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Abstract

Individuals with cerebral palsy frequently exhibit crouch gait, a pathological walking pattern 

characterized by excessive knee flexion. Knowledge of the knee joint moment during crouch gait 

is necessary for the design and control of assistive devices used for treatment. Our goal was to 1) 

develop statistical models to estimate knee joint moment extrema and dynamic stiffness during 

crouch gait, and 2) use the models to estimate the instantaneous joint moment during weight-

acceptance. We retrospectively computed knee moments from 10 children with crouch gait and 

used stepwise linear regression to develop statistical models describing the knee moment features. 

The models explained at least 90% of the response value variability: peak moment in early (99%) 

and late (90%) stance, and dynamic stiffness of weight-acceptance flexion (94%) and extension 

(98%). We estimated knee extensor moment profiles from the predicted dynamic stiffness and 

instantaneous knee angle. This approach captured the timing and shape of the computed moment 

(root-mean-squared error: 2.64 Nm); including the predicted early-stance peak moment as a 

correction factor improved model performance (root-mean-squared error: 1.37 Nm). Our strategy 

provides a practical, accurate method to estimate the knee moment during crouch gait, and could 

be used for real-time, adaptive control of robotic orthoses.

Index Terms

Cerebral palsy (CP); control of wearable robotic devices; crouch gait; knee joint moment; 
kinematic-kinetic joint coupling; rehabilitation robotics

 I. Introduction

Cerebral palsy (CP) is the most common child onset movement disorder [1]. Many 

individuals with CP exhibit crouch gait, a pathological walking pattern characterized by 

excessive bilateral knee flexion and elevated knee extensor joint moments [2]. This pattern 

increases the energy cost of walking [3], is associated with joint pain and pathology [4], and 

typically precipitates ambulatory decline in adulthood [5]. Wearable robotic devices, such as 
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power-assist knee orthoses, may be a potentially viable non-invasive treatment option to 

compensate for or ideally to improve crouch gait.

Understanding the mechanical behavior of the knee during crouch gait on an individual basis 

is necessary for the design and control of assistive devices because appropriately specifying 

the magnitude and timing of assistive torque is critical for eliciting a favorable 

biomechanical response. Knowledge of an individual’s dynamic knee stiffness and peak or 

instantaneous knee moments during crouch gait would be useful for fine-tuning the spring-

damper elements in quasi-passive orthoses [6] and customizing the motor control or assist 

settings of wearable robotic devices, which typically rely on joint moment feedback [7–9]. A 

measure of the instantaneous (i.e. real-time) internal joint moment would be particularly 

useful for motor controllers used in gait assistance because it would allow the adaptive 

application of an assistive torque as a percentage of the internal joint moment (Figure 1), an 

approach currently being pursued by the authors.

Using motorized assistance to treat crouch gait may have several possible outcomes because 

of the complex and multifaceted causes of this pathological gait pattern; an accurate 

estimation of knee joint moment may be beneficial regardless of the underlying etiology. 

Some individuals with crouch gait are unable to completely straighten their legs due to 

muscle tightness, spasticity, and/or contractures. In these cases it may be desirable for a 

robotic device to provide assistance that improves mobility without fully alleviating the 

crouched posture. Knowledge of the instantaneous joint moment during their unassisted 

crouch gait pattern would be useful for controlling a device under this scenario. For 

individuals who are capable of responding to a device which straightens the leg (e.g. 

weakness based crouch), an exoskeleton may be used to complement existing muscle 

activity to elicit a less crouched, corrected gait. In these cases, knowledge of the 

instantaneous joint moment during their baseline gait pattern could be used to standardize 

the amount of extension assistance among subjects. Ultimately, if an exoskeleton is used in a 

long-term rehabilitation paradigm, maintenance of muscle activity would be critical 

throughout treatment to avoid further weakening of the knee extensors. Knowledge of the 

knee joint moment during the modified gait pattern could be used to adjust the amount 

assistance in order to maintain a targeted amount of muscle activity that can hopefully be 

progressively decreased as strength increases.

While joint moments can be computed via gait analysis and modeling [2], this approach 

requires post-hoc computational analysis and is generally confined to a research laboratory 

because it requires expensive equipment and lengthy experimental procedures that limit 

utility for implementation in real world settings. It should be possible to estimate the kinetic 

behavior of the knee during crouch gait from statistical models based on anthropometric and 

kinematic relationships. Lower-extremity joints exhibit a coupling between kinematics and 

kinetics during walking in unimpaired individuals; portions of this coupling can be described 

as quasi-constant slope phases separated by transition periods [10]. Statistical models have 

been used to estimate the spring-like behavior (i.e. dynamic or quasi stiffness) of the knee 

during weight acceptance of normal walking [11], and quadriceps muscle force during 

crouch gait [12]. Fortunately, joint angles can be readily measured outside of a laboratory 
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setting using wearable sensors (i.e. goniometer), video analysis, or other affordable motion 

sensors [13].

The first goal of this study was to establish the moment-angle relationships of the knee 

during mild to moderate crouch gait and develop general form statistical models describing 

the key features of these relationships based on readily obtainable measures. We focused on 

the extrema of the knee extensor moment and dynamic stiffness during weight acceptance, 

as these parameters were deemed most relevant to the customization of clinical treatment 

and assistive devices. Our second goal was to evaluate the utility of applying the statistical 

models to estimate the instantaneous joint moment during weight-acceptance, which has 

implications for the design of motor control strategies for wearable robotic devices used in 

crouch gait rehabilitation. To accomplish these goals, we used experimental walking 

biomechanics data and computational modeling to quantify knee joint angles and moments 

during walking in patients with CP who would potentially qualify as candidates to use a 

powered exoskeleton. Next, we utilized this data set to establish statistical models that 

account for the variability of the mechanical behavior of the knee among patients with CP 

based on anthropometric and kinematic parameters.

 II. METHODS

 A. Subject and Experimental Data

We used experimental walking biomechanics data from 10 subjects with spastic diplegic CP. 

The data were collected at Gillette Children’s Specialty Healthcare, and made publically 

available on SimTK.org [14, 15]. The parents, guardians, and/or subjects in the dataset 

provided informed written consent prior to data collection. We selected participants from 

this dataset based on the following criteria: 1) they had at least one clean individual limb 

force plate strike, and 2) they walked with mild to moderate crouch gait (minimum knee 

flexion angle during stance between 15° and 50°). Participants had less than 30° of tibial or 

femoral torsion deformity. Participant information for the 10 subjects (of the 20) that met 

our criteria is presented in Table 1.

The experimental procedures for this dataset, reported in greater detail previously [14, 15], 

were as follows: reflective markers were placed on lower-extremity landmarks using a 

standard protocol [16]. Participants walked across the motion capture space barefoot, 

without assistance, and at their self-selected speeds. Ground reaction forces were collected 

from 4 in-ground force plates (AMTI, Watertown, MA, USA). Marker trajectories were 

measured using 12 motion capture cameras (Vicon, Oxford, UK).

 B. Computational Analysis

We used OpenSim [17] to calculate joint kinematics and kinetics from each experimental 

walking trial. First, a 19 degree of freedom (DOF) musculoskeletal model [18, 19] was 

scaled for each participant using anthropometric measures (segment lengths and body mass). 

Lower-extremity DOF included revolute ankle joints, a 1-DOF coupled knee mechanism 

with translations and rotations of the tibia prescribed by the knee angle, and ball and socket 

hip joints. Joint angles were determined using the method of inverse kinematics, which 
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minimizes the error between experimental and virtual marker trajectories. Joint moments 

were computed using the method of inverse dynamics, which solves the Newton-Euler 

equations of motion and determines the generalized forces necessary to reproduce each 

simulated walking trial based on the inertial properties of the model and the measured 

external ground reaction forces.

The joint kinematics and kinetics computed in OpenSim were normalized to percent gait 

cycle. The peak knee extensor moments during early and late stance were found by taking 

the maximum values during 0–20% and 40–60% of the gait cycle, respectively; the 

minimum knee extensor moment for mid stance was found by taking the minimum during 

20–40% of the gait cycle.

To estimate the dynamic stiffness of the knee during the flexion phase of weight acceptance, 

we applied a linear fit to the moment-angle data points from the point of minimum knee 

extension moment to the point of maximum knee extension moment (Figure 2). To estimate 

the dynamic stiffness of the knee during the extension phase of weight acceptance, we 

applied a linear fit to the moment-angle data points from the point of maximum knee 

extensor moment to the first subsequent (local) minimum. Collectively, these knee joint 

parameters computed from inverse dynamics were used as the ground truth for our 

predictive statistical models as described below.

 C. Statistical Model Building

For our general form models describing knee extensor moment extrema and dynamic 

loading stiffness, we limited our set of predictors to measures that could be readily obtained 

in a clinical setting or via simple wearable sensors; body mass, leg length, walking speed, 

and knee joint kinematics. Kinematic parameters included the peak knee angle during 

weight acceptance (θWA), knee angle range of motion from heel strike to the weight 

acceptance peak (ΔθWA), the minimum knee flexion angle during stance (θMS), and the knee 

angle at contralateral heal strike (θLS) (Figure 2). In keeping with the analytical 

decomposition of the knee moment, the kinematic parameters used in each model were 

constrained to the temporal region of the predicted kinetic feature. For example, only weight 

acceptance kinematic parameters were included in the predictor set for weight acceptance 

kinetic features. We used stepwise linear regression to establish a least-squares fit of the 

response data such that only significant predictors (p<0.05) were included in each final 

statistical model. To avoid overfitting and improve model adoptability, we limited our fitted 

models to non-quadratic terms and excluded interactions. In total, we fit five linear 

regression equations, one each for weight acceptance peak knee moment (KEMWA), mid-

stance minimum knee moment (KEMMS), late stance peak knee moment (KEMLS), flexion 

dynamic stiffness (kF), and extension dynamic stiffness (kE). We evaluated the predictive 

performance of each model by conducting a 10-fold leave one out cross-validation, whereby 

we sequentially removed the data from one participant at a time, fit the model with data from 

the remaining nine participants, and then tested the model on the absent participant. We 

computed the root mean squared error (RMSE) between the values predicted by the 

regression model and those computed from inverse dynamics in OpenSim. The RMSE were 
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used to evaluate the predictive performance of the regression models, and we then reported 

the grand average RMSE across the 10-fold cross validation (CV RMSE).

 D. Estimating the Instantaneous Knee Moment Profile

In addition to models predicting knee moment extrema and dynamic stiffness, we developed 

two additional models to predict the knee extensor moment profile during the weight 

acceptance phase of the gait cycle (profile estimation models 1 and 2). Accurate assessment 

of the knee moment profile during weight acceptance is critical for specification of a 

powered knee orthosis because of the precise timing necessary to sharply increase knee 

extensor torque during weight transfer followed by a sharp decease to maintain forward 

momentum [20]. In the case of crouch gait from CP, accurately predicating this profile for 

each individual is even more critical since these individuals typically show the largest 

deviations from non-impaired populations at the knee [2].

For wearable robotic applications, onboard sensors (e.g. joint angle encoders) can be used to 

measure joint position. Therefore, we defined the flexion and extension phases of weight-

acceptance based on the knee joint angle and time derivatives. The instant of peak knee 

flexion angular velocity following foot contact was defined as the starting point for the 

flexion phase. We found this to be a strong indicator of when the knee joint moment 

switches from flexion to extension following heel strike.

In profile estimation model 1 (equation 1), the knee extensor moment during flexion and 

extension was calculated using the instantaneous change in knee angle and the predicted 

dynamic knee stiffness for weight acceptance flexion and extension, respectively. Profile 

estimation model 1 estimated the knee extensor moment as follows:

(1)

where kF represents the predicted dynamic stiffness during flexion, kE represents the 

predicted dynamic stiffness during extension, θ represents the knee joint angle, KEM(nFlex) 

is the knee extensor moment calculated at the end of the flexion phase, and t represents the 

tth time step. The transition from the flexion phase to the extension phase (nFlex) occurred 

when the angular velocity changed signs (negative during flexion to positive during 

extension).

In model 1, the predicted moment during the extension phase relies on the accurate 

prediction of the knee extensor moment at the end of flexion (i.e. KEM(nFlex)). Thus, errors 

in the estimated moment during flexion may propagate during extension. For example, if the 

knee moment is under predicted during the flexion phase, it will remain under predicted 

during extension.

To address this issue, we developed profile estimation model 2 (equation 2), which 

incorporated a correction factor at the flexion-extension transition. During flexion, the knee 

extensor moment was calculated using the instantaneous change in knee angle and the 
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predicted flexion dynamic knee stiffness as in model 1. At the flexion-extension transition, 

we used the predicted first peak of the knee extensor moment (KEMWA) to estimate the peak 

moment at the end of flexion. As such, KEM(nFlex) was set to KEMWA at this transition, 

and the knee extensor moment during extension was calculated using the instantaneous 

change in knee angle and the predicted extension dynamic knee stiffness, again as in model 

1. Profile estimation model 2 estimated the knee extensor moment as follows:

(2)

where kF represents the predicted dynamic stiffness during flexion, kE represents the 

predicted dynamic stiffness during extension, θ represents the knee joint angle, KEMWA 

represents the predicted first peak of the knee extensor moment, and t represents the tth time 

step.

For both profile estimation models, we specified the end of the extension phase (nExt) when 

either the angular position of the knee during the extension phase reached the angle of the 

knee at heel strike or the angular velocity became positive. The predicted moments were 

constrained to non-negative (i.e. extensor) values.

The RMSE between the estimated and computed instantaneous knee extensor moment 

profiles during weight-acceptance was used to evaluate the predictive performance of each 

model.

 E. Analysis of Step by Step Variability

Since step to step variability may be present in crouch gait, we sought to evaluate the 

accuracy of our predictive equations and profile estimation models on an additional gait 

cycle for two subjects. We selected an additional clean force plate strike (heel strike through 

weight acceptance) for a subject with moderate (Subject 5) and mild (Subject 10) crouch 

gait. The experimental data for these strides, which were not used in the statistical model 

building, were used to predict the weight acceptance peak knee moment, dynamic stiffness, 

and knee moment profiles using estimation models 1 and 2.

 III. RESULTS

The knee joint moment-angle relationships exhibited approximately linear behavior during 

weight acceptance flexion and extension. The range of R2 values for the linear fits of these 

relationships (i.e. dynamic stiffness) were between 0.92–0.99 during flexion and 0.94–0.99 

during extension (Table 1).

The general statistical models for prediction of knee extensor moment extrema and dynamic 

stiffness are presented in Table 2. The stepwise linear regression analysis found that only 

body weight and the relevant kinematic parameters were significant predictors to the 

response values; walking speed and leg length were not found to be significant predictors 
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and were excluded from all models. All of the final statistical models explained at least 90% 

of the response value variability as indicated by adjusted R2 values (Table 2).

Dynamic knee stiffness was positively associated with body-weight and crouch severity, and 

negatively associated with knee range of motion. Peak knee extensor moments were 

positively associated with body-weight and crouch severity.

The most accurate model describing the extrema of the knee extensor moment was that of 

the weight acceptance peak (R2: 0.99), while the least accurate was that of the late stance 

peak (R2: 0.90); the accuracy for the mid-stance minimum was in-between the two (R2: 

0.93). The model describing the dynamic stiffness during weight acceptance extension (R2: 

0.98) was slightly more accurate than during weight acceptance flexion (R2: 0.94).

In terms of accuracy, the peak extensor moment (KEMWA) showed the lowest CV RMSE 

(1.78 Nm) while mid-stance minimum (KEMMS) had the highest CV RMSE (4.61 Nm) 

(Table 2). The CV RMSE was 0.53 Nm/deg for the flexion stiffness (kF) and 0.23 Nm/deg 

for the extension stiffness (kE). Comparisons between the predicted and inverse dynamics-

computed first and second peak knee extensor moment and flexion and extension dynamic 

stiffness for each subject are presented in Figure 3.

Both of the estimation models used to predict the instantaneous knee extensor moment 

profile captured the timing and general shape (i.e. rise and fall) of the moments computed 

from inverse dynamics. Comparisons of the estimated profiles and those computed from 

inverse dynamics are presented in Figure 4. Estimation model 2, which had an average 

RMSE of 1.4 Nm across all of the participants, was more accurate than estimation model 1, 

which had an average RMSE of 2.6 Nm. Individual RMSE values for each model are 

reported in Table 3.

The predicted knee joint moment features for the additional gait cycle in the “step by step” 

analysis were of similar accuracy to the gait cycles of those subjects used in the full analysis 

(Table IV). The RMSE for profile estimation models 1 and 2 were 4.8 and 2.9, respectively, 

for the second gait cycle from subject 5. The RMSE for profile estimation models 1 and 2 

were 1.3 and 1.2, respectively, for the second gait cycle from subject 10.

 IV. DISCUSSION

In this study, we used experimental biomechanics data and an inverse dynamics approach to 

establish the kinematic-kinetic coupling relationships of the knee during crouch gait in CP. 

We utilized these relationships to develop a set of statistical models based on clinically 

available measures to estimate features of the knee extensor moment, including peak 

moment values and dynamic knee stiffness. We found R2 values between 0.90 and 0.99 for 

the general form predictive equations, which included both kinematic and anthropometric 

parameters. We also developed models based on the predicted knee moment features to 

estimate the knee moment profile during crouch gait weight-acceptance, which can be 

calculated in real-time.
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Computing the knee extensor moment during walking via instrumented gait analysis is 

challenging in CP patients and is typically unobtainable outside of clinical or research gait 

laboratory settings. Our approach aims to provide the ability to estimate important features 

of the knee moment profile without the need for computational analysis or recording single 

limb ground reaction forces. In building our predictive equations, we constrained our set of 

predictors to anthropometric and kinematic parameters that can be measured with wearable 

sensors or in a clinical setting with minimal equipment and those which are included in the 

analytical decomposition of the knee moment.

Surprisingly, walking speed and leg length were not significant predictors in any of the 

equations, and were therefore eliminated in the stepwise regression analysis. The effects of 

walking speed and leg length were likely small compared to the effects of the kinematic 

knee parameters and body weight. We used data where participants walked at only their self-

selected speeds, which may further explain these findings. The performance of our statistical 

models during walking at non-self-selected walking speeds warrants further investigation.

Similar to the behavior of the knee in unimpaired individuals [11], we found that the 

moment-angle relationship of the knee during the flexion and extension phases of weight-

acceptance were approximately linear during crouch gait (the R2 values were between 0.92 

and 0.99). We utilized the predictive equations to estimate the knee extension moment 

profile, which can be calculated in real-time based on the instantaneous change in knee 

angle. We evaluated one estimation model based solely on dynamic stiffness (profile 

estimation model 1), and another that incorporated a first peak correction factor (profile 

estimation model 2). We found that both estimation models captured the general 

characteristics of the knee extensor moment, while the model that utilized a correction factor 

for the first peak (model 2) resulted in the most accurate predictions. The second estimation 

model corrected for compounding errors that resulted when the moment predicted from the 

flexion-region dynamic stiffness underestimated or overestimated the peak moment at the 

flexion-extension transition. The predicted first peak of the knee extensor moment 

(KEMWA) was used as the correction factor because our predictive equation for that 

parameter was highly accurate (Table 2, R2=0.99, RMSE = 1.15Nm) and it demonstrated a 

potential to correct errors in the instantaneous moment due to prediction errors of the weight 

acceptance flexion stiffness.

The results of this study have implications for the design or modification of passive knee 

orthoses aimed to assist individuals with crouch gait. Since we found that the moment-angle 

relationships remained approximately linear during crouch gait, this suggests that passive 

knee orthoses used in this population could utilize elastic or spring to store and return energy 

during the flexion and extension phases of weight-acceptance, respectively. A device based 

on this concept has been proposed and tested in non-impaired individuals [6]. Our equations 

used to predict knee joint stiffness may aid the specification and individual customization of 

the spring stiffness used in such a device.

Powered orthoses used for gait assistance typically utilize joint moment feedback-based 

motor controllers [7–9]. For rehabilitation in individuals with CP, where some locomotor 

function remains, assistive devices should supplement, but not replace, existing function in 
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order to maintain muscle strength. Applying an assistive torque as a percentage of the 

instantaneous internal joint moment may prove critical for long-term training and 

rehabilitation of the neuromuscular system. Our predictive equations may be used in a 

framework for utilizing the estimated instantaneous knee extensor moment in the control of 

robotic knee orthoses (Figure 1), where the magnitude of assistive torque adapts to the 

magnitude of the internal joint moment.

The step by step variability analysis suggests that the predictive equations and estimation 

models are able handle normal perturbations that may occur during walking in crouch gait. 

However, a change in knee kinematics and kinetics as a result of motorized assistance may 

affect the accuracy of our estimation models. During walking in able-bodied individuals 

with an assistive exoskeleton that provided external stiffness to the knee joint, Shamaei et al. 

found that the combined dynamic stiffness of the knee and device remains invariant when 

the external assistive stiffness is provided up to ~80% of the internal knee stiffness [21]. 

Their finding, combined with the strong performance of our estimation models across a 

reasonably wide range of knee angles, provides confidence in the ability our proposed 

approach to accurately determine the internal knee moment when motorized assistance may 

result in altered kinematics while treating crouch gait. This must be tested experimentally, 

and is something we will evaluate in our ongoing research.

Researchers have used surface electromyography based approaches to estimate joint 

moments during a variety of tasks, including the knee joint moment during walking in 

individuals with [22] and without [23] CP. While electromyography based approaches have 

implications for motor control algorithms, they may have limited practicality outside of a 

research laboratory due to challenges associated with electrode placement, such as limited 

use duration, re-calibration, and motion artifact from clothing and/or the orthosis. The 

approach outlined in the present study may have improved practicality because it does not 

require instrumented calibration and utilizes sensors customarily already included in robotic 

devices, such as a motor encoder.

We found that our statistical models were able to estimate the kinetic behavior of the knee 

with similar accuracy compared to prior studies in able-bodied adults [11], and other 

estimation paradigms [22]. The results of our cross-validation provide a high level of 

confidence in the reported predictive equations. Still, the relatively small sample size was a 

limitation of this study. It is possible that certain crouch gait variations were not included in 

our analysis. Therefore, the generalizability of our findings to individuals with knee 

behavior not encompassed by the type or range of parameters in our sample remains 

unknown and should be interpreted with caution. Future studies encompassing larger and 

more diverse datasets (e.g. additional subjects, walking conditions, etc.) would be beneficial.

 V. CONCLUSSION

This study established the moment-angle coupling relationships of the knee during crouch 

gait and developed a set of predictive equations to estimate key features of the knee joint 

moment during the stance phase based on kinematic and anthropometric measures. Only 

anthropometric and kinematic measures were included in the statistical models, which allow 

Lerner et al. Page 9

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clinicians, technicians, and/or orthotists to estimate features of a patient’s knee moment 

without requiring instrumented gait analysis and post-hoc analysis. We demonstrated the 

utility of our statistical models and presented a practical approach to estimate the 

instantaneous knee extensor moment based on predicted knee joint dynamic stiffness and 

peak moment. The predictive models reported in this study have implications for assessing 

and improving the treatment of crouch gait.
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Figure 1. 
A framework for utilizing the estimated instantaneous knee extensor moment in the adaptive 

control of a robotic knee orthosis. On-board sensors measure the knee joint kinematics, 

which are input into an estimation model to determine the instantaneous internal knee joint 

moment. The predicted moment is used by the motor controller to specify the necessary 

control signals to elicit the motor torque for the desired level of assistance as a percentage of 

the internal knee joint moment.
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Figure 2. 
Knee joint angle (top) and moment (middle) during the gait cycle, and moment-angle curve 

(bottom) for a representative participant. The kinematic parameters used as predictors in the 

statistical model development are noted in the knee joint angle plot (top), where θWA is 

defined as the peak knee flexion angle during weight acceptance, ΔθWA is defined as the 

knee angle range of motion from heal strike to the weight acceptance peak, θMS is defined as 

the minimum knee flexion angle during stance, θLS is defined as the knee angle at 

contralateral heal strike. In the moment-angle plot (right), dynamic stiffness was defined as 

the slope of the best fit line during weight-acceptance flexion (kF) and extension (kE). Since 

the moment angle relationships are different between stance and swing, embedded foot 

switches or pressure sensors could be used to distinguish between these phases.
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Figure 3. 
Peak knee extensor moments during weight acceptance (top left) and late stance (top right), 

and dynamic stiffness during weight acceptance flexion (bottom left) and extension (bottom 

right) computed using inverse dynamics (squares) and predicted from the respective 

statistical model (diamonds).
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Figure 4. 
Knee joint moment waveforms during weight-acceptance computed using inverse dynamics 

(solid black lines) and predicted from estimation models 1 (dashed red lines) and 2 (solid 

blue lines). The numbers above each plot signify subject number.
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Table II

Statistical models for predicting knee joint moment features during crouch gait.

Knee Moment Feature Predictive Equation Adj. R2 CV RMSE p

Weight Acceptance Peak
(KEMWA, Nm)

KEMWA= −25.0 + 0.55·W +
0.41·θWA + 0.99 ·ΔθWA

0.99 1.78 <0.001

Mid-Stance Minimum
(KEMMS, Nm)

KEMMS = 7.64 + 0.026·W·θMS 0.93 4.61 <0.001

Late Stance Peak
(KEMLS, Nm)

KEMLS = −25.4 + 0.50·W +
0.86·θLS

0.90 3.80 <0.001

Flexion Stiffness
(kF, Nm/deg)

KF = −2.33 + 0.082·W + 0.11·θWA

− 0.20·ΔθWA

0.94 0.53 <0.001

Extension Stiffness
(kE, Nm/deg)

KE = 0.21 + 0.055·W + 1.37·θWA −
1.38·θMS− 1.38· ΔθMS

0.98 0.23 <0.001

Where θWA is defined as the peak knee flexion angle during weight acceptance, ΔθWA is defined as the knee angle range of motion from heal 

strike to the weight acceptance peak, θMS is defined as the minimum knee flexion angle during stance, and θLS is defined as the knee angle at 

contralateral heal strike. Adj. R2 refers to R2 value for each predictive equation adjusted for the number of predictors in the model. CV RMSE 
refers to the grand average RMSE across the 10-fold leave one out cross-validation.
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Table III

Profile estimation model performances.

Subject
Model 1

RMSE (Nm)
Model 2

RMSE (Nm)

1 0.9 0.5

2 2.7 1.7

3 4.0 2.3

4 4.5 2.3

5 1.3 1.3

6 3.8 2.1

7 1.8 0.9

8 2.5 1.0

9 3.5 1.1

10 1.4 0.5

Avg 2.6 1.4
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Table IV

Step by step variability and prediction performance.

Subject 5 Subject 10

Step 1 Step 2 Step 1 Step 2

Weight Acceptance
Peak (Nm)

17.3 (18.8) 17.6 (21.3) 11.4 (10.2) 8.8 (8.2)

Flexion Stiffness
(Nm/deg)

4.6 (5.1) 2.5 (3.3) 2.5 (2.6) 2.1 (2.2)

Extension Stiffness
(Nm/deg)

1.4 (1.3) 1.2 (0.9) 1.3 (1.5) 1.5 (1.0)

Values are presented as predicted (actual). Subject 5 exhibited moderate crouch gait, while subject 10 exhibited mild crouch gait.
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