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Abstract

Signal -transduction networks coordinate transcriptional programs activated by diverse 

extracellular stimuli, such as growth factors and cytokines. Cells receive multiple stimuli 

simultaneously, and mapping how activation of the integrated signaling network affects gene 

expression is a challenge. We stimulated colon adenocarcinoma cells with various combinations of 

the cytokine tumor necrosis factor (TNF) and the growth factors insulin and epidermal growth 

factor (EGF) to investigate signal integration and transcriptional crosstalk. We quantitatively 

linked the proteomic and transcriptomic data sets by implementing a structured computational 

approach called tensor partial least squares regression. This statistical model accurately predicted 

transcriptional signatures from signaling arising from single and combined stimuli and also 

predicted time-dependent contributions of signaling events. Specifically, the model predicted that 

an early-phase, Akt-associated signal downstream of insulin repressed a set of transcripts induced 
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by TNF. Through bioinformatics and cell-based experiments, we identified the Akt-repressed 

signal as glycogen synthase kinase 3 (GSK3)–catalyzed phosphorylation of Ser37 on the long form 

of the transcription factor GATA6. Phosphorylation of GATA6 on Ser37 promoted its degradation, 

thereby preventing GATA6 from repressing transcripts that are induced by TNF and attenuated by 

insulin. Our analysis showed that predictive tensor modeling of proteomic and transcriptomic data 

sets can uncover pathway crosstalk that produces specific patterns of gene expression in cells 

receiving multiple stimuli.

 INTRODUCTION

A goal of systems biology is to identify regulatory properties of biological networks by 

integrating experiments and kinetic models around a defined biological “parts list” (1). For 

signal transduction, such approaches have clarified the molecular pathways and regulatory 

events that can explain signaling thresholds (2–4), adaptation (5–8), and oscillations (9–15), 

as well as signal-induced cell -fate transitions (16–18). A complementary use of systems 

methods is for large-scale profiling and analysis of cellular signals in pursuit of integrative 

understanding or new molecular mechanisms (19–22). These applications favor data-driven 

models based on statistics or bioinformatics, which propose new links within the network 

that can be tested experimentally (23–28). Testing of a data-driven hypothesis about 

mechanism requires reductionist experimental approaches, even when the hypothesis itself 

emerges from network-level data (29, 30). Consequently, systems-level studies can yield 

findings that are immediately relevant to signal transduction biology (31).

Receptor-mediated signaling pathways are densely connected and exhibit nonadditive 

behaviors when two ligands activating different receptors are applied simultaneously (32–

34). Downstream of receptor activation and signal transduction, complexity increases even 

further when considering the consequences of signaling on gene regulation (35–37). 

Fortunately, new signaling synergy or antagonism does not typically emerge with more than 

two inputs (38–41), suggesting that stimulus pairs are sufficient to assess potential crosstalk. 

For systems-level discovery, this type of in-depth cellular profiling must be complemented 

by data-driven modeling and extensive mechanistic follow-up.

Here, we examined crosstalk between a proinflammatory stimulus, tumor necrosis factor 

(TNF), and one of two growth factors, insulin or epidermal growth factor (EGF), with a 

focus on signaling -network activation and downstream regulation of the transcriptome. To 

examine the interface between signal -transduction and transcription networks at the systems 

level, we built upon a preexisting compendium of signaling events collected in the 

adenocarcinoma cell line HT-29, which were initially exposed to interferon- γ (IFNγ) and 

then stimulated with TNF, EGF, and insulin in various combinations (42, 43). Because TNF, 

EGF, and insulin trigger widespread and time-dependent changes in transcript abundance 

(44–47), we collected dynamic mRNA profiles after stimulation with single or paired stimuli 

and integrated these data with the previously measured intracellular signaling events (42, 

43).

Because each signal and transcript was measured at every time point and stimulus condition, 

we could organize the signaling and transcriptomic data cubes as three-way tensors to build 
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a model constrained by the structure of the data. Model analysis together with 

bioinformatics predicted a link between Akt–glycogen synthase kinase 3 (GSK3) signaling 

and the endodermal transcription factor GATA6. We found that GSK3 phosphorylation of 

Ser37 on the long form of GATA6 (GATA6L) accelerated its degradation in cells. The 

increased turnover reduced transcriptional repression by GATA6L of genes induced by TNF. 

Collectively, our results showed that GATA6L integrated growth factor–induced signaling 

activity and inflammatory transcriptional regulation.

 RESULTS

 Cytokine combinations elicit complex changes in signaling and transcript abundance

For the signaling pathway measurements, we used data from our own previous studies (42, 

43), which enabled us to combine these data with the transcriptomic data generated here 

under the same experimental conditions. In the previous studies, HT-29 cells were exposed 

to IFNγ, which primes HT-29 cells to apoptose upon stimulation with TNF (48), and 

subsequently stimulated with saturating or subsaturating doses of TNF, EGF, or insulin alone 

or in combination. Lysates were profiled at 13 time points over 24 hours for 19 intracellular 

signaling events measured by kinase assay, immunoblot, or antibody array (Fig. 1, A and B) 

(49–51). These data provided quantitative, systematically collected information on 

phosphorylation-mediated regulatory events, changes in protein abundance, and cleavage-

dependent protein activation.

To determine how the signaling events altered gene expression, we complemented the 

signaling compendium with a matched set of transcriptomic profiles (Fig. 1A). IFNγ-

pretreated HT-29 cells were exposed to the same combinations of TNF-EGF-insulin and 

analyzed at a subset of the time points from the previous signaling studies (Fig. 1B). We 

collected transcriptomic profiles by microarray at intermediate-to-late times after cytokine 

simulation, thereby avoiding the bursts of immediate-early transcripts that are already well 

characterized (46, 47, 52). We selected the time points for transcriptomic analysis according 

to earlier modeling of the signaling compendium, which showed that signaling from 4 to 16 

hours did not predict apoptosis accurately (42). We reasoned that the loss of predictive 

ability was because prolonged cytokine stimulation had transmitted the relevant information 

to the downstream transcriptional network.

The microarray data revealed extensive transcriptional alterations with time and stimulus 

condition (Fig. 1C). Among 14,541 probe sets identified as present in at least one sample, 

we identified significant changes in 10,319 with time, 4948 upon TNF stimulation, 75 upon 

EGF stimulation, and 15 upon insulin stimulation after correction for multiple hypothesis 

testing [four-way analysis of variance (ANOVA), false -discovery rate = 5%; file S1]. One 

unanticipated complication was that many transcript abundances changed with time in the 

mock stimulation condition lacking TNF, EGF, and insulin (Fig. 1C, leftmost column). We 

attributed these background transcriptional dynamics to the ongoing IFNγ exposure. 

Extensive background drifts in transcript abundance can confound interpretations from 

standard analyses of differentially expressed genes that focus on time-dependent changes 

(53, 54). Therefore, alternative methods were required to identify meaningful changes in 

transcriptional regulation and link them to the upstream signaling network.
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 Models of dynamic, multivariate data sets are properly structured as data tensors

Systematic biology experiments monitor the same signaling events or transcripts over 

multiple time points and across multiple stimulus conditions (19, 55). Each data point thus 

contains information about the various “modes” of its acquisition, for example, which 

stimulus was added (mode 1), the time after stimulus (mode 2), and the signal or transcript 

measured (mode 3). Additional modes are possible if multiple pharmacologic perturbations 

(56, 57) or cell types (58) are profiled systematically along with the modes listed above.

For systematic measurements, the acquisition modes create a data structure that is very 

powerful mathematically because it conveys how different data points are related to one 

another. This structure vanishes when, for example, a data cube is sliced along one of its 

modes and “unfolded” end-to-end as a series of matrices (Fig. 2A). When matrix-based 

algorithms are applied to unfolded data, each unfolded measurement variable is treated 

independently, and modes 2 and greater are lost. Using Fig. 2A as an example, Akt 

measurements at 2 and 4 hours after stimulation (same signal, two time points) are not 

handled any differently than Akt and epidermal growth factor receptor (EGFR) 

measurements at 2 hours after stimulation (two signals, same time point). The result of 

unfolding is a model that is less interpretable because of too many fitted regression 

coefficients (59).

The alternative to unfolding is to retain data sets as cubes (three modes) or hypercubes (four 

or more modes) in the form of data “tensors” which are the higher-dimensional 

generalization of vectors (one mode) and matrices (two modes). For example, the TNF-

EGF-insulin signaling compendium naturally organizes as a third-order tensor defined by 

stimulus, time point, and measured signaling event (Fig. 2B). The transcriptomic profiles 

likewise arrange as a third-order tensor according to stimulus, time point, and transcript or 

cluster of transcripts (Fig. 2C). Tensors reduce the parameterization of a data-driven model 

because free regression coefficients remain fixed across the other acquisition modes of each 

tensor (Fig. 2B) (59, 60). In this instance, the stimulus–time point–signaling tensor (the 

“regressor” tensor) is linked to the stimulus–time point–transcript tensor (the “regressand” 

tensor) by the regression coefficients.

Biological data tensors have been used successfully for unsupervised purposes, such as 

singular value decomposition (27), to analyze transcriptional kinetics during DNA 

replication origin firing (28) and to identify consistent copy number changes across different 

array-based comparative genomic hybridization platforms (61). Here, we sought a 

supervised method that could connect the signaling tensor to the transcriptomic tensor and 

predict gene expression patterns from signaling network dynamics. This application is ideal 

for the tensor generalization of partial least squares regression (PLSR), a matrix 

implementation that has been used widely to model signaling networks (20, 25, 58, 62–76).

Tensor PLSR [equivalently, “multilinear PLS” (59)] is an established method that creates a 

data-driven model by jointly factorizing an independent “predictor” tensor (X; here, the 

signaling tensor) and a dependent “predicted” tensor (Y; the transcriptomic tensor). X and Y 

are factorized as an element-by-element product of vectors, where the number of vector 

elements multiplied is equal to the number of dimensions in the data tensor (text S1). Thus, 
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if X is a third-order tensor, then X(1,1,1) [the tensor element in X occupying the first 

position in mode 1 (stimulus), the first position in mode 2 (time point), and the first position 

in mode 3 (signal)] is factorized as: X(1,1,1) = t(1)• wj(1)•wk(1) (Fig. 2D, purple). In the 

factorization, t(1) is the first element of a “scores” vector (t) that relates to the stimulus 

conditions that are shared with the Y tensor. wj(1) and wk(1) are the first elements of two 

“weight” vectors (wj and wk) that relate to modes 2 and 3 of the tensor (here, time and 

signal). A similar calculation is performed for Y by factorizing it into its own scores (u) and 

weight (ql and qm) vectors. X and Y are linked by an “inner relationship” between their 

respective scores vectors: u = bt, where b is a linear regression coefficient determined by the 

model. The inner relationship implies that how a stimulus projects on t [through the 

signaling (wk) that occurs over time (wj)] is directly proportional to its projection on u and 

thus how that stimulus changes gene expression (qm) with time (ql).

The factorization of the two tensors is posed as a numerical optimization that seeks to 

capture as much of the inner relationship between X and Y as possible (details on the 

covariance maximization algorithm are described in text S1). The best first set of scores and 

weight vectors defines the first “latent variable” of the tensor PLSR model. Residual 

information (covariation) in X and Y not captured by the first latent variable is then 

subjected to a second factorization, which is optimized to capture as much covariance in the 

residual as possible (Fig. 2D). By repeating the algorithm, latent variables are iteratively 

calculated until there are no predictive inner relationships remaining between the X and Y 

data tensors (20, 62).

Predictions with a tensor PLSR model use wj and wk from each latent variable to project an 

X-like observation onto t (Fig. 2E). Then, the u = bt inner relationship is used to predict u, 

which is backprojected with ql and qm to yield a predicted set of values in the form of Y 

(time-dependent gene expression). The project-predict-backproject sequence is important for 

making independent predictions with new data and for cross-validation of the model to 

identify the optimum number of latent variables (20, 31, 62, 77).

 Tensor PLSR modeling identifies predictive links between signaling and transcriptional 
dynamics

We first constructed a tensor PLSR model of three latent variables that predicted the 14,541 

probe set fluorescence intensities of the transcriptomic data set. Although cross-validated 

predictions of the model were 99% accurate (fig. S1A), the model was strongly biased 

toward the differences in fluorescence intensities across probe sets. Consequently, changes 

in probe set intensities across treatment conditions were overlooked, and the resulting 

components of the model were uninterpretable (fig. S1, B to E). To focus on recurrent 

stimulus-dependent changes in transcript abundance shared by multiple genes, we 

condensed the transcriptomic data set by using the unbiased CLuster Identification via 

Connectivity Kernels (CLICK) algorithm (78). Among the transcripts profiled, CLICK 

identified nine separable clusters composed of dozens to hundreds of genes (file S2), the 

mean trajectories of which were organized as the Y data tensor (Fig. 2C). Using the entire 

signaling compendium as X, we constructed a tensor PLSR model of four latent variables 

that predicted gene -cluster dynamics to within 72% (Fig. 3A and fig. S2A). Although the 
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model did not predict certain cytokine-induced changes for some gene clusters (Fig. 3A, see 

EGF and insulin stimuli of cluster #3), we considered the overall accuracy of predictions 

remarkable considering that the model involved ~10-fold fewer parameters than previous 

PLSR models of TNF-induced apoptosis (42, 62, 64).

Our principal motivation for building the tensor PLSR model was to use the model to reveal 

undiscovered mechanisms of how signaling alters gene expression. To identify which latent 

variables captured both signaling and gene -cluster dynamics, we analyzed the time weights 

(wj and ql) and inner regression coefficients for X and Y (Fig. 3B). The leading two latent 

variables (LV#1 and LV#2) harbored signaling time weights (wj1 and wj2) that were nearly 

constant from 0 to 24 hours, indicating that time-dependent changes in signaling did not 

determine the projection of X along LV#1 or LV#2. Accordingly, time weights for the gene 

clusters (ql1 and ql2) were time-variant and derived from the stimulus-independent 

transcriptional changes of clusters #1, #2, and #7 (Fig. 3, A and B), presumably resulting 

from IFNγ pretreatment. Because latent variables are calculated iteratively (Fig. 2D), LV#1 

and LV#2 eliminated the TNF-, EGF-, and insulin-independent transcriptional changes, 

revealing paired signaling and gene -cluster dynamics in the third and fourth latent variables 

(LV#3 and LV#4). LV#3 harbored time weights of late-phase signaling (wk3) and sustained 

transcriptional activation (ql3). Conversely, LV#4 was weighted with early-phase signaling 

(wk4) and late-phase transcriptional regulation (ql4). The inner regression coefficient for 

LV#4 was negative (Fig. 3B, orange), implying a link between early-phase signaling and 

downstream transcriptional repression.

Focusing on LV#3 and LV#4, we evaluated the relationship between the treatment scores (t3 

and t4; Fig. 3C). Relative to mock treatment, saturating TNF stimulation projected almost 

entirely along LV#3, suggesting that LV#3 represented a TNF “axis” In contrast to TNF, we 

found that EGF and insulin projected in opposite directions along LV#4, indicating that this 

latent variable distinguished between the two growth -factor stimuli. Combinatorial 

stimulations exhibited intermediate scores that approximately averaged the scores of the 

individual stimuli. For example, TNF+EGF projected positively along LV#3 (like TNF) and 

negatively along LV#4 (like EGF). The interpolated response observed here for gene 

regulation contrasts with previous work on apoptosis in which EGF and insulin each 

nonlinearly antagonized TNF-induced cell death (62).

To connect specific signals and gene clusters with the prevalent cytokine-induced dynamics, 

we evaluated the signaling and gene -cluster weights along LV#3 (TNF; late-phase signaling 

axis: wk3 and qm3) and LV#4 (EGF-insulin; early-phase signaling axis: wj4 and qm4) (Fig. 3, 

D and E). Multiple signals, such as Ser636-phosphorylated insulin receptor substrate-1 

[pIRS1 (Ser636)], c-Jun N-terminal kinase (JNK) activity, and mitogen-activated protein 

kinase (MAPK)–activated protein kinase-2 (MK2) activity, were negligibly weighted (Fig. 

3D), implying that these early-phase TNF-induced signals (Fig. 1B) were statistically 

uninformative for predicting Y (the transcriptional response). Gene cluster #1 was also 

unweighted along LV#3 and LV#4, because its dynamics were almost entirely captured by 

LV#1 and LV#2 (Fig. 3, A, B, and E, and fig. S2B). To filter the weight vectors further, we 

randomly shuffled the signaling, gene -cluster, and time information within each cytokine 

stimulation (mode 1 slice) of X and Y (79). With hundreds of shuffled tensor PLSR models, 
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we estimated a null projection for the weight vectors of LV#3 and LV#4 (Fig. 3, D and E, 

gray line). We considered signals and gene clusters outside 1 SD (σ, gray dashed lines) of 

the null projection as weighted strongly enough to warrant further analysis (Fig. 3, D and E).

Among the strongest signaling weights, we found clear agreement with known mechanisms 

of signal transduction (Fig. 3D). For example, cleavage of apoptotic caspases [negative 

weighting for procaspase-8 and procaspase-3 and positive weighting of cleaved caspase-8] 

was strongly aligned along LV#3, which is consistent with late-phase caspase activation 

triggered by TNF (48, 80). Along LV#4, insulin stimulation coincided with positive weights 

for three complementary measures of Akt activation, a recognized effector pathway (81). 

Likewise, multiple measures of EGFR phosphorylation were weighted in a direction that 

corresponded to EGF stimulation. Also strongly associated with EGF signaling was 

phosphorylated insulin receptor substrate-1 [pIRS1 (Tyr896)], consistent with reports that 

this site may be directly phosphorylated by active EGFR (42, 82). Not all signaling events 

were associated with individual stimuli. For instance, the weights associated with inhibitor 

of nuclear factor-κB kinase (IKK) activation mapped not only to TNF but also to insulin 

stimulation, possibly because Akt signaling can activate IKK in certain contexts (83, 84). 

Similarly, phospho-EGFR (Tyr1068) projected with early-phase EGF and also late-phase 

TNF signaling. The latter is probably due to autocrine signaling by transforming growth 

factor-α, an EGFR ligand that is released after TNF stimulation (43, 85). Together, the 

weights of LV#3 and LV#4 provided a condensed map of the signaling compendium that 

was optimized for predicting the observed transcriptomic profiles.

The inner regression coefficient (b3) connecting X and Y along LV#3 was a positive value, 

indicating gene activation, whereas the inner regression coefficient b4 was negative, 

indicating that signaling along LV#4 resulted in gene repression (Fig. 3, B and E). Contrary 

to that of the signaling compendium, the projection of gene clusters along LV#3 and LV#4 

was surprising (Fig. 3E). Amidst thousands of time-dependent transcriptional changes, few 

clusters were weighted toward specific stimuli. Clusters #3 and #6 were primarily weighted 

along LV#3, indicating an association with TNF stimulation. Accordingly, promoter analysis 

(86) of the transcripts in these two clusters revealed a strong overrepresentation of binding 

sites for nuclear factor κB (NF-κB) (fig. S2C). Cluster #7 mapped along LV#4 because of 

the mild suppression of transcripts observed with saturating insulin alone (Fig. 3, A and E). 

Only cluster #9 projected strongly along both latent variables, indicating that the transcripts 

in this cluster were induced by TNF and repressed by insulin (fig. S3). TNF antagonism of 

insulin function has been well documented in adipocytes (87, 88), but there are few reports 

of insulin antagonizing TNF (89). Given this predicted TNF and insulin “crosstalk cluster” 

we used the tensor PLSR model to investigate its mechanism of regulation by the upstream 

signaling network.

With respect to its latent variable projections, cluster #9 was cartographically most similar to 

IKK (Fig. 3, D and E). If these shared projections were indicative of mechanism, however, it 

would imply that early-phase IKK activity (downstream of TNF and insulin signaling) 

represses transcription of the crosstalk cluster, whereas late-phase IKK (downstream of TNF 

signaling) promotes it. Repress-then-activate kinetics are opposite of the prevailing view of 

IKK signaling (90). Accordingly, we found that TNF-induced responses of 85% of 
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transcripts in cluster #9 were not significantly affected when a phosphorylation- and 

degradation-resistant mutant of IκBα was ectopically expressed in HT-29 cells (log-

transformed Welch’s t test, false discovery rate = 15%; fig. S4). We therefore considered 

alternatives that were consistent with the tensor PLSR model.

One possible explanation was that the crosstalk cluster integrated two distinct signaling 

inputs. An activating input could arise from a TNF-specific signal that was either not 

measured or not projected strongly on LV#3 and LV#4. In parallel, the cluster could be 

transcriptionally inhibited by an insulin-specific signal, such as Akt (Fig. 3D), or a 

downstream effector pathway of Akt (91).

 Promoter and signaling bioinformatics suggest a link between GSK3 and the crosstalk 
cluster through GATA6

First, we determined the reliability and generality of TNF-insulin crosstalk among 

transcripts in cluster #9. We repeated the stimulation experiments with an independently 

obtained vial of HT-29 cells and assayed individual transcripts by quantitative reverse 

transcription polymerase chain reaction (qRT-PCR). This analysis confirmed the expression 

of more than 90% of the 22 cluster #9 transcripts (SPRR1B and PPARD from fig. S3 were 

false positives), and we detected an antagonistic interaction between TNF and insulin from 2 

to 8 hours after stimulation (fig. S5). At individual time points for specific genes, we 

observed instances of antagonism represented by significant interaction P value (Pint < 0.05, 

two-way ANOVA; Fig. 4, A and B), an indication that TNF and insulin have nonadditive 

effects on the expression of those genes. We also observed nonlinear significant differences 

in gene expression for other transcripts even when the Pint was not significantly different 

(Fig. 4, C and D). The qRT-PCR data thus confirmed the microarray results and the tensor 

PLSR model, showing an early-phase suppression of TNF-induced cluster #9 genes by 

insulin (Fig. 3, B to E). Furthermore, these data indicated that the TNF-insulin crosstalk 

cannot be predicted by adding the effect of insulin to the TNF response.

To identify candidate mediators of TNF-insulin crosstalk, we analyzed the expression-

verified transcripts of cluster #9 with three orthogonal promoter -analysis algorithms (86, 92, 

93). Only two transcription factors were suggested as candidate regulators by all three 

algorithms: T cell factor 4 (TCF4) and GATA (Fig. 4E). HT-29 cells harbor a truncating 

mutation in APC (adenomatous polyposis coli), a protein that inhibits the β-catenin pathway, 

and this truncation renders β-catenin and its transcriptional partner TCF4 constitutively 

active (94). Moreover, no changes in β-catenin localization were observed upon TNF 

simulation with or without insulin (fig. S6). Therefore, we focused on GATA, a family of six 

transcription factors that are important for development and differentiation (95). Using qRT-

PCR (96, 97), we quantified the relative copy numbers of the GATA family and found that 

GATA6 was the most abundant isoform (Fig. 4F and fig. S7). Copies of GATA6 transcript 

also remained high during the early phase of TNF-only and TNF + insulin stimulation, 

whereas GATA2 and GATA3 were reduced two- to fourfold (Fig. 4, G to I). Notably, 

bioinformatic analysis (98) of the full-length GATA6 protein sequence uncovered a cluster 

of highly conserved serine residues that were candidate phosphorylation sites for GSK3 
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(Fig. 4J). Because GSK3 is a recognized substrate of Akt (81), these results suggested that 

GATA6 could be an insulin-dependent regulator of the crosstalk cluster.

Full-length GATA6 (GATA6L) is distinguished by a long N-terminal extension that is 

conserved across vertebrates but missing in other GATA family members (fig. S8). In 

addition, leaky ribosome scanning (99) onto an in-frame methionine (Met147) gives rise to a 

short form of GATA6 (GATA6S) that is comparable in size (~45 kD) to the other GATA 

isoforms. GATA6S lacks the candidate GSK3 phosphorylation sites that reside at the N 

terminus of GATA6L (Fig. 4J), raising the possibility of selective regulation of GATA6L by 

insulin.

Compared to GATA6S, GATA6L has been understudied because of early misannotations of 

nonhuman genomes and a lack of suitable reagents. Common plasmid repositories, including 

Addgene (100), the human ORFeome (101), and the Mammalian Gene Collection (102), 

have only the short form or lack the gene entirely. The unusually slow electrophoretic 

mobility of GATA6 has created additional confusion because commercial antibody vendors 

mistakenly label GATA6S as “GATA6” implying that the detected protein is the full-length 

form. As a result, the GATA6 literature is incredibly ambiguous, with many papers 

inadvertently focusing on GATA6S.

To determine whether the predicted GSK3 phosphorylation sites of GATA6L could be 

phosphorylated in HT-29 cells, we cloned the full-length gene with N-terminal FLAG and C-

terminal AU1 tags into a doxycycline inducible lentivector (see Materials and Methods) 

(103). Stable HT-29 transductants were induced with doxycycline for 24 hours before lysis, 

and FLAG immunoprecipitates were subjected to phosphorylation analysis by mass 

spectrometry. We achieved 92% coverage of the GATA6L sequence and identified 11 

phosphorylation sites, including 7 that had not been previously reported (Fig. 4K) (104). 

Among sites in the N-terminal extension specific to GATA6L, two (Ser33 and Ser37) were 

consistent with the bioinformatic predictions of GSK3 phosphorylation (Fig. 4J). Two N-

terminal sites (Thr34 and Ser37) were also corroborated by a proteomics study of proline-

directed phosphorylation in 293T cells (105). We concluded that Ser33, Thr34, and Ser37 

were the leading candidates for GATA6L phosphorylation–mediated regulation by GSK3.

 Perturbation of basophilic kinases differentially affects GATA6L and GATA6S

Studies of GATA6 phosphorylation have largely focused on its posttranslational regulation 

by MAPKs (106–108). However, GATA6 is reportedly phosphorylated on Ser436 (Ser290 in 

GATA6S) and stabilized upon prolonged mechanistic target of rapamycin complex 1 

(mTORC1) inhibition with rapamycin and subsequent feedback activation of Akt2 in 

vascular smooth muscle cells (VSMCs) (109). Our mass spectrometry data on GATA6L did 

not include peptides containing Ser436; thus, we could not rule out a role for Akt as a 

GATA6 kinase activated by insulin stimulation.

To determine whether Akt-catalyzed stabilization of GATA6 was relevant to our study, we 

treated HT-29 cells with the mTORC1 inhibitor rapamycin for 3 hours and monitored targets 

by quantitative immunoblotting (51). As expected, rapamycin eliminated phosphorylation of 

ribosomal protein S6 and increased phosphorylation of Akt by about twofold; however, the 
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abundances of GATA6S and GATA6L were essentially unchanged (Fig. 5A). In the context 

of IFNγ pretreatment and TNF-insulin stimulation, we found that rapamycin treatment for 3 

hours altered the distribution of GATA6 forms by decreasing the abundance of GATA6L 

relative to the abundance of GATA6S (fig. S9). The mechanism reported in VSMCs (109) 

might be restricted to mesodermal tissues, so we repeated the experiment in AC16 

ventricular cardiomyocytes (110). In these cells, S6 phosphorylation disappeared without 

subsequent feedback activation of Akt, and yet, GATA6S abundance increased modestly 

after 3 hours as reported in VSMCs (Fig. 5B) (109). Critically, under the same conditions in 

AC16 cells, we did not observe any alterations in the abundance of GATA6L. These 

experiments illustrated that Akt feedback activation could be uncoupled from GATA6 

stabilization, as could the posttranslational regulation of its long and short forms.

 GSK3-dependent phosphorylation of Ser37 accelerates GATA6L turnover

To assess the importance of the GATA6L phosphorylation sites, we transfected single alanine 

mutants of Ser33, Thr34, and Ser37 or the triple mutant (3×SA) into 293T cells, cells in 

which GATA6L phosphorylation has been detected previously (105). Compared to the wild-

type allele, we noted a pronounced electrophoretic downshift in the major FLAG-

immunoreactive band of the Ser37 and 3×SA mutants (Fig. 6A). The mobility shift was 

larger than that expected for a single phosphorylation site, suggesting that Ser37 

phosphorylation was required for other phosphorylation events within GATA6L. Iterative 

phosphorylation-dependent phosphorylation is characteristic of many GSK3 substrates, such 

as glycogen synthase (GS) (111).

Careful inspection of endogenous GATA6L immunoreactivity in HT-29 extracts revealed a 

slower migrating species that was similar to the electrophoretic shifts observed in 293T cells 

transfected with the phosphorylation-deficient mutants. We isolated this species from the 

faster migrating GATA6L through Phos-tag electrophoresis (112) followed by Gaussian 

mixture modeling of the densitometric traces (see Materials and Methods). Acute TNF 

treatment reduced the upper form of GATA6L but with a concomitant increase in the lower 

form, such that total GATA6L abundance was not altered (Fig. 6B). Costimulation with 

insulin or pretreatment with the GSK3 inhibitor CT99021 (113) did not alter the GATA6L 

downshift, despite insulin increasing GSK3 phosphorylation and CT99021 decreasing GSK3 

activity (Fig. 6, C and D, and fig. S10). Because GATA6 mRNA was not induced by TNF 

(Fig. 4I), these results indicated that GATA6L is dephosphorylated on some residues in 

response to TNF stimulation.

Our next goal was to evaluate the specific impact of Ser37 phosphorylation on GATA6L in 

HT-29 cells. One challenge was that the endogenous abundance of GATA6S was high 

compared to GATA6L (Fig. 5A), which could confound interpretations of ectopically 

expressed proteins. Therefore, we inducibly knocked down endogenous GATA6 with short 

hairpin RNA and added back epitope-tagged versions of wild-type or S37A GATA6L so that 

the abundance was comparable to total endogenous GATA6 (Fig. 6, E and F; see Materials 

and Methods). Doxycycline-induced addback in HT-29 cells recapitulated the 

electrophoretic mobilities of GATA6L that were observed in transfected 293T cells. The data 
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suggested that the GATA6L modifications are not artifacts of overexpression, enabling use of 

the addback cells to examine the consequences of Ser37 phosphorylation.

Because GSK3 phosphorylation often accelerates substrate turnover (114), we combined the 

Phos- tag analysis with the HT-29 addback lines to estimate half-lives of wild-type and 

S37A GATA6L. We combined inhibition of protein synthesis with TNF stimulation to enrich 

for the lower migrating form of wild-type GATA6L in the addback cells. Under these 

conditions, we found that the half-life of more phosphorylated GATA6L was more than 

twice that of the wild-type GATA6L form that was less phosphorylated (Fig. 6, G and H). 

Surprisingly, the half-life of the S37A mutant was comparable to that of the more 

phosphorylated form of GATA6L, suggesting that phosphorylation of Ser37 without 

subsequent additional phosphorylation renders GATA6L unstable. Ser37 resides in the 

middle of a proline-glutamate-serine-threonine (PEST) degradation motif of GATA6L, and 

this motif scores more strongly as a PEST motif than those in other well-known unstable 

proteins (Fig. 4J and table S1) (115, 116). Ser37 phosphorylation might activate or expose 

the PEST sequence for rapid proteolytic degradation of GATA6L, whereas additional 

phosphorylation at other sites could inhibit substrate recognition (115).

To monitor Ser37 phosphorylation specifically, we raised and affinity-purified a phospho-

specific antibody against a monophosphorylated peptide fragment of the PEST sequence in 

GATA6L (see Materials and Methods; fig. S11). If Ser37 modification were a prerequisite for 

subsequent phosphorylation, then the antibody would capture this initial phosphorylation 

event of GATA6L, with the caveat that phosphorylation on Ser33 and Thr34 would ultimately 

disrupt the antibody epitope. To evaluate the phospho-Ser37 antibody, we reassessed the 

immunoreactivity of total GATA6. The predicted molecular weights of GATA6S and 

GATA6L are 45.4 and 60 kD, respectively. However, extensive posttranslational 

modifications (Fig. 4K) cause most GATA6S and GATA6L to run at an apparent molecular 

weight of ~54 kD and ~69 to 75 kD depending on electrophoresis conditions (Fig. 7A). 

Multiply phosphorylated GATA6S (~54 kD) can be misinterpreted as unmodified GATA6L 

(60 kD). Upon long exposure with a total GATA6 antibody, we revealed an additional 

immunoreactive band at ~60 kD that was eliminated by GATA6 knockdown and 

reconstituted with addback of wild-type GATA6L and the S37A mutant (Fig. 7A). In contrast 

to the 75-kD form (Fig. 6E), the ~60-kD form of wild-type GATA6L was significantly less 

abundant than the S37A mutant (Fig. 7B), consistent with decreased stability. We interpreted 

the ~60-kD band as the unmodified form of GATA6L.

Endogenous Ser37 phosphorylation of the 75 and 60-kD GATA6L forms was not detectably 

altered in response to TNF treatment for 1 hour or CT99021 treatment for 6 hours (Fig. 7, C 

and D). However, the endogenous 60-kD phospho-GATA6L signal was barely above the 

detection limit and thus highly variable (coefficient of variation, ~40%), yielding only ~50% 

statistical power for detecting a 1.5-fold change. To evaluate phosphorylation of endogenous 

GATA6L on Ser37, we serum- starved the HT-29 cells to produce a stronger activation of 

GSK3 and confirmed specificity of the phosphorylation events with CT99021 pretreatment 

for 1 hour (Fig. 7, E and F). As expected, serum starvation reduced GSK3 phosphorylation 

(increasing GSK3 activity) and increased phosphorylation of GS (Fig. 7F). CT99021 

reduced GS phosphorylation and total GSK3 abundance but also transiently increased total 
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GS. Notably, within 1 hour of serum withdrawal, we observed a robust increase in the 60-kD 

form of phospho-GATA6L, which coincided with the timing of GSK3 dephosphorylation 

and was blocked by CT99021 in a dose-dependent manner (Fig. 7E and fig. S12). By 

contrast, phospho-Ser37 immunoreactivity of the 75-kD form of GATA6L was not altered by 

serum starvation or CT99021 treatment, suggesting that Ser37 was already stably 

phosphorylated in this form of GATA6L.

Total abundances of the different forms of GATA6L also showed dynamic changes. GATA6L 

at 75 kD and GATA6S decreased significantly with CT99021 treatment, whereas GATA6L at 

60 kD increased compared to uninhibited control cells that were serum-starved (P < 0.05, 

two-way ANOVA). The time-dependent changes in 60-kD GATA6L abundance mirrored the 

changes in total GS and inversely correlated with changes in 60-kD GATA6L 

phosphorylation at Ser37 (Fig. 7, E and F). These experiments provide further evidence that 

Ser37 is a site phosphorylated by GSK3 and that phosphorylation at this site promotes 

turnover of GATA6L in the absence of phosphorylation at additional sites.

With greater confidence in the phospho-GATA6L (Ser37) antibody, we revisited the original 

biological context of IFNγ-pretreated HT-29 cells stimulated with TNF and insulin. To 

enable detection, we immunoprecipitated cell extracts with phospho-GATA6L (Ser37) 

antisera and immunoblotted for total GATA6 (Fig. 7G). An extended electrophoresis was 

required to separate the 60-kD form from the heavy chain of the immunoprecipitating 

antibody, causing a smear of immunoreactivity rather than a discrete band (see Materials and 

Methods). In response to TNF alone, we repeatedly observed a drop in 75-kD, but not 60-

kD, GATA6L phosphorylation (Fig. 7H), corroborating the dephosphorylation previously 

noted by Phos-tag electrophoresis (Fig. 6B). Moreover, the reduction in 75-kD phospho-

GATA6L (Ser37) was blocked by insulin costimulation, indicating a specific point of 

crosstalk between TNF and insulin. Insulin, by contrast, independently elevated the 

abundance of 60-kD GATA6L phosphorylation, suggesting that insulin delays the turnover of 

this form beyond its effect on Ser37 phosphorylation. We conclude that the phosphorylation 

of endogenous GATA6L at Ser37 is consistent with the antagonism and linear superposition 

in abundance of cluster #9 transcripts observed upon TNF + insulin stimulation (Fig. 4, A to 

D, and fig. S5).

 GSK3-dependent phosphorylation of Ser37 alleviates GATA6L repression of transcripts 
in the crosstalk cluster

We investigated the role of GATA6L phosphorylation in the regulation of transcripts 

subjected to TNF-insulin crosstalk. We inducibly overexpressed wild-type GATA6L in 

HT-29 cells (Fig. 8A) before stimulation with TNF for 2 hours and transcriptomic profiling 

by microarray (see Materials and Methods). GATA6 can act as either a transcriptional 

activator or repressor (117), but we found that, in the GATA6L-overexpressing HT-29 cells, 

the effects of GATA6L were predominantly repressive. Without stimulation, GATA6L 

overexpression induced 51 transcripts and repressed 136 transcripts at a 5% false -discovery 

rate (P < 10−10, binomial test) (file S4). TNF stimulation increased the number of genes 

affected by GATA6L overexpression, but the bias toward repression persisted (317 induced 

transcripts versus 438 repressed transcripts; P < 10−5, binomial test) (file S4). Notably, the 
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same repressive bias was observed for transcripts in the crosstalk cluster (Fig. 8B), and those 

with the strongest GATA6L-associated repression were among the clearest examples of 

TNF-insulin crosstalk (Fig. 4, A to C). Using chromatin immunoprecipitation (ChIP), we 

confirmed binding of GATA6L to consensus sites within the promoters of many TNF-insulin 

crosstalk genes (fig. S13), suggesting that repression is direct.

If GATA6L mediates the insulin-stimulated repression of the crosstalk cluster and is 

stabilized by inhibition of the GSK3 pathway, then phosphorylation of Ser37 would provide 

a mechanism for TNF-insulin crosstalk. Furthermore, the S37A mutant of GATA6L should 

mimic the effect of insulin on TNF-stimulated gene expression for transcripts in the 

crosstalk cluster and dampen the crosstalk observed when insulin is added to S37A mutant 

cells. We tested this prediction with the wild-type and S37A addback lines (Fig. 6, E and F), 

inducing GATA6L and then stimulating with TNF, insulin, or both. By qRT-PCR, we 

identified multiple instances in which S37A addback reduced transcript abundance similar to 

that observed in wild-type addback cells stimulated with insulin (Fig. 8C, green). We also 

found many examples in which TNF + insulin–induced transcript abundance was higher in 

S37A addback cells compared to wild-type addback cells (Fig. 8C, purple) and more similar 

to TNF-treated cells, suggesting reduced crosstalk. Analysis of the entire cluster #9 data set 

revealed significant interactions between GATA6 and TNF or insulin (interaction P < 10−3, 

five-way ANOVA), indicating that the Ser37 genotype alters the transcriptional response to 

both stimuli. Together, our data support a model whereby TNF promotes and insulin inhibits 

the formation and degradation of GATA6L monophosphorylated on Ser37 (Fig. 8D). This 

phosphoregulation is ultimately reflected by the abundance of transcripts in the crosstalk 

cluster.

 Ser37 phosphorylation of different GATA6L forms is observed in diverse cell types

The model of GATA6L phosphorylation–mediated regulation (Fig. 8D) may be specific to 

HT-29 cells or could occur in other cell types. We immunoblotted various cell lines with the 

phospho-Ser37 antibody in comparison to affinity-purified antisera binding the 

nonphosphorylated peptide surrounding Ser37 (see Materials and Methods) and to other 

commercial GATA6 antibodies (100, 118). In HCT-8 and DLD-1 colorectal cancer lines, 

AC16 cardiomyocytes (110), and MCF10A-5E breast epithelial cells (119), we observed the 

60 and 75-kD forms of GATA6L, which were phosphorylated to variable extents according 

to phospho-Ser37 immunoreactivity (Fig. 9, A and B). Multiple GATA6 antibodies also 

recognized another species at ~100 kD (Fig. 9, A to D), suggesting that an even more 

phosphorylated form of GATA6L may remain to be characterized. The aggregate number of 

reported phosphorylation sites on GATA6L now exceeds 20 (Fig. 4K).

 DISCUSSION

Our study here introduces and implements tensor PLSR as an approach for structured 

biological data sets. Considering that signaling dynamics often occur in discrete temporal 

phases (49, 80, 120, 121), tensor PLSR provides an attractive means to deconstruct time -

course data in a systematic manner. Although the mathematics has been established for 

decades (59), data types that can exploit the tensor framework are relatively new to cell 
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signaling. For tensor generation, a multiplex technique that simply measures many genes or 

proteins is insufficient. The method must also be cost-effective, reproducible, and scalable 

for repeated use across multiple treatments, time points, and perturbations. The newest 

technologies rarely meet these criteria, prompting our use of long-established methods at a 

scale not typically considered.

We applied tensor PLSR with the goal of discovering molecular mechanisms that connect 

signaling to transcriptional regulation. Ideally, the mechanisms would involve proteins not 

originally included in the systematic data set. Systems-level studies rarely uncover these 

“hidden nodes” and validate them experimentally like we achieved here for GATA6L (25, 

122). Testing model- or bioinformatics-derived predictions requires a skill set entirely 

different from the one needed to perform the analysis. Our findings argue for the benefits of 

dual training, where computationalists work at the bench and experimentalists use 

quantitative models, gaining an appreciation for the thematic similarities in each approach. 

For example, just as modeling assumptions should be subjected to falsification (31), we 

sought to challenge the prevailing biological assumptions about GATA6 and its different 

forms.

The deceptive electrophoretic mobilities of GATA6S and GATA6L have important 

implications for biological function. Although GATA6L is generally less abundant than 

GATA6S in most cell types, there is evidence that GATA6L is the more potent transcriptional 

regulator (99). GATA6 promotes the expression of the stem cell marker LGR5 in colorectal 

cancer (118, 123). Neither paper clarified whether the regulation occurs through GATA6L, 

GATA6S, or both. However, insulin-like growth factor inhibits GSK3 and promotes 

expansion of Lgr5+ stem cells in mice (81, 124). Our results indicate that one mechanism for 

this expansion is the stabilization of GATA6L.

The phosphorylation of Ser37 adds a GATA6L-specific mode of regulation to reports of 

posttranslational modifications that would presumably target both long and short forms 

(107–109). Although we were unable to reproduce the mechanism exactly (109), 

modification of Ser436 by Akt2 should coincide with the loss of Ser37 phosphorylation to 

stabilize GATA6L synergistically in contexts where both pathways operate. GATA6L 

phosphorylation–mediated regulation could prove important in endothelial cells, a TNF- and 

insulin-responsive cell type in which GSK3 and GATA6 interact as a complex (125). Our 

mass spectrometry study also uncovered other GATA6L-specific proline-directed 

modification sites (Thr62 and Ser137) that could function with the Ser266 site phosphorylated 

by extracellular signal–regulated kinase (ERK) (107, 108). Such complex layers of 

regulation should be expected of a transcription factor that is central to embryonic 

development and cell specification (95).

By coupling systematic experiments with statistical modeling approaches, such as tensor 

PLSR, one can identify relationships that would otherwise go unnoticed. Although it 

remains atypical to collect transcriptomic data as tensors, we expect widespread 

systematization of transcriptomics as expression -profiling costs drop. A model is just the 

first step, however, because the most surprising data-derived connections will require the 

identification of previously unrecognized mechanisms to explain them. These, in turn, 
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require hypothesis-driven experiments with the best molecular -genetic and pharmacologic 

perturbations available. For understanding how gene expression is controlled by complex 

stimuli, the integration of molecular biology and systems biology has yet to be fully 

exploited.

 MATERIALS AND METHODS

 Cell culture

HT-29, 293T, DLD-1, and HCT-8 cells were obtained from the American Type Culture 

Collection (ATCC) and cultured according to their recommendations. The 5E clone of 

MCF10A cells was cultured as described previously (119). AC16 cells (110) were purchased 

from M. Davidson (Columbia University) and cultured in Dulbecco’s modified Eagle’s 

medium/F-12 medium (Life Technologies) with 12.5% tetracycline-free fetal bovine serum 

(Clontech) and penicillin-streptomycin (Gibco).

 Cell stimulation

HT-29 cells were plated at 50,000 cells/cm2 for 24 hours, sensitized with human IFNγ (200 

U/ml) for 24 hours (Roche), and then treated with TNF (100 ng/ml; PeproTech), insulin (500 

ng/ml; Sigma), or both for the indicated times. HT-29 cells engineered to express GATA6L 

inducibly were treated with doxycycline (1 μg/ml) for 24 hours (overexpression) or 48 hours 

(addback) before cytokine stimulation.

 Plasmids

Wild-type GATA6L was amplified by PCR from HT-29 RNA that had been reverse-

transcribed with a GATA6-specific primer (CAAAAGCAGACACGAGTGGA). An N-

terminal 3×FLAG tag and a C-terminal 3×AU1 tag were added by PCR before cloning into 

the Bam HI and Sal I sites of pBabe puro (126) or the Mfe I and Spe I sites of 

pEN_TTmiRc2 (103). The pEN_TT donor vector containing GATA6L was then recombined 

with the pSLIK Neo destination vector (103) by using LR Clonase (Invitrogen). The 

shGATA6 sequence (CCCAGACCACTTGCTATGAAA; #TRCN0000005390 from the 

RNAi Consortium) was cloned into tet-pLKO-puro (127) as described previously (97). 

S33A, T34A, S37A, and 3×SA point mutants were prepared by site-directed mutagenesis 

(QuikChange II XL, Agilent). RNA interference–resistant mutants of wild-type and S37A 

GATA6L were prepared by introducing four silent mutations into the sequence targeted by 

shGATA6, which were replaced with rare mammalian codons that would minimize ectopic 

expression. The phosphorylation- and degradation-resistant IκBα super-repressor plasmid 

has been previously described (128). All DNA constructs were verified by sequencing.

 Production and purification of phospho-GATA6L (Ser37) antibody

The peptide sequence Ac-CREPSTPPpSPIS-amide was conjugated to keyhole limpet 

hemocyanin and used to immunize rabbits according to the manufacturer’s 

recommendations (Covance). Serum samples were tested by immunoblotting with positive 

and negative controls for phospho-GATA6L (Ser37). Serum pooled from the production and 

terminal bleeds was negatively selected on a CREPSTPPpSPIS peptide–conjugated N-

hydroxysuccinimide (NHS)–Sepharose column. The bound immunoglobulin G (IgG) was 
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eluted as the non–phospho-GATA6L custom antibody while the flow through was exposed to 

a second CREPSTPPpSPIS peptide–conjugated NHS Sepharose column. The bound IgG 

was eluted as the phospho-GATA6L (Ser37) antibody and used for detection by 

immunoblotting.

 Lentiviral packaging and transduction

Lentiviruses were prepared in human embryonic kidney (HEK) 293T cells (ATCC) by 

calcium phosphate transfection of the lentivector together with psPAX2 and pMD.2G 

(Addgene). Lentiviral transduction of HT-29 cells was performed as described previously 

(96). Transduced cells were selected in growth medium containing 2 puromycin (2 μg/ml) or 

G418 (600 μg/ml) until control plates had cleared. For addback experiments, viral titers were 

reduced to ensure single-virion transductants that matched the endogenous protein 

abundance as closely as possible.

 Microarray profiling

HT-29 cells were plated at 50,000 cells/cm2 for 24 hours and sensitized with IFNγ (200 

U/ml; Roche) for 24 hours before stimulation with TNF (0, 5, or 100 ng/ml), EGF (0, 1, or 

100 ng/ml), and insulin (0, 5, or 500 ng/ml) for 4, 8, or 16 hours. RNA isolation was 

performed with the RNeasy Mini Kit (Qiagen), and integrity of purified RNA was confirmed 

on a Bioanalyzer (Agilent). Preparation of labeled complementary RNA, hybridization to 

GeneChip Human Genome U133A Arrays (Affymetrix), microarray scanning, and 

microarray processing were performed as previously described (129).

For inducible GATA6L overexpression, stably transduced HT-29 cells were plated at 50,000 

cells/cm2 for 24 hours, induced with doxycycline (1 μg/ml), and sensitized with IFNγ (200 

U/ml Roche) for 24 hours before stimulation with TNF (100 ng/ml) for 2 hours. RNA was 

purified as described above and amplified with the Illumina TotalPrep-96 RNA 

Amplification Kit (Life Technologies) before hybridization to a HumanHT-12 v4 Expression 

BeadChip.

 Hierarchical and CLICK clustering

One-way hierarchical clustering of the signaling and transcriptomic compendia was 

performed in MATLAB with the clustergram function using Euclidean distance and Ward’s 

linkage after row standardization. CLICK clustering was performed as described (78) with 

the default homogeneity parameter.

 Tensor PLSR

Tensor PLSR was performed in MATLAB with version 2.02 of the NPLS Toolbox (130). 

The signaling compendium was structured by stimulus condition (mode 1), time point (mode 

2), and measured signal (mode 3). The transcriptomic profiles were structured by stimulus 

condition (mode 1), time point (mode 2), and CLICK gene cluster (mode 3). Both data 

tensors were mean-centered along mode 1 and variance-scaled along modes 2 and 3 before 

calculation of latent variables (131). The scores and time weights of LV#4 of the signaling 

tensor were both multiplied by –1 to improve model interpretability. Randomized models 

were constructed in MATLAB with the shuffle matrix function applied within each stimulus 
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condition before preprocessing and calculation of latent variables. The code for the tensor 

PLSR models is included in file S3.

 Bioinformatic analyses of crosstalk cluster

The 20 transcripts from cluster #9 confirmed present by qRT-PCR were submitted to three 

promoter analysis algorithms. First, the proximal promoter of each transcript [defined as 

2000 base pairs (bp) upstream and 500 bp downstream of the transcription start site] was 

collected from National Center for Biotechnology Information (NCBI) and used as an input 

set for MEME, which uses expectation maximization to define recurrent motifs in a set of 

sequences (132). The top five enriched motifs were searched against a database of 843 

binding specificities (133) using TOMTOM (134) to identify known transcription factor 

recognition sequences. A GATA motif was also enriched when using 2000 bp of upstream 

sequence alone or 1500 bp of upstream sequence and 500 bp of downstream sequence.

Expression-verified cluster #9 transcripts were additionally analyzed with DiRE (86), which 

uses interspecies sequence conservation to define motifs that are searched against the 

TRANSFAC 10.2 database of roughly 400 transcription factor binding motifs. In DiRE, the 

occurrence metric reflects the overall frequency of a conserved binding motif in the input 

data set, whereas the importance metric reflects the specificity of the binding motif to the 

input data set compared to a background data set of 5000 randomly selected genes. The top 

20 motifs based on occurrence were used as the DiRE predictions.

Last, X2K (92) was used to identify bioinformatic connections between cluster #9 

transcripts and signaling pathways. X2K integrates the ChEA database (135) of transcription 

factor binding sites detected by ChIP, the JASPAR and TRANSFAC position weight 

matrices, as well as various protein-protein interaction and kinase-substrate databases to 

connect kinase signaling events to gene expression patterns. The top 20 transcription factors 

linked to signaling and cluster #9 transcripts in a 2011 analysis were used as the X2K 

predictions.

 Quantitative RT-PCR

RNA from cultured cells was isolated with the RNeasy Plus Mini Kit (Qiagen) according to 

the manufacturer’s protocol. First-strand complementary DNA synthesis and qRT-PCR were 

performed as described (63). Parental HT-29 samples were normalized to the geometric 

mean of GAPDH, HINT1, PPIA, and PRDX6. GATA6L addback samples were normalized 

to the geometric mean of GAPDH, HINT1, PPIA, PRDX6, B2M, and GUSB. Primer 

sequences are available in table S2.

 Mass spectrometry

HT-29 cells stably expressing doxycycline-inducible 3×FLAG-GATA6L were induced with 1 

doxycycline (1 μg/ml) for 24 hours and lysed in NP-40 lysis buffer plus protease and 

phosphatase inhibitors (51). Protein extract (60 mg) in 6-ml volume was first cleared with 50 

μl of mouse IgG–agarose beads (Sigma) for 1 hour at 4°C on a nutator. The cleared lysates 

were subjected to immunopurification using 80 μl of anti-FLAG M2 affinity gel (Sigma) for 

3 to 4 hours followed by two washes with NP-40 lysis buffer, one wash with 500 mM NaCl, 
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and one wash with tris-buffered saline. Immunoprecipitates were eluted with 3×FLAG 

peptide (500 ng/ml; Sigma) in 100 μl for 30 min at 4°C on a nutator. The eluate was 

concentrated using an Amicon ultra centrifugal filter (Millipore), and samples were prepared 

in dithiothreitol-containing Laemmli sample buffer and separated by SDS polyacrylamide 

gel electrophoresis on an 8% polyacrylamide gel followed by Coomassie brilliant blue 

staining. The stained bands were cut and subsequently reduced, alkylated, and digested with 

trypsin, chymotrypsin, or pepsin. Peptides from each enzymatic digestion were acrylamide-

extracted and subjected to liquid chromatography–mass spectrometry on a Thermo Electron 

Orbitrap Velos ETD mass spectrometer system. The data were analyzed using the Sequest 

search algorithm against the International Protein Index human proteome database and the 

predicted GATA6 protein sequence. Full mass spectrometry details are available in texts S1 

and S2.

 Immunoblotting

Quantitative immunoblotting was performed as described previously in detail (51) with 

primary antibodies recognizing the following proteins or epitopes: phospho-GATA6L (Ser37, 

Covance, 1:1000 for crude antiserum and 1:500 after affinity purification), non–phospho-

GATA6L (Ser37, Covance, 1:500), GATA6 (D61E4, Cell Signaling Technology #5851, 

1:2000), GATA6 (H-92, Santa Cruz Biotechnology #9055, 1:600), phospho-GS (Ser641, Cell 

Signaling Technology #3891, 1:1000), GS (Cell Signaling Technology #3893, 1:1000), 

GSK3α (Cell Signaling Technology #9338, 1:1000), phospho-GSK3α (Ser21, Cell Signaling 

Technology #9316, 1:1000), phospho-Akt (Ser473, Cell Signaling Technology #4060, 

1:1000), Akt (Cell Signaling Technology #9272, 1:1000), phospho-S6 (Ser240/244, Cell 

Signaling Technology #5364, 1:1000), S6 (54D2, Cell Signaling Technology #2317, 

1:1000), FLAG (M2, Sigma #F1804, 1:10,000), β-actin (Ambion #4302, 1:5000), vinculin 

(Millipore #05-386, 1:10,000), GAPDH (Ambion #4300, 1:20,000), tubulin (Abcam 

#89984, 1:20,000), and p38 (C-20, Santa Cruz Biotechnology #535, 1:5000). Membrane 

blocking, antibody probing, and near-infrared fluorescence detection were performed as 

described (51), except for phospho-GATA6 (Ser37) immunoblotting, where blocking with 

5% nonfat skim milk and use of tris-buffered saline buffers were required.

Phos-tag immunoblotting was performed on a 6% polyacrylamide gel containing 10 μM 

Phos-tag acrylamide AAL-107 (Wako Chemicals) and 0.1 μM MnCl2. Gels were run with 

WIDE-VIEW prestained protein markers under constant current (40 mA) for 170 min. 

Before electrophoretic transfer, gels were incubated with 1 mM EDTA in modified Towbin’s 

transfer buffer (51) for 15 min. Membrane blocking, antibody probing, and near-infrared 

fluorescence detection were then performed as described (51).

For Gaussian mixture modeling of GATA6L forms, raw 16-bit pixel intensities were 

integrated horizontally across each lane and then plotted along the vertical dimension. Using 

the fit function in MATLAB, the vertical trace was fit by nonlinear least-squares to the 

following function:
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where f(x) is height of the vertical trace as a function of the vertical position x, b is a fixed 

background, w1 and w2 are the relative weights of the two bands, μ1 and μ2 are the mean 

vertical positions of the two bands, and σ2 is a shared variance for the two bands. 

Normalized versions of w1 and w2 were taken as the relative band densities for the two 

forms.

 Phospho-GATA6L (Ser37) immunoprecipitation

HT-29 cells were plated at 75,000 cells/cm2, pretreated with human IFNγ for 24 hours 

(Roche), and then treated with TNF (100 ng/ml; PeproTech), insulin (500 ng/ml; Sigma), or 

both for 1 hour. Cells were lysed in NP-40 lysis buffer (51) supplemented with 10 mM 

sodium pyrophosphate and 30 mM sodium fluoride, and ~4 mg of cellular extract (adjusted 

according to total GATA6L abundance based on immunoblotting) was incubated with 10 μl 

of phospho-GATA6L (Ser37) antiserum overnight on a nutator at 4°C. The following day, 30 

μl of Protein A/G Plus UltraLink resin (Thermo) was added to the immune complexes for 1 

hour on a nutator at 4°C. Beads were washed twice with ice-cold supplemented NP-40 lysis 

buffer and twice with ice-cold phosphate-buffered saline (PBS) before elution in Laemmli 

sample buffer (136). Samples were electrophoresed on a 10% polyacrylamide gel for 3 to 5 

hours (until the 50-kD marker reached the bottom of the gel) before proceeding with 

quantitative immunoblotting as described (51). Densitometry was performed by integrating 

the pixel intensity (without lane-specific background subtraction) of the 75-kD band and, for 

the 60-kD form, the intensity between the 75-kD band and the upper shoulder of the 

immunoprecipitating antibody heavy chain (file S5).

 Chromatin immunoprecipitation

Five million wild-type and S37A GATA6L-addback HT-29 cells were seeded in 10-cm 

culture plates for 24 hours before inducing knockdown-addback with doxycycline (1 μg/ml) 

for 48 hours. Cells were fixed for 7 to 10 min by adding a 37% formaldehyde stock to the 

culture medium to a final concentration of 1%. Fixation was quenched with 1/20 volume of 

2.5 M glycine for 7 to 10 min at room temperature. Cells were washed twice with cold PBS, 

scraped into 1 ml of PBS, and centrifuged at 400 relative centrifugal force (rcf) for 3 min. 

The cell pellets from four 10-cm plates were combined and lysed in ChIP lysis buffer (96) to 

a final volume of 1.5 ml. Lysates were incubated on ice for 10 min and then sonicated using 

a Branson digital sonifier for 5 min at 40% amplitude with 0.7 s “on” and 1.3 s “off” pulse 

cycles. After centrifugation at 14,000 rcf for 20 min, the supernatant was collected, and 20 

μl of the soluble chromatin was retained as the input fraction. Soluble chromatin was diluted 

10-fold in dilution buffer (96), precleared with 100 μl of mouse IgG–conjugated agarose 

beads (Sigma) for 4 hours at 4°C with constant agitation, and then incubated with 100 μl of 

anti-FLAG M2 affinity gel (Sigma) or mouse IgG–conjugated agarose beads overnight at 

4°C with constant agitation. Agarose beads were collected and washed as previously 

described (96). DNA from the beads and the input fraction was eluted by reversing 

methylene cross-links with 500 μl of elution buffer (96) at 65°C for 5 hours. Samples were 

then treated with ribonuclease (100 μg/ml) for 30 min at 37°C and proteinase K (200 μg/ml) 

for 90 min at 50°C, followed by phenol-chloroform extraction. The aqueous fraction was 

ethanol-precipitated, washed once in 70% ethanol, air-dried, and dissolved in nuclease-free 

water. The samples were diluted 10-fold in nuclease-free water and quantified by PCR with 
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primers designed for proximal promoter regions of selected crosstalk genes (123). Primer 

sequences are available in table S3.

 Statistical analysis

Microarray data were analyzed by four-way ANOVA (factors: TNF, EGF, insulin, and time) 

in MATLAB with the anovan function at a false discovery rate of 5% (file S1). qRT-PCR 

data of cluster #9 genes were analyzed by four-way ANOVA (factors: transcript, TNF, 

insulin, and time) or, for GATA6L addback, by five-way ANOVA (factors: GATA6L 

genotype, transcript, TNF, insulin, and time) in MATLAB with the anovan function after log 

transformation. Half-lives of GATA6L forms were estimated by nonlinear least-squares 

curve fitting to the following function:

where g(t) is the relative band intensity as a function of time t, c is the scaling coefficient, b 
is a fixed background, and τ1/2 is the half-life. Differences in means were assessed by 

Welch’s t test, and differences in geometric means were assessed by Welch’s t test after log 

transformation. One- or two-sidedness was based on previous evidence or expectation for a 

directional change. Tests for enrichment were performed by binomial test. Differences 

between immunoblotting time courses were assessed by two-way ANOVA.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. A compendium of ligand--induced signals and transcriptional responses
(A) Overview of the experimental design. HT-29 cells were pretreated with IFNγ, stimulated 

with various combinations and concentrations of TNF, EGF, and insulin, and profiled for the 

indicated signaling receptors, adaptors, and effectors by kinase assay (KA), immunoblot 

(IB), or antibody array (AA) and for the associated transcriptomic signatures by microarray. 

The goal is to determine whether global ligand-induced mRNA regulatory states (Y) can be 

predicted from the upstream signaling network activation (X). (B) Hierarchical clustering of 

the signaling compendium for saturating (High) and subsaturating (Low) concentrations of 

TNF, EGF, and insulin (42, 43). Data are means of n = 3 to 6 independent biological 

replicates. (C) Hierarchical clustering of the dynamic transcriptomic responses resulting 

from the ligand combinations in (B). Data are means of n = 2 independent biological 

replicates.
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Fig. 2. Structuring and modeling biological data sets as tensors
(A) Structured data sets are conventionally unfolded with time to create a concatenated data 

matrix of ns signals and nt time points. Using the unfolded matrix, data-driven modeling 

approaches (20) treat each time point of each signal as a separate predictor variable, yielding 

ns × nt regression (regr) coefficients that must be inferred. (B) Recasting stimulus-signal-

time data sets as a third-order tensor. The tensor structure (X) considers each time point as a 

predictor variable for all signals and each signal as a predictor variable for all time points, 

resulting in ns + nt regression coefficients and thus a more parsimonious model. (C) A 

dependent third-order transcriptomic tensor (Y) structured by stimulus, nc gene clusters, and 

nt2 time points. (D) Decomposing third-order data tensors as sums of latent variables 

composed of triple products. The decomposed tensor for each latent variable is reconstructed 

as the triple product (purple) of a scores vector (t or u) and two weight vectors (wj and wk or 

ql and qm). Latent variables are iteratively calculated to capture the maximum covariance 

between X and Y that remains from the preceding latent variable. X and Y are connected by 

a linear inner relationship between t and u with slope = b. (E) Prediction with tensor models 

involves projecting a new stimulus onto the latent variables of X, predicting the dependent 

scores vector u from the linear inner relationship (u = bt), and then backprojecting onto the 

latent variables of Y.
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Fig. 3. A tensor PLSR model linking ligand-induced signaling and changes in transcript 
abundance
(A) Time-unfolded measurements of transcriptional clusters (blue) compared to cross-

validated predictions of the tensor PLSR model (brown). Standardized z scores of measured 

transcriptional clusters are means ± SD of n = 897 (#1), 841 (#2), 119 (#3), 106 (#4), 66 

(#5), 49 (#6), 42 (#7), 33 (#8), and 26 (#9) probe sets (file S2). High (H) indicates saturating 

concentration of ligand, 0 indicates absence of ligand, and low (L) indicates subsaturating 

concentration of ligand. (B) Latent variable time weights for the signaling and 

transcriptomic tensors. LV#4 has a negative inner relationship (orange), indicating that LV#4 

signaling is anticorrelated with LV#4 transcription. (C to E) Projections of the indicated 

stimulus conditions (C), signals (D), and transcriptional clusters (E) onto LV#3 and LV#4. 

For (D) and (E), the null projections of reshuffled data tensors are means (solid gray) ± SD 

(dashed gray) of n = 500 randomizations (79). In (D), the type of assay used to measure the 

signaling protein is indicated in parentheses (see Fig. 1A for details). ClvC8, cleaved 

caspase 8; ProC3, procaspase 3; ProC8, procaspase 8; lowercase p prefix represents 

phosphorylated protein; lowercase t prefix represents total protein; lowercase pt prefix 

represents XXX.
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Fig. 4. Multipronged bioinformatics of TNF-insulin crosstalk suggests posttranslational 
regulation from GSK3 to GATA6
(A to D) qRT-PCR validation of selected cluster #9 transcripts upon pretreatment of HT-29 

cells with IFNγ and stimulation with TNF with or without insulin for 2 hours (A and B) or 6 

hours (C and D)). Data are geometric means ± log-transformed SEM of n = 4 or 16 

biological replicates. Full cluster #9 data are shown in fig. S5. (E) Promoter bioinformatics 

(86, 92, 93) suggest GATA and TCF4 as candidate regulators of TNF-insulin crosstalk. (F) 

Relative copy number estimates (96, 97) for the six GATA isoforms in HT-29 cells. Data are 

medians ± range of n = 3 biological replicates. n.d., not detected. (G to I) Transcriptional 

dynamics of GATA isoforms in response to TNF and insulin. Data are geometric means ± 

log-transformed SEM of n = 4 or 8 biological replicates. (J) Scansite (98) identification of 

candidate GSK3 phosphorylation sites (red). Each site’s percentile rank is averaged across 

the indicated sequences. (K) Phospho-mass spectrometry identifies 11 phosphorylation sites 

on GATA6L. Previously unreported sites (New) are shown below the primary sequence, 

those consistent with reports in the literature (104) (Reported) are shown above, and 

reported sites not detected in this study are gray. Start methionines (arrows) for the long and 

short forms are indicated along with the conserved GATA core and zinc finger (ZnF) 

domains.
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Fig. 5. GATA6L abundance is not altered by prolonged rapamycin treatment or feedback 
phosphorylation of Akt
(A) HT-29 cells exhibit rapamycin-induced feedback phosphorylation of Akt, but do not 

stabilize GATA6. a.u., arbitrary units. (B) AC16 cells exhibit stabilization of GATA6S, but 

not GATA6L, without rapamycin-induced feedback phosphorylation of Akt. Vinculin,, 

tubulin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) used as loading controls 

(51). Quantitative immunoblot data are means ± SEM of n = 4 biological replicates across 

two separate experiments.
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Fig. 6. Extensive phosphorylation of GATA6L is blocked by S37A mutation, reversed by TNF 
stimulation, and stabilized in HT-29 cells
(A) Electrophoretic mobility of FLAG-tagged GATA6L is downshifted upon S37A mutation 

in lipofected 293T cells. (B) Phos-tag electrophoresis (112) reveals that TNF stimulation for 

1 hour causes the dephosphorylation of GATA6L. (C and D) Phos-tag electrophoresis (C) 

and quantification (D) of the upper and lower forms of GATA6L in response to IFNγ 

sensitization for 24 hours, pretreatment with 1 μM CT99021 for 1 hour, and stimulation with 

TNF or insulin for one1 hour. Data are median proportion ± range of n = 3 biological 

replicates. (E and F) Doxycycline (DOX)–inducible addback in HT-29 cells replaces 

endogenous GATA6S with epitope-tagged GATA6L. Cells were treated with doxycycline (1 

μg/ml) for 48 hours. (G and H) The less phosphorylated form of wild-type (WT) GATA6L is 

unstable. Cells were treated with TNF (100 ng/ml) + 50 μM cycloheximide for the indicated 

times, and half-lives were estimated by nonlinear least-squares curve fitting. Quantitative 

immunoblot data are means ± SEM of n = 3 (F and H) or 5 to 6 (B) biological replicates.

Chitforoushzadeh et al. Page 34

Sci Signal. Author manuscript; available in PMC 2017 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. Phosphorylation and destabilization of endogenous GATA6L at 60 kD
(A) Knockdown (shGATA6) and FLAG-tagged addback of GATA6L at ~60 kD (red). 

Samples were immunoblotted for total (modified and unmodified) GATA6 (upper), FLAG 

(lower), and the indicated loading controls. (B) Destabilization of the 60-kD form of WT 

GATA6L compared to the S37A-mutant addback cells. (C and D) Endogenous phospho-

GATA6L (Ser37) immunoreactivity is not detectably affected by stimulation with TNF for 1 

hour, inhibition with 20 μM CT99021 for 6 hours, or both. (E and F) Phosphorylation and 

destabilization of the 60-kD form of GATA6L upon serum starvation. Specificity was 

confirmed by preincubation of cells with 20 μM CT99021 for 1 hour before serum 

starvation. (G and H) Phospho-GATA6L (Ser37) immunoprecipitation and total GATA6 

immunoblot of HT-29 cells pretreated with IFNγ and stimulated with TNF ± insulin for 1 
hour. The gamma of the immunoprecipitation image is set to 1.5 to minimize background 

from the immunoprecipitating antibody heavy chain. Input (0.5% input%) of each 

immunoprecipitate was immunoblotted for total GATA6 and the indicated loading controls. 
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See file S5 for details. Data are means ± SEM of n = 3 (B, E, F, and H) or 6 (C and D) 

biological replicates.
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Fig. 8. S37A mutation of GATA6L mimics and competes with the repression of transcript 
abundance in the TNF-insulin crosstalk cluster
(A) Doxycycline-inducible overexpression of WT GATA6L in HT-29 cells. Cells were 

treated with doxycycline (1 μg/ml) for 24 hours. (B) Ratio of TNF-induced transcript 

abundance for crosstalk cluster genes in the presence or absence of GATA6L overexpression. 

Data are mean ratios of n = 3 independent biological samples assessed by microarray 

profiling, with bias in the ratio assessed by two-sided binomial test. (C) S37A mutation of 

GATA6L mimics insulin stimulation (green) and antagonizes TNF-insulin crosstalk (purple). 

qRT-PCR data for cluster #9 genes in WT and S37A mutant (S37A) GATA6L addback cells 

pretreated with IFNγ and stimulated with TNF, insulin, or both for 2 or 4 hours. Data are 

row-standardized geometric means of n = 6 biological replicates across two separate 

experiments, with interactions between GATA6 status and TNF or insulin assessed by log-

transformed five-way ANOVA with the following factors: GATA6, transcript, TNF, insulin, 

and time. (D) Three-state conceptual model for GATA6L regulation by TNF and insulin and 

its relation to the crosstalk cluster of transcripts. Ovals annotate the figure subpanels 

supporting the links depicted.
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Fig. 9. Diversity of GATA6L forms across different cell lineages
(A to D) Arrows indicate the GATA6 forms confirmed earlier by knockdown or observed 

with multiple antibodies. Red asterisks indicate nonspecific bands. The MCF10A-5E and 

AC16 samples are on an immunoblot; HT-29, HCT-8, and DLD-1 are on another blot. The 

blots have been scaled to match. Data are representative of n ≥ 3 independent experiments.
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