were used for analysis. Tokens were 

selected using the following process: the first and last token from each trial were excluded, 

as were any tokens where the line indicating the air tissue interface between the tongue and 

the oral cavity was unclear. Images were also excluded if the utterance included any 

disfluencies or swallows. Following this, the first, second and third remaining images from 

the first trial and from the second trial were selected, yielding six images per stimulus item. 

One shape from the pre-phonatory state was also extracted.

The next step in the analysis was to fit a contour to the tongue shape. The contour consisted 

of a series of x-y coordinate points that represent the tongue edge and were extracted for 

further analysis. For the contour fitting procedure, we used a custom interactive MATLAB 

procedure (‘GetContours’, written in-house at Haskins laboratories) to position anchor 

points controlling the position of a cubic spline fit to the tongue surface, similar in 

functionality to Edgetrak (Li, Kambhamettu, & Stone, 2005). One hundred equally-spaced 

points defining each contour were automatically exported.

 Quantification Methods Used in this Study

Three shape analysis methods were tested here: modified curvature index (MCI), Procrustes 

analysis and the discrete Fourier transform (henceforth DFT). Each was applied using 

custom procedures written in Python (“Python Language” 2013). These procedures, 
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including test data and worked examples, are freely available at: https://github.com/

kdawson2/tshape_analysis.

 Modified curvature index (MCI)—This method is an extension of the curvature index 

(CI) of Stolar and Gick (2013). The original (1) and modified (2) equations for this method 

are shown below, where κ is curvature, a and b are the start and end of the tongue contour on 

the x-axis and α and β are the start and end of tongue contour along the arc length.

Equation 1 - CI (Stolar & Gick, 2013):

Equation 2 - MCI (current study):

The first modification is that we integrated curvature values with respect to the arc length of 

the tongue (the length of the curve if it were stretched out into a straight line – s in equation 

2), rather than the x-axis. This is because the x-axis integration introduces differences in the 

metric if the ultrasound probe is rotated. In our original efforts in extending this method, a 

piecewise polynomial was used. The primary use of polynomial fitting is to extract curvature 

values that are smoother and less noisy than the raw data. However, higher-order 

polynomials can introduce unwanted effects at the boundaries of the shape (Runge's 

phenomenon), and so in the current iteration of this technique polynomial fitting was not 

used at all. Instead, we used central differencing of the shape coordinate points (that is, half 

the difference at each point between the preceding and following points) to compute the 

derivatives and a low pass (5th-order) Butterworth filter to remove noise. This gives very 

similar answers to the original method but with less computational burden and represents a 

more explicit, and therefore controllable, filtering process.

 Procrustes analysis—This method is based on the Procrustes distance between tongue 

shapes during speech and the resting (pre-phonatory) shape of the tongue. Procrustes 

analysis is a form of statistical shape analysis (Goodall, 1991) that attempts to superimpose 

two shapes and computes a metric to describe any remaining difference between them. The 

superimposition of two shapes in Procrustes analysis involves translation, rotation and 

scaling (compression or expansion) of the shape, in order to minimize the sum of squared 

differences (SSD). The metric is the remaining SSD between all the points on the two 

shapes. The output is a single number, with a higher number representing a greater 

difference between two shapes than a lower number.

 Discrete Fourier transform (DFT)—The third method included here is based on a 

DFT of the tongue shapes, where the shapes are transformed into the spatial frequency 

domain. For this we adapted a method described in Liljencrants (1971). The differences 

between Liljencrant's method and our own are that the Liljencrants method was based on X-

ray images and a fixed coordinate system, and the function transformed was the tongue 
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shape relative to this coordinate system. The x and y axes of this coordinate system were 

defined relative to hard structures in the vocal tract. In our analysis, we do not have any 

static reference points for a coordinate system. Hence, we transform the tangent angle values 

for each point on the shape as a function of arc length. The DFT procedure can be 

conceptualized as obtaining a measure of correlation between a function (in this case the 

tangent angle) and sine and cosine waves of increasing frequency, the first coefficient 

relating to waves with wavelength equal to the full arc length, and higher coefficients 

relating to multiples of this frequency.

The output of the DFT analysis for our purposes is the value of a given shape provided by 

the first three Fourier coefficients. The first coefficient of the Fourier transform (C1) 

corresponds to the largest-scale features of the shape. The higher coefficients reflect smaller 

scale features. Very high coefficients represent small variations in the shape, often 

introduced during the contour fitting procedure (i.e. noise). Hence, coefficients above the 

third (C3) are not included in this analysis. Each coefficient has a real and an imaginary part, 

and the location of a data point on these real and imaginary axes can be described in radial 

coordinates, giving the corresponding phase and magnitude of the coefficient.

 Assessment via Linear Discriminant Analysis

A linear discriminant analysis was performed to examine how well the methods 

differentiated the complexity groups. Linear discriminant analysis (LDA) is a classification 

technique for multivariate data. The aim is to find a set of transformed variables, made up of 

a linear combination of the original variables, which maximizes the between-class separation 

while simultaneously minimizing the within-class variance. These linear combinations are 

known as discriminant functions. The number of useful discriminant functions that can be 

found for a given data set depends on the number of variables and the number of classes. A 

classifier is then built using the values of the discriminant functions as new variables for 

each observation (e.g. Burns & Burns, 2008; Welling, 2005). The method used here was the 

‘lda’ function within the MASS package of R (Ripley, Hornik, Gebhardt, & Firth, 2013).

The success of the classification can be most simply shown in the apparent error rate, which 

is the result of applying the classifier to the training data. However, this is likely to be an 

optimistic estimate of the error. A better measure can be obtained by separating the data into 

training and test sets, but this is problematic when the data set is relatively small. A good 

compromise, and the method used here, is a ‘leave-one-out’ cross-validation, where the 

classifier is constructed with one data point (i.e. the values for one tongue shape) missing, 

and then the missing data point is used to judge the success or failure of the classification 

(Burns & Burns, 2008). This is done iteratively until all data points have been tested. We 

used the LDA to quantify classification rates for each measure among three complexity 

groups: low (ɑ/, /ɪ/, /ɛ/, /æ/, /ʌ/) medium (/u/, /ɡ/, /w/, /j/) and high (/d/, /z/, /l/, /ɹ/, /θ/, /ʒ/). 

We also used the LDA to show classification rates among individual phoneme types, for all 

participants.
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 Results

The analysis of the tongue shapes resulted in a single value for the MCI and for the 

Procrustes metrics, and six values (real and imaginary parts of three coefficients) for the 

DFT method. These numbers can be plotted in a pairwise fashion on a graph, to see how 

they cluster into shape categories. As an illustration, graphs are shown for a single 

participant, and results of the shape complexity and phoneme classification (LDA) are 

shown subsequently for all participants.

Figure 2 shows the values for each tongue shape using the MCI (x axis) and Procrustes 

metric (y axis). These metrics are combined on to one graph for ease of interpretation (and 

to see the extent to which they correlate). This is not essential, and the metrics can be used in 

isolation. Each point on the graph represents a single tongue shape; the phoneme type is 

indicated by the symbol. The figure also includes one standard deviation confidence ellipses, 

drawn around the phoneme classes. Although individual phonemes are not well separated, 

certain clusters represent common classes of sounds. For example, the vowels are largely 

clustered in the bottom left of the figure, indicating that they are similar to each other but 

different from the consonants. The vowel /u/ looks more like a consonant in this regard, due 

to its constriction near the soft palate.

Figure 3 shows the values for each tongue shape using the real (x axis) and imaginary (y 
axis) parts of the DFT first coefficient (C1). The DFT first coefficient separates the phoneme 

classes into relatively discrete groups.

Figures 4 and 5 show the LDA classification results for our a priori defined complexity 

groups, for the same participant as shown in the previous figures. Figure 4 shows the LDA 

classifications using the Procrustes metric and the MCI. Figure 5 shows the classifications 

using the DFT first coefficient (C1, real and imaginary parts). The symbols in both graphs 

indicate the phoneme type. Symbols in black are correctly classified; symbols in red are 

incorrectly classified.

For the classification using the LDA, C1 provides the best level of separation among the 

groups. This is apparent from visual inspection of the graphs, and is confirmed by the 

discriminant analysis in the next section, in that the DFT C1 misclassifies fewer data points 

than the MCI and Procrustes methods. The Procrustes metric and MCI provide a good level 

of separation between the low versus the medium and the high groups, but a considerable 

number of misclassifications among the medium and high groups. Table 1 shows the 

classification results across metrics and across participants (as well as for the metrics and the 

participants individually). The ‘ALL’ column shows the success rate of each metric across 

all participants; the ‘ALL’ row shows the success rate within each participant across all 

metrics. The first DFT Coefficient (C1, imaginary part) is the best single parameter classifier 

for delineating these complexity groups, with a success rate of 0.77 across all participants, 

rising to 0.81 when combined with the C1 real part. The Procrustes and MCI metrics are less 

successful, with a combined rate of 0.61. The Procrustes metric appears more successful 

than the MCI, and in fact the combined success is almost identical to using the Procrustes 

metric alone. Classification success rates within participants are considerably higher than 
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those across all participants. Rates within participants using all metrics range from 0.87 to 

1.0. When using all participants, after classifying using C1 (real and imaginary), addition of 

more metrics (including higher coefficients) does not improve classification substantially.

Table 2a shows classification rates from the LDA by phoneme type rather than complexity 

group, across all participants and using all metrics. The rows represent the target phoneme 

and the columns the predicted phoneme. Thus, the diagonal values (in bold) indicate for 

each phoneme how many times it was classified as itself (i.e. correctly) out of a possible 36 

instances. The shaded cells represent the complexity classes. Table 2a also shows the error 

pattern, i.e. the pattern of misclassifications. The most common errors were within 

complexity classes – this is shown more succinctly in table 2b. Outside the complexity 

classes the most common misclassifications were /j/ being classified as /ɪ/, /ʒ/ as /æ/ (and 

vice versa), /w/ as /ɑ/ and /ʌ/ and /u/ as /ɪ/. Other than /ʒ/ as /æ/, these confusions make 

sense articulatorily. The highest classification rates were for /ɹ/ (33/36), /ɪ/ (29/36) and /l/ 

(28/36).

 Assessment via Principal Component Analysis

We performed a PCA on data from one speaker to provide a basis for comparison between a 

standard approach for quantifying variance and the methods discussed here (a single speaker 

was used to avoid the additional complexity of cross-speaker variability). The dataset was 

the same set of contour shapes analysed above, converted to curvature as for the MCI 

method, consisting of six repetitions of 15 distinct utterances. Results showed that seven 

principal components were necessary to account for 81% of the variance. A plot projecting 

PC1 vs. PC3 (figure 6), the pairing showing best separation, suggests that PCA is less 

parsimonious and less effective in separating phonemes than the DFT approach; nor does it 

form a continuum of responses along which complexity can be indexed, as with the MCI and 

Procrustes approaches.

 Inter-rater reliability

To assess inter-rater reliability of the methods, all the data for one participant (90 tongue 

shapes) was tracked by two different experimenters. We estimated inter-rater reliability 

using the R2 correlation coefficient of the data from both raters (see table 3). The R2 values 

indicate that the MCI seems to be the method most sensitive to noise introduced by having 

different experimenters track the same tongue shapes. The other metrics are more resistant to 

this, particularly the DFT first coefficient.

 Discussion

The aim of this study was to assess three types of shape analysis methods, in terms of their 

success and suitability for quantifying tongue shape complexity and for identifying 

phonemes by tongue shape. We applied the three methods – the DFT, Procrustes Analysis 

and MCI to ultrasound data of mid-sagittal tongue contours taken from six typical speakers 

across 15 American English phoneme types. The success of the methods was quantified 

using a linear discriminant analysis to classify across phoneme type and into three pre-

defined levels of complexity – high, medium and low.

Dawson et al. Page 10

Clin Linguist Phon. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The DFT first coefficient was the best classifier, both of complexity groups and (as indicated 

by figure 3) of phoneme types. One drawback of this method is that it does not form a 

continuum that can be easily interpreted in terms of complexity. The low complexity group 

borders the high complexity group, and ideally this would not be the case as low can 

potentially be confused with high, rather than with just medium. The DFT is also not easily 

interpretable from a motor control point of view without a coordinate system constructed 

relative to vocal tract anatomy. In Liljencrants (1971), where such a coordinate system did 

exist, the magnitude of a data point (distance from 0,0 origin) in a coefficient corresponded 

to degree of constriction and the phase to the place of constriction. Inspection of figure 3 

does show a rough trend for magnitude to be related to degree of inflection, but only for the 

tongue body, as the first coefficient of the Fourier transform reflects the most salient, or 

largest-scale features of the shape (i.e. shapes with a single, extreme inflection such as /

u/, /g/ /j/ and /w/ have high magnitude values). It is also possible that the low magnitude 

values for the more complex shapes mean that they have more energy distributed in higher 

coefficients (i.e. cannot be described well using a low frequency sinusoid). Inclusion of 

higher coefficients (C2 and C3) did not greatly improve the classification rates, at least in 

this analysis.

The results for the Procrustes and MCI methods indicate that they are potentially useful, as 

they form a continuum, where low complexity shapes are less likely to be confused with 

high. Measures of curvature and distance from a resting shape also relate more intuitively to 

the concept of complexity than the shape parameters indexed by the DFT. However in terms 

of classification they do not perform as well as the DFT method. The MCI has a lower level 

of consistency across experimenters than the other methods, which implies that it is more 

sensitive to noise introduced by the contour tracking process. The LDA analysis using all 

three methods was slightly more successful than the one using only the DFT, but the amount 

of information gained is presumably not justified by the added degrees of freedom in the 

input.

Across all methods, the within-participant classification rates were higher than across 

participants. This was expected and most likely due to differences in vocal tract morphology 

among participants and also differences in mid-sagittal tongue shape formation strategy 

during speech. At this point therefore, these methods are most valid for within-person 

comparisons, such as tracking articulation over time for a single participant. Future work 

will include exploration into ways to make across-person comparisons more useful.

Caveats to this work include the fact that some tongue shapes are often less reliably imaged 

than others. Although this was not a particular issue in the current study, a general point is 

that if most of the complexity for a shape is located in areas that often cannot be successfully 

imaged (such as the tongue tip), then the analysis may give an erroneous indication of 

complexity and shape type. The measures for this study were also taken from repeated 

tokens of simple utterances. Analysing tongue shapes from running speech would be a 

natural extension of this work, but one that would likely produce even more complicated 

results.

Dawson et al. Page 11

Clin Linguist Phon. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Another key point is that complexity of lingual articulation does not just relate to mid-

sagittal tongue shape. Timing, precision of constriction, coronal tongue shape, tongue 

bracing and involvement of other articulators are all parameters than can feed into 

complexity. However, measurement of these additional parameters, as well as techniques 

that involve imaging hard structures, often involves an increase in the response burden of the 

participant and also the instrumentation and analysis burden on the researcher. For clinical 

purposes, ultrasound and the use of shape-related parameters constitute a relatively practical 

experimental paradigm. The trade-off is that shape measures are somewhat less informative 

than those that include positional or hard-structure related data. However, the results of this 

study demonstrate that shape measures can (or can be adapted to) provide useful information 

on complexity-related control of the tongue, which can potentially be informative from a 

clinical perspective.
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Figure 1. 
Ultrasound images in the mid-sagittal plane of the tongue during the midpoint of the 

vowel /ɑ/ (left panel) and the maximal constriction of the consonant /ɹ/ (right panel) 

produced by an American English speaker. The tongue tip is to the right in both images.

Dawson et al. Page 15

Clin Linguist Phon. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
MCI and Procrustes metric results for participant 01_FC (female typical speaker). The MCI 

is plotted along the x axis and Procrustes metric along the y axis. Phoneme types are 

indicated by the symbol. One standard deviation confidence ellipses surround the phoneme 

classes.
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Figure 3. 
Fourier transform results for 01_FC (female typical speaker). This graph shows all the data 

points for the first Fourier coefficient values (real part on the x axis, imaginary part on the y 
axis). Phoneme types are indicated by the symbol. One standard deviation confidence 

ellipses surround the phoneme classes.
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Figure 4. 
LDA results for low, medium and high complexity classes for the Procrustes metric and 

MCI. Data are for 01_FC. Shaded areas represent complexity groupings: purple (medial 

shaded area) = high, yellow (uppermost shaded triangle) = medium, green (lowermost 

shaded area) = low. Symbols represent phoneme classes. Black = correctly classified; red = 

incorrectly classified.
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Figure 5. 
LDA results for low, medium and high complexity classes for the Fourier transform first 

coefficient (C1) real and imaginary parts. Data are for 01_FC. Shaded areas represent 

complexity groupings: purple (lowermost shaded triangle) = high, yellow (uppermost shaded 

triangle) = medium, green (medial shaded area) = low. Symbols represent phoneme types. 

Black = correctly classified; red = incorrectly classified.
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Figure 6. 
PCA results (PC1 vs. PC3) of curvature values for participant 01_FC (female typical 

speaker). PC1 is plotted along the x axis and PC3 along the y axis. Phoneme types are 

indicated by the symbol. One standard deviation confidence ellipses surround the phoneme 

classes.
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Table 1

LDA classification rates by metric and participant for L, M and H complexity groups

Participant

Metric ↓ 01_FC 02_FC 03_FC 05_MC 06_MC 07_MC ALL

Procrustes 0.67 0.73 0.58 0.61 0.72 0.62 0.62

MCI 0.59 0.52 0.53 0.53 0.61 0.48 0.56

C1 real 0.43 0.32 0.41 0.34 0.44 0.36 0.40

C1 imag 0.84 0.90 0.80 0.62 0.86 0.81 0.77

C2 real 0.34 0.46 0.50 0.33 0.34 0.36 0.36

C2 imag 0.46 0.50 0.49 0.47 0.51 0.31 0.39

C3 real 0.40 0.49 0.29 0.50 0.63 0.30 0.44

C3 imag 0.41 0.69 0.33 0.51 0.37 0.54 0.41

Procrustes + MCI 0.71 0.79 0.62 0.70 0.72 0.58 0.61

C1 0.96 0.89 0.83 0.86 0.87 0.80 0.81

C1 + C2 + C3 0.99 0.92 0.93 0.93 0.88 0.86 0.81

ALL 1 0.92 0.96 0.97 0.91 0.87 0.83
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Table 2b

Confusion matrix for LDA complexity groups: all metrics and all participants

Predicted

actual

high medium low

high 185 0 31

medium 1 105 38

low 15 9 156
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Table 3

Inter-rater R2 correlations for MCI, Procrustes metric and Fourier C1

Metric MCI Procrustes metric C1 imaginary part C1 real part

R2 value 0.59 0.88 0.97 0.95
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